NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = T.S.Park

Found 48 matches.

Back to query form

2023ZH20      Phys.Lett. B 841, 137913 (2023)

Q.Zhao, Z.Ren, P.Zhao, T.-S.Park

Accurate relativistic density functional for exchange energy of atomic nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 132Sn, 208Pb; calculated total energies per nucleon as a function of the charge radii, relativistic Kohn-Sham potentials, proton Kohn-Sham potentials; deduced an orbital-dependent relativistic Kohn-Sham density functional theory to incorporate the exchange energy with local Lorentz scalar and vector potentials.

doi: 10.1016/j.physletb.2023.137913
Citations: PlumX Metrics

2022CH06      Nucl.Phys. A1018, 122374 (2022)

V.Chavan, C.Ham, S.-I.Bak, V.Gore, E.J.In, D.Moon, S.Oh, B.Park, T.-S.Park, V.Bhoraskar, S.-W.Hong

Monoenergetic neutrons from the 9Be(p, n)9B reaction induced by 35, 40 and 45-MeV protons

NUCLEAR REACTIONS 9Be(p, n), E=35, 40, 45 MeV; 209Bi(n, 4n)206Bi, E<42 MeV; measured reaction products, En, In, Eγ, Iγ; deduced σ, neutron spectra. Comparison with the EXFOR library, TALYS calculations.

doi: 10.1016/j.nuclphysa.2021.122374
Citations: PlumX Metrics

2021PA42      Phys.Rev. C 104, 064612 (2021)


R-matrix theory with level-dependent boundary condition parameters

NUCLEAR REACTIONS 12C(p, p), E=0.2-2.0 MeV; analyzed experimental scattering cross section data using new formalism of consistent R-matrix theory with level-dependent boundary condition; deduced formal parameters for the resonance energies and widths identical to the observed values.

doi: 10.1103/PhysRevC.104.064612
Citations: PlumX Metrics

2020PA21      Int.J.Mod.Phys. E29, 2050012 (2020)

T.S.Park, K.J.Min, S.-W.Hong

Effects of transient nonthermal particles on the big bang nucleosynthesis

ATOMIC MASSES 1,2,3H, 3He, 6,7Li, 7Be; calculated ratios of abundances of elements.

doi: 10.1142/S0218301320500123
Citations: PlumX Metrics

2018LE15      Eur.Phys.J. A 54, 173 (2018)

J.Lee, C.-S.Gil, Y.-O.Lee, T.-S.Park, S.-W.Hong

Calculation of fission product yields for uranium isotopes by using a semi-empirical model

doi: 10.1140/epja/i2018-12607-2
Citations: PlumX Metrics

2018PA03      Phys.Rev. C 97, 014312 (2018)

P.Papakonstantinou, T.-S.Park, Y.Lim, C.H.Hyun

Density dependence of the nuclear energy-density functional

doi: 10.1103/PhysRevC.97.014312
Citations: PlumX Metrics

2017GI05      Acta Phys.Pol. B48, 305 (2017)

H.Gil, P.Papakonstantinou, C.H.Hyun, T.-S.Park, Y.Oh

Nuclear Energy Density Functional for KIDS

NUCLEAR STRUCTURE 16,28O, 40,60Ca; calculated energy per p article, mass excess, charge radius vs k-parameter of the radius using density functional theory. Masses compared with AME-2012 values.

doi: 10.5506/APhysPolB.48.305
Citations: PlumX Metrics

2017SH25      Nucl.Instrum.Methods Phys.Res. B407, 265 (2017)

J.W.Shin, T.-S.Park

Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

NUCLEAR REACTIONS 9Be(p, n), (p, nα), E=35, 50.5 MeV; calculated neutron yields using GEANT4 code. G4Data(Endf7.1) model that takes as inputs the total and differential cross section data of ENDF/B-VII.1 evaluated nuclear library.

doi: 10.1016/j.nimb.2017.07.010
Citations: PlumX Metrics

2016SH37      Phys.Rev. C 94, 045804 (2016)

J.W.Shin, M.-K.Cheoun, T.-S.Park, T.Kajino

New neutrino source for the study of solar neutrino physics in the vacuum-matter transition region

NUCLEAR REACTIONS 27Al(p, n)27Si, E=5-20 MeV; analyzed σ(E) data with hadronic models of GEANT4 and the nuclear data model; calculated normalized energy distribution of electron-neutrinos through the radioactive decay of 27Si in 0-5 MeV range, close to solar neutrino physics; proposed target systems required for future solar neutrino experiments. 2H(ν, e-)2p, (ν, ν), 37Cl(ν, e-)37Ar, 71Ga(ν, e-)71Ge, E=0-5 MeV; calculated total reaction rates by electron-neutrino spectra, expected event rates and their ratios for LENA-type detector.

doi: 10.1103/PhysRevC.94.045804
Citations: PlumX Metrics

2015SH10      Nucl.Instrum.Methods Phys.Res. B349, 221 (2015)

J.W.Shin, K.J.Min, C.Ham, T.-S.Park, S.-W.Hong

Yield estimation of neutron-rich rare isotopes induced by 200 MeV/u 132Sn beams by using GEANT4

NUCLEAR REACTIONS 9Be(132Sn, X), E=200 MeV/nucleon; 9Be(59Co, X), E=80 MeV/nucleon;9Be(72Zn, X), E=95 MeV/nucleon;9Be(92Mo, X), E=500 MeV/nucleon; calculated yield of neutron-rich rare isotopes using GEANT4 code.

doi: 10.1016/j.nimb.2015.03.005
Citations: PlumX Metrics

2014SH33      Nucl.Instrum.Methods Phys.Res. B342, 194 (2014)

J.W.Shin, T.-S.Park

New charge exchange model of GEANT4 for 9Be(p, n)9B reaction

NUCLEAR REACTIONS 9Be(p, n), E<180 MeV; calculated σ, σ(θ), σ(θ, E), yields. GEANT4, ENDF/B-VII.1 library.

doi: 10.1016/j.nimb.2014.10.002
Citations: PlumX Metrics

2012HA35      Appl.Radiat.Isot. 70, 2581 (2012)

J.Han, K.B.Lee, T.S.Park, J.M.Lee, P.J.Oh, S.H.Lee, Y.S.Kang, J.K.Ahn

18F half-life measurement using a high-purity germanium detector

RADIOACTIVITY 18F(EC); measured decay products, Eγ, Iγ; deduced T1/2. Comparison with available data, 137Cs reference source.

doi: 10.1016/j.apradiso.2012.07.015
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2011AD03      Rev.Mod.Phys. 83, 195 (2011)

E.G.Adelberger, A.Garcia, R.G.H.Robertson, K.A.Snover, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, D.Bemmerer, A.Junghans, D.Bemmerer, A.Junghans, C.A.Bertulani, K.-W.Chen, H.Costantini, P.Prati, M.Couder, E.Uberseder, M.Wiescher, R.Cyburt, B.Davids, S.J.Freedman, M.Gai, D.Gazit, L.Gialanella, G.Imbriani, U.Greife, M.Hass, W.C.Haxton, T.Itahashi, K.Kubodera, K.Langanke, D.Leitner, M.Leitner, P.Vetter, L.Winslow, L.E.Marcucci, T.Motobayashi, A.Mukhamedzhanov, R.E.Tribble, F.M.Nunes, T.-S.Park, R.Schiavilla, E.C.Simpson, C.Spitaleri, F.Strieder, H.-P.Trautvetter, K.Suemmerer, S.Typel

Solar fusion cross sections. II. The pp chain and CNO cycles

NUCLEAR REACTIONS 2H(p, γ), 3He(3He, 2p), (α, γ), (p, e), 7Be, 12C, 14N, 15N, 17O(p, γ), 15N, 16,17,18O(p, α), E<3 MeV; analyzed and evaluated experimental data; deduced recommended values and uncertainties.

doi: 10.1103/RevModPhys.83.195
Citations: PlumX Metrics

2011BA48      J.Korean Phys.Soc. 59, 2071s (2011)

S.I.Bak, T.-S.Park, S.-W.Hong, J.W.Shin, I.S.Hahn

GEANT4 Simulation of the Shielding of Neutrons from 252Cf Source

doi: 10.3938/jkps.59.2071
Citations: PlumX Metrics

2011LA04      Phys.Rev. C 83, 034006 (2011), Publishers Note Phys.Rev. C 83, 049901 (2011)

R.Lazauskas, Y.Song, T.-S.Park

Heavy-baryon chiral perturbation theory approach to thermal neutron capture on 3He

NUCLEAR REACTIONS 3He(n, α), E=thermal; calculated total cross section using current operator from heavy-baryon chiral perturbation theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034006
Citations: PlumX Metrics

2011SA54      J.Korean Phys.Soc. 59, 1111s (2011)

Sang In Bak, R.Brun, Fe.Carminati, J.S.Chai, A.Gheata, M.Gheata, S.-W.Hong, Y.Kadi, V.Manchanda, T.-S.Park, C.Tenreiro

A New Format for Handling Nuclear Data

doi: 10.3938/jkps.59.1111
Citations: PlumX Metrics

2011SH41      J.Korean Phys.Soc. 59, 2022s (2011)

J.W.Shin, T.-S.Park, S.W.Hong, J.K.Park, J.T.Kim, J.-S.Chai

Estimates of SEU for Semiconductors Using MC50 Cyclotron and GEANT4 Simulation.

doi: 10.3938/jkps.59.2022
Citations: PlumX Metrics

2009SO10      Phys.Rev. C 79, 064002 (2009)

Y.-H.Song, R.Lazauskas, T.-S.Park

Up to N3LO heavy-baryon chiral perturbation theory calculation for the M1 properties of three-nucleon systems

NUCLEAR STRUCTURE 3H, 3He; calculated M1 properties, magnetic moments, deuteron binding energy, np scattering length, and observables of radiative capture of thermal neutron by proton and deuteron in two- and three-nucleon systems using heavy baryon chiral perturbation theory of Weinberg and meson exchange currents derived up to L3NO. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064002
Citations: PlumX Metrics

2007SO17      Phys.Lett. B 656, 174 (2007)

Y.-H.Song, R.Lazauskas, T.-S.Park, D.-P.Min

Effective field theory approach for the M1 properties of A = 2 and 3 nuclei

NUCLEAR STRUCTURE 2,3H, 3He; calculated μ, binding energies with a variational Monte Carlo method.

doi: 10.1016/j.physletb.2007.09.038
Citations: PlumX Metrics

2004KU29      Ann.Rev.Nucl.Part.Sci. 54, 19 (2004)

K.Kubodera, T.-S.Park

The Solar hep Process

doi: 10.1146/annurev.nucl.54.070103.181239
Citations: PlumX Metrics

2004LE07      Appl.Radiat.Isot. 60, 397 (2004)

J.M.Lee, K.B.Lee, M.K.Lee, P.J.Oh, T.S.Park, H.Y.Hwang

Standardization of 125I and 238Pu

RADIOACTIVITY 125I(EC); measured Eγ, Iγ. 238Pu(α); measured Eγ, Iγ, Eα, Iα, αγ-coin.

doi: 10.1016/j.apradiso.2003.11.048
Citations: PlumX Metrics

2004PA19      Nucl.Phys. A737, 190 (2004)


EFT for electroweak processes of light nuclei

doi: 10.1016/j.nuclphysa.2004.03.062
Citations: PlumX Metrics

2003AN03      Phys.Lett. B 555, 49 (2003)

S.Ando, Y.H.Song, T.-S.Park, H.W.Fearing, K.Kubodera

Solar-neutrino reactions on deuteron in effective field theory

NUCLEAR REACTIONS 2H(ν, ep), (ν-bar, e+n), (ν, ν'p), (ν-bar, ν-bar'p), E=spectrum; calculated σ for solar neutrinos. Effective field theory.

doi: 10.1016/S0370-2693(03)00046-7
Citations: PlumX Metrics

2003NA32      Nucl.Phys. A721, 549c (2003)

S.Nakamura, T.Sato, S.Ando, T.-S.Park, F.Myhrer, V.Gudkov, K.Kubodera

Neutrino-deuteron reactions at solar neutrino energies

NUCLEAR REACTIONS 2H(ν, ep), (ν, νn), E=5, 10, 20 MeV; calculated σ. 2H(ν, X), E=0-20 MeV; calculated total charged-current σ.

doi: 10.1016/S0375-9474(03)01121-7
Citations: PlumX Metrics

2003PA19      Phys.Rev. C 67, 055206 (2003)

T.-S.Park, L.E.Marcucci, R.Schiavilla, M.Viviani, A.Kievsky, S.Rosati, K.Kubodera, D.-P.Min, M.Rho

Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

NUCLEAR REACTIONS 1H, 3He(p, e+ν), E=low; calculated threshold astrophysical S-factors, dependence on cutoff parameters. Effective field theory.

doi: 10.1103/PhysRevC.67.055206
Citations: PlumX Metrics

2002AN10      Phys.Lett. 533B, 25 (2002)

S.Ando, T.-S.Park, K.Kubodera, F.Myhrer

The μ-d Capture Rate in Effective Field Theory

NUCLEAR REACTIONS 2H(μ-, ν), E at rest; calculated capture rate vs final-state energy. Heavy baryon chiral perturbation theory.

doi: 10.1016/S0370-2693(02)01619-2
Citations: PlumX Metrics

2002HW08      Nucl.Instrum.Methods Phys.Res. A488, 562 (2002)

H.-Y.Hwang, J.H.Lee, Y.H.Cho, J.I.Byun, T.S.Kim, T.S.Park, J.M.Lee

Measurement of Accidental Coincidences in β-γ Coincidence Counting using Non-Equal Dead Times

RADIOACTIVITY 166mHo(β-); analyzed βγ-coin, rate of accidental coincidences. Multi-channel time scaling.

doi: 10.1016/S0168-9002(02)00561-2
Citations: PlumX Metrics

2002NA19      Nucl.Phys. A707, 561 (2002)

S.Nakamura, T.Sato, S.Ando, T.-S.Park, F.Myhrer, V.Gudkov, K.Kubodera

Neutrino-Deuteron Reactions at Solar Neutrino Energies

NUCLEAR REACTIONS 2H(ν, ep), (ν, νp), E=1.5-20.0 MeV; calculated σ. Effective field theory.

doi: 10.1016/S0375-9474(02)00993-4
Citations: PlumX Metrics

2002PA04      Appl.Radiat.Isot. 56, 275 (2002)

T.S.Park, J.M.Lee, H.Y.Hwang

Standardization of 152Eu and 88Y

RADIOACTIVITY 152Eu(β-), (EC); 88Y(EC); measured Eγ, Iγ, βγ-coin; deduced source standardization. Digital coincidence counting.

doi: 10.1016/S0969-8043(01)00200-7
Citations: PlumX Metrics

2002PA39      J. Korean Phys.Soc. 41, 195 (2002)

T.S.Park, H.Jung, D.P.Min

In-Medium Effective Pion Mass from Heavy-Baryon Chiral Perturbation Theory

2001AN18      Phys.Lett. 509B, 253 (2001)

S.-I.Ando, T.-S.Park, D.-P.Min

Threshold pp → ppπ0 Up to One-Loop Accuracy

NUCLEAR REACTIONS 1H(p, pπ0), E ≈ threshold; calculated σ; deduced one-loop contributions. Hybrid heavy baryon chiral perturbation theory, comparisons with data.

doi: 10.1016/S0370-2693(01)00433-6
Citations: PlumX Metrics

2001CH63      Phys.Lett. 516B, 321 (2001)

H.H.Chang, T.-S.Park, D.-P.Min

Asymmetry in (n(pol)) + p → d + γ

NUCLEAR REACTIONS 1H(polarized n, γ), E=threshold; calculated γ-ray asymmetry. Heavy-baryon chiral perturbation theory, comparison with previous results.

doi: 10.1016/S0370-2693(01)00917-0
Citations: PlumX Metrics

2001OL05      Nucl.Phys. A691, 295c (2001)

A.Olin, T.-S.Park

Kaon Nucleon Scattering and Reactions at Low Energies

doi: 10.1016/S0375-9474(01)01048-X
Citations: PlumX Metrics

2001PA17      Nucl.Phys. A684, 101c (2001)

T.-S.Park, K.Kubodera, D.-P.Min, M.Rho

Effective Field Theory for Nuclei: Confronting fundamental questions in astrophysics

doi: 10.1016/S0375-9474(01)00494-8
Citations: PlumX Metrics

2000HY01      Phys.Lett. 473B, 6 (2000)

C.H.Hyun, T.-S.Park, D.-P.Min

A Higher-Order Calculation of np Scattering in Cut-Off Effective Field Theory

NUCLEAR REACTIONS 1H(n, X), E(cm)=70-280 MeV; calculated phase shifts; deduced two-pion exchange contributions, related features.

doi: 10.1016/S0370-2693(99)01487-2
Citations: PlumX Metrics

2000PA03      Phys.Lett. 472B, 232 (2000)

T.-S.Park, K.Kubodera, D.-P.Min, M.Rho

Effective Field Theory Approach to n(pol) + p(pol) → d + γ at Threshold

NUCLEAR REACTIONS 1H(polarized n, γ), E not given; calculated polarization observables. Effective field theory, polarized target.

doi: 10.1016/S0370-2693(99)01438-0
Citations: PlumX Metrics

2000PA08      Appl.Radiat.Isot. 52, 435 (2000)

T.S.Park, H.Y.Hwang, J.M.Lee

Correlation Effect in Activity Measurement of 59Fe

RADIOACTIVITY 59Fe(β-); measured Eβ, Iβ, βγ-coin; deduced correlation effects in activity measurement. Bi-dimensional coincidence counting method.

doi: 10.1016/S0969-8043(99)00191-8
Citations: PlumX Metrics

1999PA05      Nucl.Phys. A646, 83 (1999)

T.-S.Park, K.Kubodera, D.-P.Min, M.Rho

The Power of Effective Field Theories in Nuclei: The deuteron, NN scattering and electroweak processes

NUCLEAR REACTIONS 1H(p, e+), (n, γ), E=low; calculated phase shifts, matrix elements; deduced pion role, cut-off parameter. Effective field theory.

doi: 10.1016/S0375-9474(98)00614-9
Citations: PlumX Metrics

1998HW05      J.Phys.(London) G24, 1013 (1998)

H.Y.Hwang, K.H.Kim, T.S.Park

Development of Multichannel Time Scaling Technique to Analyse the Half-Life of 75mAs using Correlation Analysis

RADIOACTIVITY 75mAs(IT) [from 75Se decay]; measured T1/2. Multichannel time scaling technique.

doi: 10.1088/0954-3899/24/5/009
Citations: PlumX Metrics

1998HW07      Appl.Radiat.Isot. 49, 1201 (1998)

H.Y.Hwang, T.S.Park, J.M.Lee

Subtractions of Accidental Coincidences and Compton Scattered Events by Multi-Channel Time Scaling Technique in γ-Ray Spectrometry

RADIOACTIVITY 133Ba(EC); 152Eu(EC), (β+); measured Eγ, Iγ; deduced photopeak intensities. Multi-channel time scaling technique for Compton background subtraction.

doi: 10.1016/S0969-8043(97)10046-X
Citations: PlumX Metrics

1998PA21      Phys.Rev. C58, R637 (1998)

T.-S.Park, K.Kubodera, D.-P.Min, M.Rho

Effective Field Theory for Low-Energy Two-Nucleon Systems

NUCLEAR REACTIONS 1H(n, γ), E(cm) < 220 MeV; calculated phase shift, M1 transition amplitude; deduced little cutoff dependence. Effective field theory.

doi: 10.1103/PhysRevC.58.R637
Citations: PlumX Metrics

1997PA27      Phys.Lett. 409B, 26 (1997)

T.-S.Park, H.Jung, D.-P.Min

In-Medium Effective Axial-Vector Coupling Constant

doi: 10.1016/S0370-2693(97)00880-0
Citations: PlumX Metrics

1996HW02      Nucl.Instrum.Methods Phys.Res. A369, 363 (1996)

H.Y.Hwang, T.S.Park, K.H.Kim, W.J.Jeon, P.J.Oh, M.K.Lee, K.H.Han, H.J.Yun

An Improved Method of Correlation Counting using a Bi-Dimensional Data Acquisition System

RADIOACTIVITY 75Se(EC); measured delayed event pairs fraction. Bi-dimensional data acquisition system.

doi: 10.1016/S0168-9002(96)80010-6
Citations: PlumX Metrics

1996HW03      Nucl.Instrum.Methods Phys.Res. A383, 447 (1996)

H.Y.Hwang, C.B.Lee, T.S.Park, H.J.Kim

A New Method for Isomer Lifetime Measurement

RADIOACTIVITY 67Ga(EC); measured Eγ, delayed E(ce). 67Zn deduced isomer T1/2.

doi: 10.1016/S0168-9002(96)00858-3
Citations: PlumX Metrics

1996PA04      Nucl.Phys. A596, 515 (1996)

T.-S.Park, D.-P.Min, M.Rho

Chiral Lagrangian Approach to Exchange Vector Currents in Nuclei

NUCLEAR REACTIONS 1H(n, γ), E=thermal; calculated σ. Chiral Lagrangian approach, exchange vector currents.

doi: 10.1016/0375-9474(95)00406-8
Citations: PlumX Metrics

1995PA38      Phys.Rev.Lett. 74, 4153 (1995)

T.-S.Park, D.-P.Min, M.Rho

Radiative Neutron-Proton Capture in Effective Chiral Lagrangians

NUCLEAR REACTIONS 1H(n, γ), E=thermal; calculated total capture σ(E). Chiral perturbation theory.

doi: 10.1103/PhysRevLett.74.4153
Citations: PlumX Metrics

1994PA31      Nucl.Phys. A579, 381 (1994)

T.-S.Park, I.S.Towner, K.Kubodera

Nuclear Matrix Elements of Axial-Charge Exchange Currents Derived in Heavy-Fermion Chiral Perturbation Theory

NUCLEAR STRUCTURE A=16-208; calculated impulse approximation, meson exchange contributions to current ratio. Heavy-fermion chiral perturbation theory, shell model.

doi: 10.1016/0375-9474(94)90914-8
Citations: PlumX Metrics

1992PA10      Nucl.Instrum.Methods Phys.Res. A312, 67 (1992)

T.S.Park, I.S.Kim

Standardization of 75Se by 4π(e, x)-γ Coincidence Counting Method

RADIOACTIVITY 75Se(EC); measured activity. 4π (ce, X)-γ counting, Ge(Li) spectrometer, source standardization.

doi: 10.1016/0168-9002(92)90129-R
Citations: PlumX Metrics

Back to query form