NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = R.Lazauskas

Found 41 matches.

Back to query form



2023DU12      Phys.Rev. C 108, 054003 (2023)

P.-Y.Duerinck, R.Lazauskas, J.Dohet-Eraly

Antiproton-deuteron hydrogenic states from a coupled-channel approach

doi: 10.1103/PhysRevC.108.054003
Citations: PlumX Metrics


2023LA03      Phys.Rev.Lett. 130, 102501 (2023)

R.Lazauskas, E.Hiyama, J.Carbonell

Low Energy Structures in Nuclear Reactions with 4n in the Final State

NUCLEAR STRUCTURE 8He, 2,4NN; calculated strength and low energy four-neutron response functions with the AV18 nn interaction, low energy 4n response functions for the scaled nn MT13 potential; deduced the sharp low energy peak observed by studying the missing mass spectra of four neutrons as a consequence of dineutron-dineutron correlations.

doi: 10.1103/PhysRevLett.130.102501
Citations: PlumX Metrics


2022AU03      Eur.Phys.J. A 58, 88 (2022)

T.Aumann, W.Bartmann, O.Boine-Frankenheim, A.Bouvard, A.Broche, F.Butin, D.Calvet, J.Carbonell, P.Chiggiato, H.De Gersem, R.De Oliveira, T.Dobers, F.Ehm, J.Ferreira Somoza, J.Fischer, M.Fraser, E.Friedrich, A.Frotscher, M.Gomez-Ramos, J.-L.Grenard, A.Hobl, G.Hupin, A.Husson, P.Indelicato, K.Johnston, C.Klink, Y.Kubota, R.Lazauskas, S.Malbrunot-Ettenauer, N.Marsic, W.F.O Muller, S.Naimi, N.Nakatsuka, R.Necca, D.Neidherr, G.Neyens, A.Obertelli, Y.Ono, S.Pasinelli, N.Paul, E.C.Pollacco, D.Rossi, H.Scheit, M.Schlaich, A.Schmidt, L.Schweikhard, R.Seki, S.Sels, E.Siesling, T.Uesaka, M.Vilen, M.Wada, F.Wienholtz, S.Wycech, S.Zacarias

PUMA, antiProton unstable matter annihilation

doi: 10.1140/epja/s10050-022-00713-x
Citations: PlumX Metrics


2022HI06      Phys.Lett. B 833, 137367 (2022)

E.Hiyama, R.Lazauskas, J.Carbonell

7H ground state as a 3H+4n resonance

NUCLEAR STRUCTURE 3,4,5,7H, 4NN; analyzed available data; calculated S- and P-wave n-t phase shifts, resonant states, energy trajectories, eigenvalues of the 7H hamiltonian as a function of the stabilization parameter. The solution of the 5-body Schrodinger equation has been obtained by means of the variational Gaussian expansion approach and the resonance parameters.

doi: 10.1016/j.physletb.2022.137367
Citations: PlumX Metrics


2022HI10      Phys.Rev. C 106, 064001 (2022)

E.Hiyama, R.Lazauskas, J.Carbonell, T.Frederico

Scaling of the 19B two-neutron halo properties close to unitarity

NUCLEAR STRUCTURE 19B; calculated rms radii, S(2n), ground-state energy, n-17B scattering length, rms relative separation distances in the 17B+n+n system. Faddeev equation formalism in configuration space with Gaussian expansion method are used for solving three-body problem. Calculations with charge independent Bonn-A and charge dependent AV18 nn-interactions.

doi: 10.1103/PhysRevC.106.064001
Citations: PlumX Metrics


2021LA14      Phys.Lett. B 820, 136573 (2021), Erratum Phys.Lett. B 841, 137936 (2023)

R.Lazauskas, J.Carbonell

Antiproton-deuteron hydrogenic states in optical models

doi: 10.1016/j.physletb.2021.136573
Citations: PlumX Metrics


2019DE27      Phys.Rev. C 100, 044002 (2019)

A.Deltuva, R.Lazauskas

Tetraneutron resonance in the presence of a dineutron

NUCLEAR REACTIONS 2n(2n, 2n)4n; calculated dineutron scattering phase shifts and cross sections by solving exact four-particle continuum using Faddeev-Yakubovsky (FY) and Alt, Grassberger, and Sandhas (AGS) equations, and by varying the interaction enhancement factor; deduced bound tetraneutron as a virtual 0+ state.

doi: 10.1103/PhysRevC.100.044002
Citations: PlumX Metrics


2019HI05      Phys.Rev. C 100, 011603 (2019)

E.Hiyama, R.Lazauskas, F.M.Marques, J.Carbonell

Modeling 19B as a 17B - n - n three-body system in the unitary limit

NUCLEAR STRUCTURE 19B; calculated n-17B scattering length, radial potential, ground state energy and probability amplitude of ground state using three-body (17B-n-n) system model, with the two-body subsystems 17B-n and n-n as unbound (virtual) states close to the unitary limit. Discussed link with the Efimov physics, and possibility to explain recently discovered resonant states in 20,21B.

doi: 10.1103/PhysRevC.100.011603
Citations: PlumX Metrics


2019LA07      Phys.Lett. B 791, 335 (2019)

R.Lazauskas, E.Hiyama, J.Carbonell

Ab initio calculations of 5H resonant states

NUCLEAR STRUCTURE 5H; calculated resonant states, J, π using the 5-body Faddeev-Yakubovsky equations in configuration space with realistic nuclear Hamiltonians.

doi: 10.1016/j.physletb.2019.02.047
Citations: PlumX Metrics


2019LA11      Phys.Rev. C 99, 054002 (2019)

R.Lazauskas, Y.-H.Song

Parity-violating neutron spin rotation in 4He

NUCLEAR REACTIONS 4He(n, n), E(cm)=0-10 MeV; calculated S- and P-wave scattering phase shifts and scattering lengths; deduced parity-violating neutron spin rotation in 4He at vanishing incident neutron energy limit. 4He; calculated binding energy. Five-body Faddeev-Yakubovsky equations in configuration space using strong-interaction Hamiltonian based on chiral perturbation theory including three-nucleon force, with parity-violating nucleon-nucleon interaction of Desplanques, Donoghue, and Holstein model. Comparison with experimental data. Relevance to theoretical estimates of weak couplings.

doi: 10.1103/PhysRevC.99.054002
Citations: PlumX Metrics


2018LA05      Phys.Rev. C 97, 044002 (2018)

R.Lazauskas

Solution of the n - 4He elastic scattering problem using the Faddeev-Yakubovsky equations

NUCLEAR STRUCTURE 3,4He; calculated binding energies of ground states using the basis limitations in the present work, and considerably larger size of the Lagrange-mesh basis, and compared with literature values.

NUCLEAR REACTIONS 4He(n, n), E(cm)=0-10 MeV; calculated scattering phase shifts using I-N3LO, AV18, and INOY04 realistic NN interaction Hamiltonians, with five-body Faddeev-Yakubovsky equations. Comparison with results from NCSMC method and R-matrix analysis of experimental data.

doi: 10.1103/PhysRevC.97.044002
Citations: PlumX Metrics


2017CA16      Few-Body Systems 58, 67 (2017)

J.Carbonell, R.Lazauskas, E.Hiyama, M.Kamimura

On the Possible Existence of Four Neutron Resonances

NUCLEAR REACTIONS 3He(n, n), E=0.03-10 MeV;3He(n, x), E not given; calculated possible tetraneutron resonance trajectory for 0+ state; deduced resonance, σ, resonance energy and width vs other parameters, higher 4n resonances, tetraneutron production response function via double charge exchange; deduced parameters.

doi: 10.1007/s00601-017-1219-0
Citations: PlumX Metrics


2017LA11      Prog.Theor.Exp.Phys. 2017, 073D03 (2017)

R.Lazauskas, J.Carbonell, E.Hiyama

Modeling the double charge exchange response function for a tetraneutron system

NUCLEAR REACTIONS 4He(8He, 8Be)4NN, E<8 MeV; analyzed available data; calculated σ, response functions, 4n resonance trajectory.

doi: 10.1093/ptep/ptx078
Citations: PlumX Metrics


2017SO16      Phys.Rev. C 96, 024002 (2017); Erratum Phys.Rev. C 100, 019901 (2019)

Y.-H.Song, R.Lazauskas, U.van Kolck

Triton binding energy and neutron-deuteron scattering up to next-to-leading order in chiral effective field theory

NUCLEAR REACTIONS 2H(n, X), E=5 MeV-10 GeV; analyzed cutoff dependence of three-nucleon observables: the quartet and doublet neutron-deuteron scattering lengths, phase shifts, and the triton binding energy at the leading and next-to-leading orders using Chiral Effective Field Theory. 3H; analyzed triton binding energy.

doi: 10.1103/PhysRevC.96.024002
Citations: PlumX Metrics


2017VI03      Phys.Rev. C 95, 034003 (2017)

M.Viviani, A.Deltuva, R.Lazauskas, A.C.Fonseca, A.Kievsky, L.E.Marcucci

Benchmark calculation of p - 3H and n-3He scattering

NUCLEAR REACTIONS 3H(polarized n, n), E=1.0, 2.0, 3.5 MeV; 3H(polarized p, p), 3H(polarized p, n)3He, E=2.5, 3.5, 4.15 MeV; calculated differential σ(E), neutron, proton and 3He analyzing powers, spin-correlation coefficient using N3LO500 potential. Calculations used three techniques for elastic and charge-exchange processes: Alt, Grassberger, Sandhas (AGS), hyperspherical harmonics (HH), and Faddeev-Yakubovsky (FY). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.034003
Citations: PlumX Metrics


2016HI03      Phys.Rev. C 93, 044004 (2016)

E.Hiyama, R.Lazauskas, J.Carbonell, M.Kamimura

Possibility of generating a 4-neutron resonance with a T=3/2 isospin 3-neutron force

NUCLEAR STRUCTURE 4n; calculated narrow resonant states of tetraneutron for Jπ=0+, 2+ and 2-. 4H, 4He, 4Li; calculated energies of the lowest T=1, Jπ=2- states. 3n; calculated resonance trajectories for Jπ=3/2-, 1/2- and 1/2+ states. Complex scaling method (CSM) for resonance positions and widths. Gaussian expansion method used to solve Schrodinger equation and Lagrange-mesh technique to solve Faddeev-Yakubovsky (FY) equation. Comparison with recent experimental data from RIKEN.

doi: 10.1103/PhysRevC.93.044004
Citations: PlumX Metrics


2016SO08      Phys.Rev. C 93, 065501 (2016)

Y.-H.Song, R.Lazauskas, V.Gudkov

Time reversal invariance violating and parity conserving effects in proton-deuteron scattering

NUCLEAR REACTIONS 2H(p, p), E(cm)=0.015-2 MeV; 2H(n, n), E(cm)=100 keV; calculated scattering amplitudes as function of incident energy; deduced time reversal invariance violating parity conserving (TVPC) effects. Distorted-wave Born approximation (DWBA) to estimate TVPC matrix elements, and hadronic wave functions from solution of three-body Faddeev-Merkuriev equations.

doi: 10.1103/PhysRevC.93.065501
Citations: PlumX Metrics


2015LA09      Phys.Rev. C 91, 041001 (2015)

R.Lazauskas

Modern nuclear force predictions for n - 3H scattering above the three- and four-nucleon breakup thresholds

NUCLEAR REACTIONS 3H(n, n), (n, n'), E=14.1, 18, 22.1 MeV; calculated elastic observables and total breakup cross sections, phase shifts, inelasticity parameters, integrated elastic, breakup, and total σ(E), σ(θ) and neutron analyzing power Ay(θ) for elastic scattering at 22.1 MeV, dependence of the calculated total elastic and inelastic (breakup) cross sections on the triton binding energy. Little sensitivity to the short-range details of NN interaction. Complex-scaling method with the four-nucleon system described in configuration space by Faddeev-Yakubovsky equations. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.041001
Citations: PlumX Metrics


2013MO41      Ann.Nucl.Energy 54, 167 (2013)

B.Morillon, R.Lazauskas, J.Carbonell

Influence of the ab initio n-d cross sections in the critical heavy-water benchmarks

doi: 10.1016/j.anucene.2012.06.032
Citations: PlumX Metrics


2013SO04      Phys.Rev. C 87, 015501 (2013)

Y.-H.Song, R.Lazauskas, V.Gudkov

Nuclear electric dipole moment of three-body systems

NUCLEAR STRUCTURE 3H, 3He; calculated electric dipole moments (EDM) Faddeev equations in configuration space with Time reversal invariance violation (TRIV) potentials based on meson exchange. Comparison with previous calculations.

doi: 10.1103/PhysRevC.87.015501
Citations: PlumX Metrics


2012LA13      Eur.Phys.J. A 48, 87 (2012)

J.-M.Laborie, X.Ledoux, C.Varignon, R.Lazauskas, B.Morillon, G.Belier

Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

NUCLEAR REACTIONS 2H(n, 2n), E=6.8, 7.8, 20-25 MeV; measured En, In, nn-coin; deduced neutron multiplicity, σ(En, θ), σ. Compared with other data, ENDF/B-VII and published ab initio calculations of the authors with different potentials.

doi: 10.1140/epja/i2012-12087-4
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23036.


2012LA24      Phys.Rev. C 86, 044002 (2012)

R.Lazauskas

Application of the complex-scaling method to four-nucleon scattering above break-up threshold

doi: 10.1103/PhysRevC.86.044002
Citations: PlumX Metrics


2012SO17      Phys.Rev. C 86, 045502 (2012)

Y.-H.Song, R.Lazauskas, V.Gudkov

Parity violation in radiative neutron capture on the deuteron

doi: 10.1103/PhysRevC.86.045502
Citations: PlumX Metrics


2011LA04      Phys.Rev. C 83, 034006 (2011), Publishers Note Phys.Rev. C 83, 049901 (2011)

R.Lazauskas, Y.Song, T.-S.Park

Heavy-baryon chiral perturbation theory approach to thermal neutron capture on 3He

NUCLEAR REACTIONS 3He(n, α), E=thermal; calculated total cross section using current operator from heavy-baryon chiral perturbation theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034006
Citations: PlumX Metrics


2011LA15      Phys.Rev. C 84, 034002 (2011)

R.Lazauskas, J.Carbonell

Application of the complex-scaling method to few-body scattering

doi: 10.1103/PhysRevC.84.034002
Citations: PlumX Metrics


2011LA21      Phys.Rev. C 84, 064318 (2011)

R.Lazauskas, M.Dufour

Description of 3α-bosonic states in the 12C nucleus with local and nonlocal potentials

NUCLEAR STRUCTURE 12C; calculated level energies, J, π, total widths, root-mean-square (rms) radius, ground-state and Hoyle-state rotational bands, 0+ condensate state energies, 3α positive-parity and negative-parity resonances, Kπ=3- band. Nonmicroscopic a-particle model involving local and nonlocal potentials, Faddeev equations to solve three-body problem for bound and resonant states. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064318
Citations: PlumX Metrics


2011SO02      Phys.Rev. C 83, 015501 (2011)

Y.Song, R.Lazauskas, V.Gudkov

Parity violation in low-energy neutron-deuteron scattering

NUCLEAR REACTIONS 2H(n, n'), E=15 keV; calculated neutron spin asymmetry and neutron spin rotation using effective field theory in a distorted-wave Born approximation, for weak interactions with realistic three-nucleon wave functions from the Faddeev equations in configuration space, Discussed parity-violating effects.

doi: 10.1103/PhysRevC.83.015501
Citations: PlumX Metrics


2011SO15      Phys.Rev. C 83, 065503 (2011)

Y.-H.Song, R.Lazauskas, V.Gudkov

Time reversal invariance violation in neutron-deuteron scattering

NUCLEAR REACTIONS 2H(n, n), E not given; calculated Time reversal invariance-violating (TRIV) effects using meson exchange and EFT-type TRIV potentials in a distorted-wave Born approximation; discussed relation between TRIV and parity-violating observables.

doi: 10.1103/PhysRevC.83.065503
Citations: PlumX Metrics


2011SO21      Phys.Rev. C 84, 025501 (2011)

Y.Song, R.Lazauskas, V.Gudkov

Time reversal invariance violating and parity conserving effects in neutron-deuteron scattering

doi: 10.1103/PhysRevC.84.025501
Citations: PlumX Metrics


2011VI06      Phys.Rev. C 84, 054010 (2011)

M.Viviani, A.Deltuva, R.Lazauskas, J.Carbonell, A.C.Fonseca, A.Kievsky, L.E.Marcucci, S.Rosati

Benchmark calculation of n-3H and p-3He scattering

NUCLEAR REACTIONS 3He(p, p), E=2.25, 4.05, 5.54 MeV; 3H(n, n), E=1.0, 2.0, 3.5, 6.0 MeV; analyzed phase shifts, mixing parameters, total cross sections, differential σ(θ), neutron and triton analyzing powers using AGS, HS, and FY methods with I-N3LO, Argonne v18, CD Bonn interactions for four-nucleon problem.

doi: 10.1103/PhysRevC.84.054010
Citations: PlumX Metrics


2009LA10      Phys.Rev. C 79, 054007 (2009)

R.Lazauskas

Elastic proton scattering on tritium below the n-3He threshold

NUCLEAR REACTIONS 3H(p, p), E=0-1 MeV; calculated scattering lengths, σ(θ). Faddeev-Yakubovski equations.

doi: 10.1103/PhysRevC.79.054007
Citations: PlumX Metrics


2009SO06      Phys.Rev. C 79, 051301 (2009)

T.Sogo, R.Lazauskas, G.Ropke, P.Schuck

Critical temperature for α-particle condensation within a momentum-projected mean-field approach

doi: 10.1103/PhysRevC.79.051301
Citations: PlumX Metrics


2009SO10      Phys.Rev. C 79, 064002 (2009)

Y.-H.Song, R.Lazauskas, T.-S.Park

Up to N3LO heavy-baryon chiral perturbation theory calculation for the M1 properties of three-nucleon systems

NUCLEAR STRUCTURE 3H, 3He; calculated M1 properties, magnetic moments, deuteron binding energy, np scattering length, and observables of radiative capture of thermal neutron by proton and deuteron in two- and three-nucleon systems using heavy baryon chiral perturbation theory of Weinberg and meson exchange currents derived up to L3NO. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064002
Citations: PlumX Metrics


2008LA03      J.Phys.(London) G35, 025001 (2008)

R.Lazauskas, P.Vogel, C.Volpe

Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei

doi: 10.1088/0954-3899/35/2/025001
Citations: PlumX Metrics


2007LA27      Nucl.Phys. A792, 219 (2007)

R.Lazauskas, C.Volpe

Neutrino beams as a probe of the nuclear isospin and spin-isospin excitations

NUCLEAR REACTIONS 16O, 56Fe, 100Mo, 208Pb(ν, X), (ν-bar, X), E=7.5-100 MeV; calculated σ; analyzed contribution of positive and negative parity states to σ. Quasi-particle RPA.

doi: 10.1016/j.nuclphysa.2007.06.005
Citations: PlumX Metrics


2007SO17      Phys.Lett. B 656, 174 (2007)

Y.-H.Song, R.Lazauskas, T.-S.Park, D.-P.Min

Effective field theory approach for the M1 properties of A = 2 and 3 nuclei

NUCLEAR STRUCTURE 2,3H, 3He; calculated μ, binding energies with a variational Monte Carlo method.

doi: 10.1016/j.physletb.2007.09.038
Citations: PlumX Metrics


2005LA06      Phys.Rev. C 71, 034004 (2005)

R.Lazauskas, J.Carbonell, A.C.Fonseca, M.Viviani, A.Kievsky, S.Rosati

Low energy n-3H scattering: A novel testground for nuclear interactions

NUCLEAR REACTIONS 3H(n, n), E(cm)=0.1-5 MeV; calculated phase shifts, total σ. Three methods compared.

doi: 10.1103/PhysRevC.71.034004
Citations: PlumX Metrics


2005LA11      Phys.Rev. C 71, 044004 (2005)

R.Lazauskas, J.Carbonell

Three-neutron resonance trajectories for realistic interaction models

NUCLEAR STRUCTURE 3n; calculated resonance trajectories.

doi: 10.1103/PhysRevC.71.044004
Citations: PlumX Metrics


2005LA27      Phys.Rev. C 72, 034003 (2005)

R.Lazauskas, J.Carbonell

Is a physically observable tetraneutron resonance compatible with realistic nuclear interactions?

NUCLEAR STRUCTURE 4n; calculated resonance energies; deduced no observable state. Faddeev-Yakubovski equations, realistic interactions, complex scaling and analytical continuation in the coupling constant.

doi: 10.1103/PhysRevC.72.034003
Citations: PlumX Metrics


2004LA16      Few-Body Systems 34, 105 (2004)

R.Lazauskas, J.Carbonell

Ab-Initio Calculations of Four-Nucleon Elastic Scattering

NUCLEAR REACTIONS 3H(n, n), E(cm)=2.625 MeV; 3He(p, p), E(cm)=4.1325 MeV; calculated σ(θ). 3H(n, n), E < 10 MeV; calculated total σ. 3He(p, p), E(cm) < 0.6 MeV; calculated σ(E, θ=120°). Faddeev-Yakubovski equations, comparison with data.

doi: 10.1007/s00601-004-0049-z
Citations: PlumX Metrics


2004LA22      Phys.Rev. C 70, 044002 (2004)

R.Lazauskas, J.Carbonell

Testing nonlocal nucleon-nucleon interactions in four-nucleon systems

NUCLEAR STRUCTURE 3H, 3,4He; calculated binding energies, radii, partial wave contributions. 4He calculated continuum states features. Fadeev-Yakubovski equations, nonlocal nucleon-nucleon interaction models.

NUCLEAR REACTIONS 3H(n, X), E=0.1-10 MeV; calculated scattering lengths, phase shifts, total σ. Fadeev-Yakubovski equations, nonlocal nucleon-nucleon interaction models.

doi: 10.1103/PhysRevC.70.044002
Citations: PlumX Metrics


Back to query form