NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = J.Skalski

Found 71 matches.

Back to query form

2023JA12      Phys.Rev. C 108, 064309 (2023)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for three-quasiparticle K isomers in odd-even Md-Rg nuclei

doi: 10.1103/PhysRevC.108.064309
Citations: PlumX Metrics

2021GO26      Eur.Phys.J. A 57, 321 (2021)

T.Goigoux, Ch.Theisen, B.Sulignano, M.Airiau, K.Auranen, H.Badran, R.Briselet, T.Calverley, D.Cox, F.Dechery, F.Defranchi Bisso, A.Drouart, Z.Favier, B.Gall, T.Grahn, P.T.Greenlees, K.Hauschild, A.Herzan, R.-D.Herzberg, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Leino, A.Lightfoot, A.Lopez-Martens, A.Mistry, P.Nieminen, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, E.Rey-Herme, J.Rubert, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, M.Vandebrouck, A.Ward, M.Zielinska, P.Jachimowicz, M.Kowal, J.Skalski

First observation of high-K isomeric states in 249Md and 251Md

RADIOACTIVITY 249,251Md(IT) [from 203Tl(48Ca, 2n)249Md, E=219 MeV; 205Tl(48Ca, 2n)251Md, E=218 MeV]; measured decay products, Eα, Iα, Eβ, Iβ, Eγ, Iγ, β-α-coin.; deduced level energies, J, π, 3 quasi-particle high-K states, isomeric states T1/2. Comparison theoretical calculations. SAGE spectrometer, the K130 cyclotron at the Accelerator Laboratory of the University of Jyvaskyla.

doi: 10.1140/epja/s10050-021-00631-4
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021JA01      At.Data Nucl.Data Tables 138, 101393 (2021)

P.Jachimowicz, M.Kowal, J.Skalski

Properties of heaviest nuclei with 98 ≤ Z ≤ 126 and 134 ≤ N ≤ 192

NUCLEAR STRUCTURE Z=96-126; calculated ground-state and saddle-point shapes and masses, ground-state mass excess, nucleon separation- and energies, total, macroscopic (normalized to the macroscopic energy at the spherical shape) and shell corrections energies, and deformations within the microscopic-macroscopic method with the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy taken as the smooth part.

doi: 10.1016/j.adt.2020.101393
Citations: PlumX Metrics

2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics

2020BR16      Phys.Rev. C 102, 054603 (2020)

W.Brodzinski, J.Skalski

Instanton-motivated study of spontaneous fission of odd-A nuclei

NUCLEAR STRUCTURE 256,257,260Rf, 261Db, 272Mt; calculated energy surface contour in (β20, β40) plane, in (β20, β22) plane for 272Mt, neutron levels around the Fermi level, and fission barrier heights for 272Mt, actions for separate single particle solutions for 272Mt, and for the collective velocities for 256Rf and 257Rf using instanton-like cranking mass parameter without pairing. Imaginary-time-dependent Schrodinger equation (iTDSE) using Woods-Saxon potential without pairing, and imaginary-time-dependent HFB (iTDHFB) using fixed potential with pairing.

RADIOACTIVITY 258No, 259Lr, 254,255,256,257,257m,260Rf, 261Db, 258,259,260,261Sg, 282,283Cn(SF); calculated half-lives, and fission hindrance factors using iTDSE and iTDHFB methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.054603
Citations: PlumX Metrics

2020JA01      Phys.Rev. C 101, 014311 (2020)

P.Jachimowicz, M.Kowal, J.Skalski

Static fission properties of actinide nuclei

NUCLEAR STRUCTURE 226,227,228Ac, 227,228,229,230,231,232,233,234Th, 230,231,232,233,234Pa, 231,232,233,234,235,236,237,238,239,240U, 233,234,235,236,237,238,239Np, 235,236,237,238,239,240,241,242,243,244,245,246Pu, 239,240,241,242,243,244,245,246,247Am, 241,242,243,244,245,246,247,248,249,250Cm, 244,245,246,247,248,249,250Bk, 250,251,252,253Cf; calculated masses of the ground states, first- and second-fission barriers heights, excitation energies of superdeformed (SD) isomeric minima, quadrupole deformation for SD minimum, energy surface contours in (β20, β30) plane for 227Ac, 227,228,229,231,233Th, 235U, 251Cf. Microscopic-macroscopic Woods-Saxon model with State-of-the-art methods. Comparison with experimental data. Discussed the "thorium anomaly".

doi: 10.1103/PhysRevC.101.014311
Citations: PlumX Metrics

2019TU09      Phys.Rev. C 100, 014330 (2019)

A.Tucholski, Ch.Droste, J.Srebrny, C.M.Petrache, J.Skalski, P.Jachimowicz, M.Fila, T.Abraham, M.Kisielinski, A.Kordyasz, M.Kowalczyk, J.Kownacki, T.Marchlewski, P.J.Napiorkowski, L.Prochniak, J.Samorajczyk-Pysk, A.Stolarz, A.Astier, B.F.Lv, E.Dupont, S.Lalkovski, P.Walker, E.Grodner, Z.Patyk

Lifetime of the recently identified 10+ isomeric state at 3279 keV in the 136Nd nucleus

NUCLEAR REACTIONS 120Sn(20Ne, 4n), E=85 MeV; measured Eγ, Iγ, γγ-coin, level half-lives using recoil-distance Doppler shift (RDDS) method with a plunger device using the EAGLE array of 16 HPGe detector at the U-200P cyclotron facility of the Heavy Ion Laboratory in Warsaw. 136Nd; deduced levels, B(E1), B(E2), reduced hindrance factor for the 10+ state at 3279 keV; calculated energy surface contour in (β20, β22) plane, neutron and proton single-particle energies using microscopic-macroscopic approach, based on deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy.

doi: 10.1103/PhysRevC.100.014330
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2018BR12      Acta Phys.Pol. B49, 621 (2018)

W.Brodzinski, M.Kowal, J.Skalski, P.Jachimowicz

Fission of SHN and Its Hindrance: Odd Nuclei and Isomers

NUCLEAR REACTIONS 132Ba(58Ni, 58Ni'), E-175 MeV; measured Coulomb excitation Eγ, Iγ, γγ-coin of 132Ba using Gamma Detector Array (GDA); deduced Doppler-shift-corrected γ-ray energy spectrum in coincidence with scattered 58Ni detected in PPAC, γ-ray spectrum in coinc with Ba recoils detected in PPAC, B(E2) values between specified 132Ba states using GSI Object Oriented On-line Off-line (GO4) software package; compared with earlier Coulomb excitation measurements.

doi: 10.5506/aphyspolb.49.621
Citations: PlumX Metrics

2018JA11      Phys.Rev. C 98, 014320 (2018)

P.Jachimowicz, M.Kowal, J.Skalski

Hindered α decays of heaviest high-K isomers

NUCLEAR STRUCTURE 254,256,258,260,262,264,266,268,270,272,274Sg, 256,258,260,262,264,266,268,270,272,274,276Hs, 258,260,262,264,266,268,270,272,274,276,278Ds, 260,262,264,266,268,270,272,274,276,278,280Cn; calculated excitation energy of two-proton, two-neutron, and two-proton plus two-neutron configuration using microscopic-macroscopic approach with the deformed Woods-Saxon potential.

RADIOACTIVITY 260,262,264,266,268,270,272,274,276,278Ds(α); calculated Q(α) values, half-lives of α emitters, α-hindrance factors for decays of ground states and high-K isomers. 262,264,266,268,270,272,274,276,278,280Cn(α); calculated hindrance factors for α transitions between states of the same high-K values; deduced strong hindrance against decay for four-quasiparticle states with high Kπ, and that α-decay hindrances results mainly from the proton 2-qp component. Microscopic-macroscopic approach with the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.98.014320
Citations: PlumX Metrics

2017JA01      Phys.Rev. C 95, 014303 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Adiabatic fission barriers in superheavy nuclei

NUCLEAR STRUCTURE 252Lr, 270Db, 276Mt, 280Cn, 297119, 285122; calculated potential energy surfaces (PES) in (β20, β22) plane. Z=109, A=266-269; Z=110, A=267-272; Z=111, A=268-277; Z=112, A=269-279; Z=113, A=268-281; Z=114, A=269-282; Z=115, A=272-285; Z=116, A=271-285; Z=117, A=274-286; Z=118, A=281-286; Z=119, A=284-290; Z=120, A=285-289; Z=121, A=286-291; Z=122, A=286-291; Z=123, A=289-290; Z=124, A=289-291; calculated mass-asymmetry (reflection-asymmetry) effect on the fission saddle from the minimization (MIN) and from the imaginary water flow method (IWF). Z=119, A=274-281, 289, 291, 293, 294, 295; Z=120, A=276-283; Z=121, A=278-283; Z=122, A=280-286, 291, 292; Z=123, A=282-287, 291, 292; Z=124, A=284-294; Z=125, A=286-295; Z=126, A=288-298; calculated lowering of the saddle by the nonaxial hexadecapole deformation. Z=98, A=232-290; Z=99, A=234-291; Z=100, A=236-292; Z=101, A=238-293; Z=102, A=240-294; Z=103, A=242-295; Z=104, A=244-296; Z=105, A=246-297; Z=106, A=248-298; Z=107, A=250-299; Z=108, A=252-300; Z=109, A=254-301; Z=110, A=256-302; Z=111, A=258-303; Z=112, A=260-304; Z=113, A=262-305; Z=114, A=264-306; Z=115, A=266-307; Z=116, A=268-308; Z=117, A=270-309; Z=118, A=272-310; Z=119, A=274-311; Z=120, A=276-312; Z=121, A=278-313; Z=122, A=280-314; Z=123, A=282-315; Z=124, A=284-316; Z=125, A=286-317; Z=126, A=288-318; calculated fission-barrier heights and isotopic dependence of fission barriers for 1305 heavy and superheavy nuclei. Macroscopic-microscopic method with Woods-Saxon model.

doi: 10.1103/PhysRevC.95.014303
Citations: PlumX Metrics

2017JA06      Phys.Rev. C 95, 034329 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Effect of non-axial octupole shapes in heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=82-126, N=96-192; calculated tetrahedral deformation β32 for about 3000 heavy and superheavy nuclei, energy minima with a nonzero tetrahedral distortion; deduced evidence for combined oblate-plus-β33 g.s. deformation in a restricted region of superheavy nuclei, but no evidence for stable tetrahedral shapes, 219Po, 296123, 305124; calculated energy landscapes in (β20, β22), (β20, β30), and (β20, β32) planes. Microscopic-macroscopic model based on deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.95.034329
Citations: PlumX Metrics

2015HE31      Nucl.Phys. A944, 415 (2015)

P.-H.Heenen, J.Skalski, A.Staszczak, D.Vretenar

Shapes and α- and β-decays of superheavy nuclei

NUCLEAR STRUCTURE 254No, 256Rf; calculated potential surface, triaxial deformation, low-energy collective levels, J, π, B(E2); Z=114, 120, 126; calculated gs quadrupole deformation parameters; Z=116, 118, 120, 122, 124, 126; calculated deformation energy curves; 268,270,272,274Hs; calculated low two-quasiparticle levels, J, π corresponding to symmetric solutions.

RADIOACTIVITY Z=100-128(α); calculated α decay Q, T1/2, deformation, compared with available data. Z=101-120(β-), (β+), (EC); calculated neutron numbers for which T1/2 is above 1 s.

doi: 10.1016/j.nuclphysa.2015.07.016
Citations: PlumX Metrics

2015JA05      Phys.Rev. C 92, 044306 (2015)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for long-lived high-K ground states in superheavy nuclei

RADIOACTIVITY Z=102-118, N=145-175(α); 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg(α); calculated apparent Qα values, T1/2 for Mt isotopes; predicted high-K ground states in superheavy (SH) nuclei. Macroscopic-microscopic model based on the deformed Woods-Saxon single-particle potential.

NUCLEAR STRUCTURE 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg; predicted high-K ground states in superheavy (SH) nuclei On the basis of systematic calculations for 1364 heavy and superheavy (SH) nuclei. 272Mt; predicted especially promising candidate for long-lived high-K ground state from multidimensional hypercube configuration-constrained calculations of the potential energy surfaces (PESs). Macroscopic-microscopic model based on deformed Woods-Saxon single-particle potential and Yukawa plus exponential macroscopic energy with seven mass-and axially-symmetric deformations, β20, β30, β40, β50, β60, β70 and β80.

doi: 10.1103/PhysRevC.92.044306
Citations: PlumX Metrics

2015RU09      Phys.Rev. C 92, 034328 (2015)

E.Ruchowska, H.Mach, M.Kowal, J.Skalski, W.A.Plociennik, B.Fogelberg

Search for octupole correlations in 147Nd

RADIOACTIVITY 147Pr(β-)[from 236U(n, F), E=thermal followed by mass separation of A=147 fragments]; measured Eγ, Iγ, γγ-coin, half-life of 147Pr ground state, level half-lives by βγγ(t) at OSIRIS-Studsvik facility. 147Nd; deduced levels, J, π, B(E2), B(M1), B(E1), B(M2), bands, electric dipole moment, single-quasiparticle configurations with nonzero octupole deformation. Calculated potential energy surfaces in (β2, β3) plane, and electric dipole moments.

doi: 10.1103/PhysRevC.92.034328
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2014JA03      Phys.Rev. C 89, 024304 (2014)

P.Jachimowicz, M.Kowal, J.Skalski

Qa values in superheavy nuclei from the deformed Woods-Saxon model

RADIOACTIVITY 246,247,248,249,250,251,252,253,254,255,256,257,258Md, 251,252,253,254,255,256,257No, 252,253,254,255,256,257,258,260Lr, 255,256,257,258,259,260,261,263Rf, 256,257,258,259,260,261,262,263Db, 259,260,261,262,263,264,265,266,267,268,269,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 267,268,269,270,271,272,273,279Ds, 272,273,274,275,276,277,278,279,280,281,282Rg, 277,278,279,280,281,282,283,284,285Cn, 278,279,280,281,282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 297119(α); calculated Qα, deformation parameters, ground-state configurations, α-decay hindrance. 270Db, 274Bh, 278Mt, 282Rg, 286Nh, 290Mc, 294Ts(α); calculated half-lives. Microscopic-macroscopic model based on deformed Woods-Saxon potential, with pairing treated either by blocking or by adding the BCS energy. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.024304
Citations: PlumX Metrics

2013BR12      Phys.Rev. C 88, 044307 (2013)

W.Brodzinski, J.Skalski

Predictions for superheavy elements beyond Z=126

NUCLEAR STRUCTURE 302,306,308,310,312,314,340,352,354,356,358,364,370128, 310,358,360130, 312,316,358,360132, 360,362,370,376134, 366,374,384138, 370,378142, 374146; calculated ground state quadrupole moments and deformations, fission barriers for superheavy nuclei. 306,356,370128, 314,360,362134, 366,384138, 472164; calculated energy landscape contours in (β20, β22) and (Q20, Q22) planes. Microscopic-macroscopic Woods-Saxon, and Skyrme SLy6 Hartree-Fock plus BCS models. Shell corrections.

RADIOACTIVITY 472164(α), (SF); calculated half-lives for doubly magic nucleus. Predicted half-life of 100 s in the Woods-Saxon model.

doi: 10.1103/PhysRevC.88.044307
Citations: PlumX Metrics

2013JA03      Phys.Rev. C 87, 044308 (2013)

P.Jachimowicz, M.Kowal, J.Skalski

Eight-dimensional calculations of the third barrier in 232Th

NUCLEAR STRUCTURE 232Th, 232U; calculated potential energy surfaces, ground state mass excess, first barrier height BI, second barrier height BII and energy of the second minimum EII, third fission barrier height BIII and energy of the third minimum EIII or hyperdeformation. Eight-dimensional hypercube and macroscopic-microscopic model calculations. Comparison with experimental data. Previous experimental report on Hyperdeformation in 232Th needs to be confirmed.

doi: 10.1103/PhysRevC.87.044308
Citations: PlumX Metrics

2012JA08      Phys.Rev. C 85, 034305 (2012)

P.Jachimowicz, M.Kowal, J.Skalski

Secondary fission barriers in even-even actinide nuclei

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246,248Pu, 240,242,244,246,248,250,252Cm, 248,250,252,254Cf; calculated mass excess, microscopic and macroscopic energies, deformation parameters, second fission barriers, surface contours, second minima excitation energies. macroscopic-microscopic model in six-dimensional deformation space for even-even actinides. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034305
Citations: PlumX Metrics

2012KO21      Phys.Rev. C 85, 061302 (2012)

M.Kowal, J.Skalski

Examination of the existence of third, hyperdeformed minima in actinide nuclei

NUCLEAR STRUCTURE 230,232Th, 232,234U; calculated energy surface maps as function of deformation parameters β1 to β8, shape parameterization, quadrupole moments using the Woods-Saxon microscopic-macroscopic model; deduced third hyperdeformed minima, and third barriers in actinides.

doi: 10.1103/PhysRevC.85.061302
Citations: PlumX Metrics

2011JA02      Int.J.Mod.Phys. E20, 514 (2011)

P.Jachimowicz, P.Rozmej, M.Kowal, J.Skalski, A.Sobiczewski

Test of tetrahedral symmetry for heavy and superheavy nuclei

NUCLEAR STRUCTURE 226Th, 232No, 310124; calculated energy landscape, equilibrium values, tetrahedral and global minima.

doi: 10.1142/S0218301311017934
Citations: PlumX Metrics

2011JA03      Phys.Rev. C 83, 054302 (2011)

P.Jachimowicz, M.Kowal, J.Skalski

Superdeformed oblate superheavy nuclei

NUCLEAR STRUCTURE 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120; calculated energy versus quadrupole deformation, half-lives, Qα, single-particle energies, α decay hindrance for superdeformed oblate superheavy nuclei. 288122; calculated energy surface contour. Z=98-126, N=132-192; calculated ground state quadrupole deformation. Microscopic-macroscopic calculations in 12D deformation space, confirmed by Skyrme Hartree-Fock calculations with SLy6 force.

doi: 10.1103/PhysRevC.83.054302
Citations: PlumX Metrics

2010JA01      Int.J.Mod.Phys. E19, 508 (2010)

P.Jachimowicz, M.Kowal, J.Skalski

Competing minima and non-axial saddles in superheavy nuclei

NUCLEAR STRUCTURE Z=116-126, N=176-184; calculated energy landscapes of superheavy nuclei. Woods-Saxon model.

doi: 10.1142/S0218301310014911
Citations: PlumX Metrics

2010JA02      Int.J.Mod.Phys. E19, 768 (2010)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Role of the non-axial octupole deformation in the potential energy of heavy nuclei

NUCLEAR STRUCTURE 228,238Fm; calculated deformation energy; deduced effects of deformation on energy. Macroscopic-microscopic approach.

doi: 10.1142/S0218301310015205
Citations: PlumX Metrics

2010KO36      Phys.Rev. C 82, 054303 (2010)

M.Kowal, J.Skalski

Low-energy shape oscillations of negative parity in the main and shape-isomeric minima in actinides

NUCLEAR STRUCTURE 240Pu; calculated fission barrier and cranking mass contour plots as function of various deformation parameters. 230,232,234,236Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 234,236,238,240,242,244,246,250Cm, 238,240,242,244,246,248,250,252,254Cf; calculated stiffness coefficients at the first and second minima, energies of negative-parity shape oscillations in the first and second minima for K=0, 1 and 2, and transition electric dipole (E1) moments. Single-particle Hamiltonian with the deformed Woods-Saxon potential defined in terms of the nuclear surface and variety of shape deformations. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.054303
Citations: PlumX Metrics

2009JA06      Int.J.Mod.Phys. E18, 1088 (2009)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Non-axial octupole deformation of a heavy nucleus

doi: 10.1142/S0218301309013300
Citations: PlumX Metrics

2009SK04      Int.J.Mod.Phys. E18, 798 (2009)


Nuclear fission within the mean-field approach

doi: 10.1142/S0218301309012896
Citations: PlumX Metrics

2008SK02      Int.J.Mod.Phys. E17, 151 (2008)


Relative motion correction to fission barriers

NUCLEAR STRUCTURE 198Hg, 238U; calculated fission barrier features. Hartree-Fock approach.

doi: 10.1142/S0218301308009641
Citations: PlumX Metrics

2008SK05      Phys.Rev. C 77, 064610 (2008)


Nuclear fission with mean-field instantons

doi: 10.1103/PhysRevC.77.064610
Citations: PlumX Metrics

2007SK06      Phys.Rev. C 76, 044603 (2007)


Adiabatic fusion barriers from self-consistent calculations

NUCLEAR REACTIONS 38Ar(32S, X), E=5.5-8 MeV; 58Ni(12C, X), E=5.5-8 MeV; 40Ca, 50Ti, 90Zr, 96Zr(40Ca, X), E=5.5-8 MeV; 48Ca, 50Ti, 208Pb, 238U, 244Pu, 248Cm, 250Cf(48Ca, X), E=5.5-8 MeV; 64Ni, 132Sn, 208Pb(64Ni, X), E=5.5-8 MeV; 90Zr(90Zr, X), 110Pd, 182W(32S, X), E=5.5-8 MeV; 110Pd(110Pd, X), E=5.5-8 MeV; 154Sm(60Ni, X), E=5.5-8 MeV; 238U(16O, X), E=5.5-8 MeV; 132Sn(132Sn, X), E=5.5-8 MeV; 208Pb(70Zn, X), 208Pb(82Ge, X), E=5.5-8 MeV; calculated fusion barrier densities, reaction Q values, fusion energy thresholds using Hartree-Fock Skyrme model. 256No, 278Cn, 292Fl; surface energy contours calculated.

doi: 10.1103/PhysRevC.76.044603
Citations: PlumX Metrics

2006SK07      Phys.Rev. C 74, 051601 (2006)


Relative kinetic energy correction to self-consistent fission barriers

NUCLEAR REACTIONS 32S(38Ar, X), 12C(58Ni, X), 40,48Ca(50Ti, X), 48Ca(48Ca, X), E not given; calculated fission and fusion barrier energies, kinetic energy correction.

doi: 10.1103/PhysRevC.74.051601
Citations: PlumX Metrics

2004SK02      Int.J.Mod.Phys. E13, 305 (2004)


Selfconsistent fusion barriers at near barrier energies

NUCLEAR REACTIONS 90,96Zr(40Ca, X), 90Zr(90Zr, X), 182W(32S, X), 154Sm(60Ni, X), 238U(16O, X), 208Pb, 238U, 244Pu(48Ca, X), 208Pb(64Ni, X), (70Zn, X), (82Ge, X), E ≈ threshold; calculated fusion barrier energies.

doi: 10.1142/S0218301304002090
Citations: PlumX Metrics

2003SK05      Acta Phys.Pol. B34, 1977 (2003)


Nucleus-nucleus potential at near-barrier energies from selfconsistent calculations

NUCLEAR REACTIONS 40Ca, 90,96Zr(40Ca, X), 90Zr(90Zr, X), 238U(16O, X), 238U, 244Pu, 248,250Cm(48Ca, X), E not given; calculated nucleus-nucleus potential, fusion barrier features. Hartree-Fock approach, Skyrme interaction.

2002SK01      Phys.Rev. C65, 037304 (2002)


Properties of the Nucleon-Nucleon Interaction Leading to a Standing Wave Instability in Symmetric Nuclear Matter

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated binding energies, density distributions. Comparison with previous calculations, data.

doi: 10.1103/PhysRevC.65.037304
Citations: PlumX Metrics

2001SK02      Phys.Rev. C63, 024312 (2001)


Self-Consistent Calculations of the Exact Coulomb Exchange Effects in Spherical Nuclei

NUCLEAR STRUCTURE 16O, 40Ca, 48Ni, 90Zr, 100,132Sn, 208Pb, 298Fl, 310126; calculated single-proton level shifts due to Coulomb exchange, related features; deduced force independence. Comparison of exact results, Slater approximation.

doi: 10.1103/PhysRevC.63.024312
Citations: PlumX Metrics

1999GH02      Nucl.Phys. A651, 237 (1999)

R.A.Gherghescu, J.Skalski, Z.Patyk, A.Sobiczewski

Non-Axial Shapes in Spontaneous Fission of Superheavy Nuclei

NUCLEAR STRUCTURE 282Hs, 298Fl, 294,300120, 300,308122; calculated energy surfaces; deduced fission trajectories, role of non-axial paths.

doi: 10.1016/S0375-9474(99)00126-8
Citations: PlumX Metrics

1998PA34      Acta Phys.Hung.N.S. 7, 13 (1998)

Z.Patyk, J.Skalski, R.A.Gherghescu, A.Sobiczewski

Shell Structure and Shapes of Superheavy Nuclei

NUCLEAR STRUCTURE Z=82-120; calculated shell correction energies, deformation parameters. 270Hs; calculated single-particle energies. 292Og, 294,298120; calculated fission deformation trajectories.

1997BL05      Nucl.Phys. A618, 1 (1997)

J.Blocki, J.Skalski, W.J.Swiatecki

The Excitation of an Independent-Particle Gas by a Time-Dependent Potential Well: Part II

doi: 10.1016/S0375-9474(97)00017-1
Citations: PlumX Metrics

1997MA38      Phys.Rev. C56, 1011 (1997)

P.Magierski, J.Skalski, J.Blocki

Excitation of a Quantum Gas of Independent Particles under Periodic Perturbation in Integrable or Nonintegrable Potentials

doi: 10.1103/PhysRevC.56.1011
Citations: PlumX Metrics

1997SK01      Nucl.Phys. A617, 282 (1997)

J.Skalski, S.Mizutori, W.Nazarewicz

Equilibrium Shapes and High-Spin Properties of Neutron-Rich A ≈ 100 Nuclei

NUCLEAR STRUCTURE 100,102,104,106Zr, 100,102,104,106Mo, 104,106,108,110Ru, 96,98,100,102,104Sr; calculated total energy surfaces, equilibrium deformations of yrast, near-yrast bands, potential energy curves, equilibrium deformations for these, other isotopes, kinematic moments of inertia vs rotational frequency for superdeformed bands in some cases. 90,92,94,96,98Se, 92,94,96,98,100,102,104,106,108Kr, 94,96,98,100,102,104,106,108,110Sr, 96,98,100,102,104,106,108,110,112,114Zr, 100,102,104,106,108,110,112,114,116Mo, 104,106,108,110,112,114,116,118,120Ru, 102,104,106,108,110,112,114,116,118,120,122,124Pd, 104,106,108,110,112,114,116,118,120,122,124Cd; calculated ground state, excited minima, quadrupole moments. Macroscopic-microscopic approach, Nilsson-Strutinsky method, cranked Woods-Saxon average potential.

doi: 10.1016/S0375-9474(97)00125-5
Citations: PlumX Metrics

1997SK02      Nucl.Phys. A624, 168 (1997)


The Excitation of a Quantum Gas of Independent Fermions in a Deforming Cavity: Periodicity of driving vs. Landau-Zener transitions

doi: 10.1016/S0375-9474(97)00323-0
Citations: PlumX Metrics

1996BL13      Acta Phys.Pol. B27, 555 (1996)

J.Blocki, J.Skalski, Z.Sujkowski, W.J.Swiatecki

Giant Monopole Resonances and the Compressibility of Nuclear Matter

NUCLEAR STRUCTURE A=20-240; analyzed giant monopole resonance energy data. Two-mode coupling model of isoscalar density oscillations.

1996HE11      Phys.Lett. 381B, 12 (1996)

P.-H.Heenen, J.Skalski

Coupling of the Giant Resonance to Low Lying Octupole Models - Generator Coordinate Method Study

NUCLEAR STRUCTURE 152Sm, 190Hg; calculated levels, B(λ) ratios; deduced GDR to low lying octupole modes coupling. Generator coordinate method.

doi: 10.1016/0370-2693(96)00607-7
Citations: PlumX Metrics

1996WY01      Phys.Rev. C54, 1832 (1996)

S.Wycech, J.Skalski, R.Smolanczuk, J.Dobaczewski, J.R.Rook

Antiprotonic Studies of Nuclear Neutron Halos

NUCLEAR STRUCTURE 58Ni, 96Zr, 130Te, 144,154Sm, 176Yb, 232Th, 238U; calculated p-bar atomic capture, nucleon capture associated σ(A-1), σ(np). Asymptotic density, Hartree-Fock, HFB models.

doi: 10.1103/PhysRevC.54.1832
Citations: PlumX Metrics

1995BL17      Nucl.Phys. A594, 137 (1995)

J.Blocki, J.Skalski, W.J.Swiatecki

The Excitation of an Independent-Particle Gas - Classical or Quantal-by a Time-Dependent Potential Well

doi: 10.1016/0375-9474(95)00341-W
Citations: PlumX Metrics

1995SM05      Phys.Rev. C52, 1871 (1995)

R.Smolanczuk, J.Skalski, A.Sobiczewski

Spontaneous-Fission Half-Lives of Deformed Superheavy Nuclei

NUCLEAR STRUCTURE Z=104-114; A=246-288; calculated equilibrium deformation, SF-decay T1/2. Dynamical approach, multi-dimensional deformation space.

doi: 10.1103/PhysRevC.52.1871
Citations: PlumX Metrics

1994CR08      Phys.Lett. 333B, 320 (1994)

B.Crowell, R.V.F.Janssens, M.P.Carpenter, I.Ahmad, S.Harfenist, R.G.Henry, T.L.Khoo, T.Lauritsen, D.Nisius, A.N.Wilson, J.F.Sharpey-Schafer, J.Skalski

Superdeformed Band with a Unique Decay Pattern: Possible evidence for octupole vibration in 190Hg

NUCLEAR REACTIONS 160Gd(34S, 4n), E=163 MeV; measured γγ-coin. 190Hg deduced high-spin levels, J, π, superdeformed band transitions, dynamic moment of inertia, shape features.

doi: 10.1016/0370-2693(94)90149-X
Citations: PlumX Metrics

1994HE23      Phys.Rev. C50, 802 (1994)

P.-H.Heenen, J.Skalski, P.Bonche, H.Flocard

Octupole Excitations in Light Xenon and Barium Nuclei

NUCLEAR STRUCTURE 111,112,113Xe, 113,114,115Ba; calculated levels, B(λ); deduced dynamical correlations role in octupole collectivity enhancement. Hartree-Fock+BCS, generator coordinate methods.

doi: 10.1103/PhysRevC.50.802
Citations: PlumX Metrics

1994LU13      Phys.Rev.Lett. 73, 3199 (1994)

P.Lubinski, J.Jastrzebski, A.Grochulska, A.Stolarz, A.Trzcinska, W.Kurcewicz, F.J.Hartmann, W.Schmid, T.von Egidy, J.Skalski, R.Smolanczuk, S.Wycech, D.Hilscher, D.Polster, H.Rossner

Neutron Halo in Heavy Nuclei from Antiproton Absorption

NUCLEAR REACTIONS 58Ni, 96Zr, 96Ru, 130Te, 154,144Sm, 176Yb, 232Th, U(p-bar, X), E at 200 MeV/c; measured residuals production yield; deduced neutron halo features.

doi: 10.1103/PhysRevLett.73.3199
Citations: PlumX Metrics

1994SK02      Phys.Rev. C49, 2011 (1994)


Octupole-Induced Dipole Moments of Very Deformed Nuclei

NUCLEAR STRUCTURE 224Ra, 192Hg; calculated dipole moments vs β2, β3 deformation. 190,192,194Hg, 192,194,196Pb; calculated intrinsic dipole moments at superdeformed shape vs β3 deformation. Shell correction method.

doi: 10.1103/PhysRevC.49.2011
Citations: PlumX Metrics

1994SO31      J.Alloys and Compounds 213/214, 38 (1994)

A.Sobiczewski, R.Smolanczuk, J.Skalski

Properties and decay of actinide and transactinide nuclei

NUCLEAR STRUCTURE Z=92-106; analyzed α-decay and fission T1/2, shell effects. 270Hs; calculated single-particle level energies.

doi: 10.1016/0925-8388(94)90878-8
Citations: PlumX Metrics

1993SK01      Nucl.Phys. A551, 109 (1993)

J.Skalski, P.-H.Heenen, P.Bonche, H.Flocard, J.Meyer

Octupole Correlations in Superdeformed Mercury and Lead Nuclei: A generator-coordinate method analysis

NUCLEAR STRUCTURE 194Pb, 194,192Hg; calculated axial, nonaxial octupole level energies built on superdeformed states, B(λ); deduced weak coupling. Generator coordinate method, self-consistent Hartree-Fock BCS basis.

doi: 10.1016/0375-9474(93)90306-I
Citations: PlumX Metrics

1993SK02      Acta Phys.Pol. B24, 413 (1993)

J.Skalski, P.-H.Heenen, P.Bonche, H.Flocard

Shape Transition and Collective Dynamics in Even 94-100Zr Nuclei

NUCLEAR STRUCTURE 94,96,98,100Zr; calculated Hartree-Fock energies, levels, E0 transition strength. Microscopic generator coordinate method.

1993SK04      Nucl.Phys. A559, 221 (1993)

J.Skalski, P.-H.Heenen, P.Bonche

Shape Coexistence and Low-Lying Collective States in A ≈ 100 Zr Nuclei

NUCLEAR STRUCTURE 94,96,98,100Zr; calculated levels, B(λ), E0 transition features; deduced shape features. Microscopic generator coordinate method, self-consistent Hartree-fock BCS basis.

doi: 10.1016/0375-9474(93)90188-4
Citations: PlumX Metrics

1993SM03      Acta Phys.Pol. B24, 457 (1993)

R.Smolanczuk, J.Skalski, H.V.Klapdor-Kleingrothaus, A.Sobiczewski

Importance of Sufficiently Large Deformation Space Admitted in the Analysis of Spontaneous Fission

RADIOACTIVITY 260Sg(SF); calculated T1/2. Fission trajectory, action integral minimization, large deformation space.

1992SK01      Phys.Lett. 274B, 1 (1992)


Octupole Correlations at Superdeformed Shape in the Hg-Pb Region - Including Nonaxial Components

NUCLEAR STRUCTURE 192,194Hg, 192,194,196,198Pb; calculated routhian stiffness vs octupole deformation components; deduced octupole vibration frequencies at superdeformed minima.

doi: 10.1016/0370-2693(92)90294-E
Citations: PlumX Metrics

1991SK01      Phys.Rev. C43, 140 (1991)


Nonaxial Pearlike Nuclear Shapes

NUCLEAR STRUCTURE 218,220,222Ra, 142,144,146Ba, 64Ge; calculated deformation energy. Strutinsky method, triaxial pearlike shapes.

doi: 10.1103/PhysRevC.43.140
Citations: PlumX Metrics

1990SK01      Phys.Lett. 238B, 6 (1990)


Octupolly Deformed Nuclei Near 112Ba

NUCLEAR STRUCTURE 106,108,110,112,114,116,118Te, 108,110,112,114,116,118Xe, 112,114,116,118,120,122Ba, 116,118,120Ce; calculated equilibrium deformations; deduced octupolly deformed minima. Strutinsky prescription.

doi: 10.1016/0370-2693(90)92090-6
Citations: PlumX Metrics

1990VE13      Nucl.Phys. A514, 381 (1990)

M.Vergnes, G.Berrier-Ronsin, G.Rotbard, J.Skalski, W.Nazarewicz

Evidence for a Change of Structure in the Heavy Mercury Isotopes Around 200Hg

NUCLEAR REACTIONS Hg, 196,198,200,202,204Hg(p, t), E=25 MeV; measured σ(θ). 194,196,198,200,202Hg deduced levels, J, π, enhancement factors. DWBA analysis.

doi: 10.1016/0375-9474(90)90149-G
Citations: PlumX Metrics

1989DO06      Phys.Rev. C40, 1025 (1989)

J.Dobaczewski, J.Skalski

Quadrupole Collective Models from the Hartree-Fock Standpoint

NUCLEAR STRUCTURE 128Ba; calculated Hartree-Fock, pairing energies vs quadrupole moment; deduced core, vacuum polarization effects role. Self-consistent Hartree-Fock plus BCS, Skyrme interactions.

doi: 10.1103/PhysRevC.40.1025
Citations: PlumX Metrics

1989PA22      Nucl.Phys. A502, 591c (1989)

Z.Patyk, J.Skalski, A.Sobiczewski, S.Cwiok

Potential Energy and Spontaneous-Fission Half-Lives for Heavy and Superheavy Nuclei

NUCLEAR STRUCTURE Z=100-130; N=140-210; calculated potential energies, SF T1/2. Macroscopic-microscopic method.

doi: 10.1016/0375-9474(89)90691-X
Citations: PlumX Metrics

1988DO08      Phys.Rev.Lett. 60, 2254 (1988)

J.Dobaczewski, W.Nazarewicz, J.Skalski, T.Werner

Nuclear Deformation: A proton-neutron effect ( Question )

NUCLEAR STRUCTURE 60,62,64,66,68,70,72,74,76,78,80,82Ge; calculated deformation energy vs quadrupole moment; deduced quadrupole-quadrupole coupling constant. Hartree-Fock method, Skyrme force.

doi: 10.1103/PhysRevLett.60.2254
Citations: PlumX Metrics

1988DO10      Phys.Rev. C38, 580 (1988)

J.Dobaczewski, J.Skalski

Deformed Nuclear State as a Quasiparticle-Pair Condensate

NUCLEAR STRUCTURE 128Ba; calculated levels; deduced deformed state features.

doi: 10.1103/PhysRevC.38.580
Citations: PlumX Metrics

1988LI02      Nucl.Phys. A476, 545 (1988)

R.M.Lieder, A.Neskakis, J.Skalski, G.Sletten, J.D.Garrett, J.Dudek

Study of Band Structures and Crossing in 180Os

NUCLEAR REACTIONS 166Er(18O, 4n), E=85 MeV; measured E(γ), I(γ), σ(E(γ), θ), γγ-coin, I(ce). 180Os deduced levels, J, π, ICC, δ, γ-branching, B(M1)/B(E2) ratios. Enriched targets, Ge(Li) detectors, multi anti-Compton spectrometer set-up, mini-orange conversion electron spectrometer. Pairing-self-consistent cranking calculations, shape evolution.

doi: 10.1016/0375-9474(88)90423-X
Citations: PlumX Metrics

1987HE29      Z.Phys. A328, 387 (1987)

G.Hebbinghaus, W.Gast, A.Kramer-Flecken, R.M.Lieder, J.Skalski, W.Urban

Evidence for Shape Coexistence in 186Pt

NUCLEAR REACTIONS 188Os(α, 6n), E=80 MeV; measured Eγ, Iγ, γγ(t), γγ(θ), oriented nuclei. 186Pt deduced levels, J, π, T1/2, band structure, γ-branching, shape coexistence.

1987SK02      Z.Phys. A326, 263 (1987)


TDH Solution of the Suzuki Model of Nuclear Monopole Oscillation

NUCLEAR STRUCTURE 16O; calculated isoscalar monopole oscillation time-dependent Hartree energy. Suzuki model.

1987SK05      Nucl.Phys. A473, 40 (1987)


Collective Excitations on High-K Few-Quasiparticle Configurations

NUCLEAR STRUCTURE 154,166,168Er, 176,174Hf, 179W, 152Dy, 147Gd; calculated levels, B(λ). RPA, quasiparticle configurations.

doi: 10.1016/0375-9474(87)90154-0
Citations: PlumX Metrics

1981DO08      Nucl.Phys. A369, 123 (1981)

J.Dobaczewski, J.Skalski

The Quadrupole Vibrational Inertial Function in the Adiabatic Time-Dependent Hartree-Fock-Bogolyubov Approximation

NUCLEAR STRUCTURE 146,148,150,152,154,156Sm, 126Ba; calculated vibrational inertial function vs β. Adiabatic time-dependent HFB.

doi: 10.1016/0375-9474(81)90010-5
Citations: PlumX Metrics

1980CW01      Nucl.Phys. A333, 139 (1980)

S.Cwiok, W.Nazarewicz, J.Dudek, J.Skalski, Z.Szymanski

Microscopic Analysis of the Double Backbending in the Nucleus 160Yb

NUCLEAR STRUCTURE 160Yb; calculated double back-bending effects. Cranked Hartree-Fock-Bogoliubov method, deformed Woods-Saxon potential, monopole pairing terms.

doi: 10.1016/0375-9474(80)90019-6
Citations: PlumX Metrics

1980DU05      Z.Phys. A294, 341 (1980)

J.Dudek, W.Dudek, E.Ruchowska, J.Skalski

Systematically Too Low Values of the Cranking Model Collective Inertia Parameters

NUCLEAR STRUCTURE 148,150,152Nd, 150,152,154,156Sm, 152,154,156,158Gd, 156,158,160Dy, 172,174Hf; calculated collective 0+ level energy, cranking model inertia parameters. Deformed Nilsson, Woods-Saxon potentials.

doi: 10.1007/BF01434142
Citations: PlumX Metrics

1980DU07      J.Phys.(London) G6, 447 (1980)

J.Dudek, A.Majhofer, J.Skalski

Adjustment of the Pairing Force Strength to the Experimental Data and The Optimised Woods-Saxon Potential Spectrum - Comparison with the Nilsson Model

NUCLEAR STRUCTURE 156,158,160,162,164,166,168,170Dy; calculated rotational energy of 2+ state. 224,226Ra, 226,228,230,232Th, 232,234,236,238U, 238,240,242,244Pu, 244,248,248Cm; calculated moments of inertia. Optimized Woods-Saxon potential.

doi: 10.1088/0305-4616/6/4/013
Citations: PlumX Metrics

1979DU07      J.Phys.(London) G5, 1359 (1979)

J.Dudek, A.Majhofer, J.Skalski, T.Werner, S.Cwiok, W.Nazarewicz

Parameters of the Deformed Woods-Saxon Potential Outside A = 110-210 Nuclei

NUCLEAR STRUCTURE A=40-110, A=210-280; calculated single-particle level spins, particles. Deformed Woods-Saxon potential, adjusted strength, radius of spin-orbit term.

doi: 10.1088/0305-4616/5/10/014
Citations: PlumX Metrics

Back to query form