NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = G.Bertsch

Found 193 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023BE04      Phys.Rev. C 107, 044615 (2023)

G.F.Bertsch, K.Hagino

Modeling fission dynamics at the barrier in a discrete-basis formalism

NUCLEAR REACTIONS 235U(n, F), E<6 MeV; calculated potential energy surface the fission path in 236U, fission-to-capture branching ratio, transmission probability to decay channels, average reaction probabilities for capture and fission. Configuration-interaction framework with matrix Hamiltonian in a space of Slater determinants composed of nucleon orbitals and matrix elements derived from nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.107.044615
Citations: PlumX Metrics


2023SC15      Phys.Rev. C 108, 034616 (2023)

G.Scamps, G.Bertsch

Generation, dynamics, and correlations of the fission fragments' angular momenta

doi: 10.1103/PhysRevC.108.034616
Citations: PlumX Metrics


2022BE07      Phys.Rev. C 105, 034618 (2022)

G.F.Bertsch, K.Hagino

Generator coordinate method for transition-state dynamics in nuclear fission

doi: 10.1103/PhysRevC.105.034618
Citations: PlumX Metrics


2022HA09      Phys.Rev. C 105, 034323 (2022)

K.Hagino, G.F.Bertsch

Diabatic Hamiltonian matrix elements made simple

doi: 10.1103/PhysRevC.105.034323
Citations: PlumX Metrics


2021BE31      Phys.Rev. C 104, 059801 (2021)

G.F.Bertsch, S.R.Stroberg

Comment on "Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter"

NUCLEAR STRUCTURE 208Pb; calculated binding energy at saturation density and symmetry energy in a comment to paper by 2020At02: Phys. Rev. C 102, 044333.

doi: 10.1103/PhysRevC.104.059801
Citations: PlumX Metrics


2020BE04      Phys.Rev. C 101, 034617 (2020)

G.F.Bertsch

Schematic reaction-theory model for nuclear fission

doi: 10.1103/PhysRevC.101.034617
Citations: PlumX Metrics


2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics


2020HA19      Phys.Rev. C 101, 064317 (2020)

K.Hagino, G.F.Bertsch

Microscopic model for spontaneous fission: Validity of the adiabatic approximation

doi: 10.1103/PhysRevC.101.064317
Citations: PlumX Metrics


2020HA25      Phys.Rev. C 102, 024316 (2020)

K.Hagino, G.F.Bertsch

Least action and the maximum-coupling approximations in the theory of spontaneous fission

doi: 10.1103/PhysRevC.102.024316
Citations: PlumX Metrics


2019AL09      Phys.Rev. C 99, 024621 (2019)

Y.Alhassid, G.F.Bertsch, P.Fanto, T.Kawano

Transmission coefficients in compound-nucleus reaction theory

doi: 10.1103/PhysRevC.99.024621
Citations: PlumX Metrics


2019BE12      Phys.Rev. C 99, 034603 (2019)

G.F.Bertsch, T.Kawano, L.M.Robledo

Angular momentum of fission fragments

NUCLEAR REACTIONS 235U(n, F)140Ba/140Te/140Xe/96Kr/96Zr/96Sr, E not given; calculated angular momentum of various fission fragments as a function of deformation β, angular distribution and anisotropy of dipole and quadrupole γ rays, anisotropy coefficients using usual spin-cutoff parametrization. discussed division of excitation energy in the newly formed fission fragments. Comparison with experimental values.

doi: 10.1103/PhysRevC.99.034603
Citations: PlumX Metrics


2019BE26      Phys.Rev. C 100, 024607 (2019)

G.F.Bertsch, W.Younes, L.M.Robledo

Diabatic paths through the scission point in nuclear fission

RADIOACTIVITY 236U(SF); calculated scission configurations, energy of Glider configuration with the D1S energy functional, neck parameter neck as a function of deformation for Glider, density distributions of the Glider configurations, overlaps of Glider configurations near the scission point, thermal energy associated with Glider at the scission point, characteristics of the GCM paths through the scission point, energy of the configuration with the D1S energy functional, Glider neck size with the BCPM energy functional, Hartree-Fock potential energy surfaces for 236U along the fission valley constrained by the quadrupole field, fraction of excitation energy in the heavy fragment and total final state excitation energy. Self-consistent mean-field theory with generator coordinate method (GCM) configurations through the scission point, constructed in the Hartree-Fock approximation with axially symmetric mean fields. Relevance to the scission-point statistical model to describe mass yields and excitation energies of fission fragments.

doi: 10.1103/PhysRevC.100.024607
Citations: PlumX Metrics


2019BE32      Phys.Rev. C 100, 044606 (2019)

G.F.Bertsch, L.M.Robledo

Decay widths at the scission point in nuclear fission

RADIOACTIVITY 236U(SF); calculated mass quadrupole moments and neck size of Glider configurations, energies of configurations used to build the continuum wave functions for GCM-constrained Glider configurations, Hartree-Fock energy as a function of the separation between centers of mass of the two nascent fragments, strength function for the Glider configuration, decay widths using generator coordinate method.

doi: 10.1103/PhysRevC.100.044606
Citations: PlumX Metrics


2019BE38      Eur.Phys.J. A 55, 248 (2019)

G.F.Bertsch

Monopole moments and the β-vibration in deformed nuclei

doi: 10.1140/epja/i2019-12764-8
Citations: PlumX Metrics


2018BE11      Phys.Rev. C 97, 064619 (2018)

G.F.Bertsch, W.Younes, L.M.Robledo

Scission dynamics with K partitions

RADIOACTIVITY 236U(SF); calculated potential energy surfaces, density distributions, shape parameters, and K partitions of g.s. and states close to fission using configuration-interaction (CI) formalism and GCM-constrained HFB configurations; deduced major rearrangement of K occupancy factors at scission point of nuclear fission.

doi: 10.1103/PhysRevC.97.064619
Citations: PlumX Metrics


2018BE14      Phys.Rev. C 98, 014611 (2018)

G.F.Bertsch, D.Brown, E.D.Davis

Fluctuations in the 235U (n, f) cross section

NUCLEAR REACTIONS 235U(n, F), E=10 eV to 100 keV; analyzed σ(E) data, and fluctuations due to compound nucleus resonances; calculated σ(E) and σ autocorrelation function using modeling of the S matrix by a sum of Breit-Wigner resonances, and MAZAMA code; deduced that fine structure isolated in the 10-25 keV energy window. Comparison with experimental data from the EXFOR database, and evaluated data in ENDF/VIII.0 library.

doi: 10.1103/PhysRevC.98.014611
Citations: PlumX Metrics


2018FA06      Phys.Rev. C 98, 014604 (2018)

P.Fanto, G.F.Bertsch, Y.Alhassid

Neutron width statistics in a realistic resonance-reaction model

NUCLEAR REACTIONS 194Pt(n, n), (n, γ), E=1-14 keV; calculated neutron strength function parameter, σ(E), and reduced neutron width distributions; deduced that Porter-Thomas distribution (PTD) describes well the distribution of reduced neutron widths, and that nonstatistical interactions do not explain the experimentally observed PTD violation. Statistical model calculations combined with a realistic treatment of the neutron channel described by Gaussian orthogonal ensemble (GOE) of random-matrix theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.014604
Citations: PlumX Metrics


2018GI02      Phys.Rev. C 97, 014315 (2018)

C.N.Gilbreth, Y.Alhassid, G.F.Bertsch

Nuclear deformation in the laboratory frame

NUCLEAR STRUCTURE 162Dy, 144,146,148,150,152Nd, 148,150,152,154Sm; calculated probability distribution of the axial quadrupole operator P(q) as function of temperature, quadrupole invariants <Q.Q>, quadrupole moments, effective deformation parameters β and γ within the rotationally invariant framework of the configuration-interaction shell model, and using finite-temperature auxiliary-field quantum Monte Carlo (AFMC) method.

doi: 10.1103/PhysRevC.97.014315
Citations: PlumX Metrics


2018MU14      Phys.Rev. C 98, 034317 (2018)

M.T.Mustonen, C.N.Gilbreth, Y.Alhassid, G.F.Bertsch

Statistical theory of deformation distributions in nuclear spectra

NUCLEAR STRUCTURE 148,150,152,154Sm; calculated second, third, and fourth moments of Q20 moment as a function of temperature, intrinsic quadrupole shape contours in the (β, γ) plane, probabilities of spherical, prolate, and oblate shapes as a function of temperature, first derivatives of Landau-like expansion parameters, nuclear state densities, and shape probabilities as a function of excitation energy using auxiliary-field Monte Carlo (AFMC) approach with configuration-interaction (CI) shell model.

doi: 10.1103/PhysRevC.98.034317
Citations: PlumX Metrics


2017BE04      Int.J.Mod.Phys. E26, 1740001 (2017)

G.F.Bertsch

The shapes of nuclei

NUCLEAR STRUCTURE 40Ca, 80Zr; calculated potential energy surfaces, energy levels.

doi: 10.1142/S0218301317400018
Citations: PlumX Metrics


2017BE33      Phys.Rev.Lett. 119, 222504 (2017)

G.F.Bertsch, T.Kawano

Exit-Channel Suppression in Statistical Reaction Theory

NUCLEAR REACTIONS 235U(n, F), (n, γ), E=10 keV; analyzed available data; deduced exit channel branching ratios.

doi: 10.1103/PhysRevLett.119.222504
Citations: PlumX Metrics


2017BE35      Phys.Rev.Lett. 119, 252501 (2017)

G.F.Bertsch, D.Bingham

Estimating Parameter Uncertainty in Binding-Energy Models by the Frequency-Domain Bootstrap

NUCLEAR STRUCTURE N<160; calculated errors in the liquid-drop fit to nuclear binding energies.

doi: 10.1103/PhysRevLett.119.252501
Citations: PlumX Metrics


2017BR18      Phys.Rev.Lett. 119, 192504 (2017)

B.A.Brown, G.F.Bertsch, L.M.Robledo, M.V.Romalis, V.Zelevinsky

Nuclear Matrix Elements for Tests of Local Lorentz Invariance Violation

NUCLEAR STRUCTURE 21Ne, 23Na, 133Cs, 173Yb, 201Hg; calculated quadrupole matrix elements. Self-consistent mean-field model (SCMF).

doi: 10.1103/PhysRevLett.119.192504
Citations: PlumX Metrics


2017FA07      Phys.Rev. C 96, 014305 (2017)

P.Fanto, Y.Alhassid, G.F.Bertsch

Particle-number projection in the finite-temperature mean-field approximation

NUCLEAR STRUCTURE 162Dy, 148,150Sm; calculated canonical entropies in the HF approximation for 162Dy, in the BCS limit of the HFB approximation for 148Sm, and in the HFB approximation for 150Sm, excitation energies and state density for 150Sm in the HFB approximation, using a general formula for exact particle number projection (PNP) after variation in the finite-temperature HFB approximation, and assessing the accuracy of the PNP through the shell-model Monte Carlo (SMMC) as a benchmark.

doi: 10.1103/PhysRevC.96.014305
Citations: PlumX Metrics


2016AL09      Phys.Rev. C 93, 044320 (2016)

Y.Alhassid, G.F.Bertsch, C.N.Gilbreth, H.Nakada

Benchmarking mean-field approximations to level densities

NUCLEAR STRUCTURE 148Sm, 162Dy; calculated canonical excitation energies, mean square angular momentum and second moments of angular momentum, entropies, as function of inverse temperature, s-wave resonance spacings, state densities, particle-projected frozen-potential (FP) density versus excitation energy. Shell model Monte Carlo (SMMC) and Hartree-Fock (HF) calculations. Assessment of accuracy of finite-temperature mean-field theory. Data files presented in supplemental material depository. Benchmarking of level densities in mean-field approximations for heavy spherical (e.g. 148Sm) and heavy deformed (e.g. 162Dy) nuclei. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044320
Citations: PlumX Metrics


2014AL34      Phys.Rev.Lett. 113, 262503 (2014)

Y.Alhassid, C.N.Gilbreth, G.F.Bertsch

Nuclear Deformation at Finite Temperature

NUCLEAR STRUCTURE 20Ne, 148,154Sm; calculated the axial quadrupole operator using the AFMC method, deformation parameters.

doi: 10.1103/PhysRevLett.113.262503
Citations: PlumX Metrics


2014RO03      Phys.Rev. C 89, 021303 (2014)

L.M.Robledo, R.N.Bernard, G.F.Bertsch

Spin constraints on nuclear energy density functionals

NUCLEAR STRUCTURE 164,166,168Ho, 168,170,172Tm, 172,174,176Lu, 180,182,184Ta, 184,186,188Lu; calculated spin splittings of neutron-proton two-quasiparticle configurations for 100-225 doublets for each of the odd-odd nucleus using D1S and D1M interactions. Comparison with Gallagher-Moszkowski (GM) rule for perturbative results for two-body interaction, three-body interaction, and the full interaction. Discussed violation of GM rule, and generalization of the three-body interaction.

doi: 10.1103/PhysRevC.89.021303
Citations: PlumX Metrics


2012BE04      Phys.Rev.Lett. 108, 042505 (2012)

G.F.Bertsch, L.M.Robledo

Symmetry Restoration in Hartree-Fock-Bogoliubov Based Theories

doi: 10.1103/PhysRevLett.108.042505
Citations: PlumX Metrics


2012GE02      Phys.Rev. C 85, 037303 (2012)

A.Gezerlis, G.F.Bertsch

Energy spectrum and effective mass using a nonlocal 3-body interaction

NUCLEAR STRUCTURE 208Pb; calculated contributions to the energy of 208Pb in density functional theory using Skyrme Ska and Gogny D1S functionals obtained with the EV8 and the HFBAXIAL computer codes. Nonlocal 3-body interaction.

doi: 10.1103/PhysRevC.85.037303
Citations: PlumX Metrics


2012RO39      Phys.Rev. C 86, 054306 (2012)

L.M.Robledo, G.F.Bertsch

Electromagnetic transition strengths in soft deformed nuclei

NUCLEAR STRUCTURE 24,32Mg, 48,62Cr, 78,92Kr, 144,160Gd, 164,180Hf, 194,208Pb, 234,244Pu; Z=10-94, N=10-160; calculated B(E2), B(E3) as function of β2 for 818 even-even nuclei with exact angular momentum projection with the rotational formula and spherical limit. Mean-field wave functions in the Hartree-Fock-Bogoliubov approximation with Gogny D1S interaction assuming axial symmetry. Proposed an interpolation formula describing transition strengths over entire range of deformations.

doi: 10.1103/PhysRevC.86.054306
Citations: PlumX Metrics


2012RO40      Phys.Rev. C 86, 064313 (2012)

L.M.Robledo, R.Bernard, G.F.Bertsch

Pairing gaps in the Hartree-Fock-Bogoliubov theory with the Gogny D1S interaction

NUCLEAR STRUCTURE Z=8, N=9-19; Z=50, N=49-87; Z=62, N=77-113; Z=82, N=95-133; Z=92, N=131-149; calculated neutron pairing gaps in odd-A nuclei using a new method to find HFB minima. Hartree-Fock-Bogoliubov (HFB) theory with Gogny DIS interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.064313
Citations: PlumX Metrics


2012SC05      Phys.Rev. C 85, 034328 (2012)

G.Scamps, D.Lacroix, G.F.Bertsch, K.Washiyama

Pairing dynamics in particle transport

doi: 10.1103/PhysRevC.85.034328
Citations: PlumX Metrics


2011GE05      Phys.Rev.Lett. 106, 252502 (2011)

A.Gezerlis, G.F.Bertsch, Y.L.Luo

Mixed-Spin Pairing Condensates in Heavy Nuclei

NUCLEAR STRUCTURE 132Dy, 132Gd, 132Nd; calculated ground state wave functions, correlation energy contour plots, pairing gaps. deduced mixed-spin condensate. Bogoliubov-de Gennes formalism.

doi: 10.1103/PhysRevLett.106.252502
Citations: PlumX Metrics


2011MU01      Phys.Rev. C 83, 014319 (2011)

A.Mukherjee, Y.Alhassid, G.F.Bertsch

Number-conserving theory of nuclear pairing gaps: A global assessment

NUCLEAR STRUCTURE A=50-250, N=10-150, Z=10-102; Z=50, N=55-83; calculated odd-even staggering or pairing gaps using pairing Hamiltonian from the self-consistent mean field (SCMF) output and configuration space Monte Carlo (CSMC) method. Global survey (of 443 neutron pairing gaps) using a numerically exact technique to calculate pairing correlation energies at fixed particle number.

doi: 10.1103/PhysRevC.83.014319
Citations: PlumX Metrics


2011RO28      Phys.Rev. C 84, 014312 (2011)

L.M.Robledo, G.F.Bertsch

Application of the gradient method to Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 21Ne, 24,32Mg; calculated HFB energies as function of deformation, matrix elements of quadrupole operator. Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, universal sd-shell interaction B (USDB) shell-model Hamiltonian.

doi: 10.1103/PhysRevC.84.014312
Citations: PlumX Metrics


2011RO49      Phys.Rev. C 84, 054302 (2011)

L.M.Robledo, G.F.Bertsch

Global systematics of octupole excitations in even-even nuclei

NUCLEAR STRUCTURE 20Ne, 158Gd, 208Pb, 226Ra; calculated excitation energies as function of β3, B(E3). Z=8-110, A=16-260; calculated octupole excitation energies, B(E3) for 818 nuclides. 16O, 64Zn, 96Zr, 170Er; discussed anomalous B(E3) values. Generator-coordinate extension (GCM) of the Hartree-Fock-Bogoliubov (HFB) self-consistent mean field theory using the discrete-basis Hill-Wheeler (HW) method. Gogny interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054302
Citations: PlumX Metrics


2010BE15      Phys.Rev. C 81, 064320 (2010)

G.F.Bertsch, Y.Luo

Spin-triplet pairing in large nuclei

NUCLEAR STRUCTURE A=30-1000; calculated ratio of spin-triplet to spin-singlet correlation energies, spin-singlet condensation energy spin-triplet condensation energy. 48Cr; calculated quasiparticle energies and correlation energies. Hartree-Fock-Bogoliubov equations using a zero-range interaction.

doi: 10.1103/PhysRevC.81.064320
Citations: PlumX Metrics


2010DE02      Phys.Rev. C 81, 014303 (2010)

J.-P.Delaroche, M.Girod, J.Libert, H.Goutte, S.Hilaire, S.Peru, N.Pillet, G.F.Bertsch

Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

NUCLEAR STRUCTURE A=2-250; analyzed charge radii, two-particle separation energies, correlation energies, excitation energies, transition matrix elements, deformation parameters, and transition strengths using the Hartree-Fock-Bogoliubov theory by the generator coordinate method and mapped onto a five-dimensional collective quadrupole Hamiltonian. Calculated properties of 1712 even-even nuclei.Evaluated performance of the CHFB+5DCH theory based on the Gogny D1S interaction.

doi: 10.1103/PhysRevC.81.014303
Citations: PlumX Metrics


2010GE05      Phys.Rev.Lett. 105, 212501 (2010)

A.Gezerlis, G.F.Bertsch

Effective 3-Body Interaction for Mean-Field and Density-Functional Theory

doi: 10.1103/PhysRevLett.105.212501
Citations: PlumX Metrics


2010LI51      J.Phys.:Conf.Ser. 205, 012007 (2010)

J.Libert, J.-P.Delaroche, M.Girod, H.Goutte, S.Hilaire, S.Peru, N.Pillet, G.F.Bertsch

Microscopic study of low energy collective states in even-even nuclei: A prospective analysis of dynamical corrections to vibrational mass parameters

NUCLEAR STRUCTURE 110Ru; calculated levels, J, π, inertia moment, deformation. 150,152,154,156,158,160,162,164Gd;calculated low-lying levels, J, π, rotational band. Z=20-110; calculated even-even nuclei 0+, 2+ levels. GCM mapped onto 5-Dimensional Collective Quadrupole Hamiltonian with quadrupole constraints deduced from Cogny D1S force. Compared with data.

doi: 10.1088/1742-6596/205/1/012007
Citations: PlumX Metrics


2009BE10      Phys.Rev. C 79, 034306 (2009)

G.F.Bertsch, C.A.Bertulani, W.Nazarewicz, N.Schunck, M.V.Stoitsov

Odd-even mass differences from self-consistent mean field theory

NUCLEAR STRUCTURE A=50-250, N=10-150, Z=10-102; calculated odd-even staggering in nuclear binding energies using density functional theory and and multiple treatments of pairing interactions; Sn, N=55-85, Dy, N=79-101, Pb, N=99-131, Z=65-81, N=98, 102; calculated binding energy differences. 25Ne, 39P, 52Ti, 61Cu, 87Kr, 111Ag, 147Gd, 173Tm, 203Tl, 207Pb; calculated deformation parameters. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.034306
Citations: PlumX Metrics


2009BE28      Phys.Rev. C 80, 027302 (2009)

G.F.Bertsch, C.W.Johnson

Model space truncation in shell-model fits

doi: 10.1103/PhysRevC.80.027302
Citations: PlumX Metrics


2009FR10      Eur.Phys.J. A 41, 109 (2009)

W.A.Friedman, G.F.Bertsch

Whence the odd-even staggering in nuclear binding?

NUCLEAR STRUCTURE A=1-270; calculated odd-even staggering in nuclear binding energies using a two-term parameterization of three components. Comparison with experimental data.

doi: 10.1140/epja/i2009-10773-x
Citations: PlumX Metrics


2008BE32      Phys.Rev. C 78, 054312 (2008)

M.Bender, G.F.Bertsch, P.-H.Heenen

Collectivity-induced quenching of signatures for shell closures

NUCLEAR STRUCTURE Z=50, 52;A=100-134; Z=28-50; A=78-100; calculated single-particle spectra, two proton separation energies.

doi: 10.1103/PhysRevC.78.054312
Citations: PlumX Metrics


2008RO15      Phys.Rev. C 77, 064308 (2008)

R.Rodriguez-Guzman, Y.Alhassid, G.F.Bertsch

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations

NUCLEAR STRUCTURE 20Ne, 24Mg, 36Ar; calculated correlation energy, occupation probabilities of valence orbitals, deformation energies, pairing energies, energy curves, coupling constants. Hartree-Fock plus Bardeen-Cooper-Schrieffer approximation with Skyrme energy density functional.

doi: 10.1103/PhysRevC.77.064308
Citations: PlumX Metrics


2008SA42      Phys.Rev. C 78, 064318 (2008)

N.Sandulescu, G.F.Bertsch

Accuracy of BCS-based approximations for pairing in small Fermi systems

NUCLEAR STRUCTURE 117Sn, 207Pb; calculated neutron pairing gap. 116Sn, 206Pb; calculated pairing correlation energy. Number-projected BCS theory.

doi: 10.1103/PhysRevC.78.064318
Citations: PlumX Metrics


2008SE09      Phys.Rev. C 78, 044304 (2008)

R.A.Senkov, G.F.Bertsch, B.A.Brown, Y.L.Luo, V.G.Zelevinsky

Many-body approximations in the sd-shell "sandbox"

NUCLEAR STRUCTURE A=16-40;Z=8-20; calculated ground-state energies, pairing correlation energies, intrinsic electric quadrupole moments using Hartree-Fock variational scheme and exact binding energy differences solution.

doi: 10.1103/PhysRevC.78.044304
Citations: PlumX Metrics


2008TE08      Phys.Rev. C 78, 044311 (2008)

J.Terasaki, J.Engel, G.F.Bertsch

Systematics of the first 2+ excitation in spherical nuclei with the Skryme quasiparticle random-phase approximation

NUCLEAR STRUCTURE Z=10-90; calculated levels, J, π, B(E1) for lowest 2+ states in even-even nuclei. Skyrme quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.044311
Citations: PlumX Metrics


2007BE35      Phys.Rev.Lett. 99, 032502 (2007)

G.F.Bertsch, M.Girod, S.Hilaire, J.-P.Delaroche, H.Goutte, S.Peru

Systematics of the First 2+ Excitation with the Gogny Interaction

NUCLEAR STRUCTURE A=4-244; calculated excitation energies, B(E2) and transition quadrupole moments using a microscopic theory with Gogny interaction.

doi: 10.1103/PhysRevLett.99.032502
Citations: PlumX Metrics


2007FR23      Phys.Rev. C 76, 057301 (2007)

W.A.Friedman, G.F.Bertsch

Neutron-proton pairing reexamined

NUCLEAR STRUCTURE 40K, 48,50Sc, 56,60Co, 58Cu, 64Co, 72Ge, 132Sb, 208Tl, 208,210Bi; analyzed neutron-proton pairing interactions. Density functional theory.

doi: 10.1103/PhysRevC.76.057301
Citations: PlumX Metrics


2007SA23      Phys.Rev. C 75, 044305 (2007)

B.Sabbey, M.Bender, G.F.Bertsch, P.-H.Heenen

Global study of the spectroscopic properties of the first 2+ state in even-even nuclei

NUCLEAR STRUCTURE A=16-252; calculated the systematics of the 2 excitation energy and the transition probability from this 2 to the ground state for most of the even-even nuclei within the framework of a nonrelativistic self-consistent mean-field model using the Skyrme interaction SLy4 and a density-dependent pairing force, compared results to available data.

doi: 10.1103/PhysRevC.75.044305
Citations: PlumX Metrics


2006AL23      Phys.Rev. C 74, 034301 (2006)

Y.Alhassid, G.F.Bertsch, L.Fang, B.Sabbey

Effective quadrupole-quadrupole interaction from density functional theory

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 36Ar; calculated wave functions, quadrupole-quadrupole interaction, correlation energies. Density functional theory.

doi: 10.1103/PhysRevC.74.034301
Citations: PlumX Metrics


2006BE12      Phys.Rev. C 73, 034322 (2006)

M.Bender, G.F.Bertsch, P.-H.Heenen

Global study of quadrupole correlation effects

NUCLEAR STRUCTURE A=16-252; analyzed radii, binding energies, quadrupole correlation effects.

doi: 10.1103/PhysRevC.73.034322
Citations: PlumX Metrics


2005AL47      Phys.Rev. C 72, 064326 (2005)

Y.Alhassid, G.F.Bertsch, L.Fang, S.Liu

Nuclear moment of inertia and spin distribution of nuclear levels

NUCLEAR STRUCTURE 55,56,57,58,59,60Fe, 55,56Mn; calculated moments of inertia vs temperature.

doi: 10.1103/PhysRevC.72.064326
Citations: PlumX Metrics


2005BE18      Phys.Rev.Lett. 94, 102503 (2005)

M.Bender, G.F.Bertsch, P.-H.Heenen

Systematics of Quadrupolar Correlation Energies

NUCLEAR STRUCTURE 170Hf, 180Hg, 208Pb; A=16-280; calculated quadrupolar deformation and correlation energies. Sn, Pb; calculated two-proton gaps.

doi: 10.1103/PhysRevLett.94.102503
Citations: PlumX Metrics


2005BE37      Phys.Rev. C 71, 054311 (2005)

G.F.Bertsch, B.Sabbey, M.Uusnakki

Fitting theories of nuclear binding energies

doi: 10.1103/PhysRevC.71.054311
Citations: PlumX Metrics


2005ES02      Phys.Rev.Lett. 94, 042502 (2005)

H.Esbensen, G.F.Bertsch, K.A.Snover

Reconciling Coulomb Dissociation and Radiative Capture Measurements

NUCLEAR REACTIONS Pb(8B, p7Be), E=51.9 MeV/nucleon; calculated relative energy spectra, angular distributions. 7Be(p, γ), E=low; analyzed astrophysical S-factor data.

doi: 10.1103/PhysRevLett.94.042502
Citations: PlumX Metrics


2004BE14      Phys.Rev. C 69, 034340 (2004)

M.Bender, G.F.Bertsch, P.-H.Heenen

Correlation energies by the generator coordinate method: Computational aspects for quadrupolar deformations

NUCLEAR STRUCTURE 74,78,82,86Kr, 120Sn, 156Sm, 186,190,194,208Pb; calculated correlation energies associated with quadrupole deformation. Generator coordinate method, Gaussian overlap approximation.

doi: 10.1103/PhysRevC.69.034340
Citations: PlumX Metrics


2004HA09      Nucl.Phys. A731, 347 (2004)

K.Hagino, G.F.Bertsch, C.Guet

Variational RPA for the dipole surface plasmon in metal clusters

doi: 10.1016/j.nuclphysa.2003.11.047
Citations: PlumX Metrics


2003AL30      Phys.Rev. C 68, 044322 (2003)

Y.Alhassid, G.F.Bertsch, L.Fang

Nuclear level statistics: Extending shell model theory to higher temperatures

NUCLEAR STRUCTURE 56Fe; calculated level density, partition functions vs temperature. Shell model Monte Carlo approach.

doi: 10.1103/PhysRevC.68.044322
Citations: PlumX Metrics


2003HA21      Phys.Rev. C 68, 024306 (2003)

K.Hagino, G.E.Bertsch, P.-G.Reinhard

Quadrupole correlation energy by the generator coordinate method

doi: 10.1103/PhysRevC.68.024306
Citations: PlumX Metrics


2002BF01      Prog.Theor.Phys.(Kyoto), Suppl. 146, 319 (2002)

G.F.Bertsch, H.Esbensen

Dynamic Effects in Fragmentation Reactions

NUCLEAR REACTIONS 208Pb(17F, X), E=10 MeV/nucleon; calculated breakup probability, role of Barkas effect.

doi: 10.1143/PTPS.146.319
Citations: PlumX Metrics


2002ES07      Nucl.Phys. A706, 383 (2002)

H.Esbensen, G.F.Bertsch

Higher-Order Effects in the Two-Body Breakup of 17F

NUCLEAR REACTIONS 58Ni, 208Pb(17F, p16O), E=10, 40 MeV/nucleon; calculated stripping, dissociation probabilities vs impact parameter. Both ground and excited state of projectile considered.

doi: 10.1016/S0375-9474(02)00869-2
Citations: PlumX Metrics


2002ES11      Phys.Rev. C66, 044609 (2002)

H.Esbensen, G.F.Bertsch

Dynamic polarization in the Coulomb dissociation of 8B

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=3-20 MeV/nucleon; calculated σ(θ), dynamic polarization effects. Comparison with data.

doi: 10.1103/PhysRevC.66.044609
Citations: PlumX Metrics


2002HA31      Phys.Rev. C65, 064320 (2002)

K.Hagino, P.-G.Reinhard, G.F.Bertsch

Projection and Ground State Correlations Made Simple

doi: 10.1103/PhysRevC.65.064320
Citations: PlumX Metrics


2001BE28      Yad.Fiz. 64, No 4, 646 (2001); Phys.Atomic Nuclei 64, 588 (2001)

G.F.Bertsch, K.Hagino

Mean-Field Theory for Global Binding Systematics

NUCLEAR STRUCTURE 14,15,16,17,18,19O; calculated binding energies, pairing gaps. Several approaches compared.

doi: 10.1134/1.1368217
Citations: PlumX Metrics


2001BO10      Phys.Rev. C63, 044604 (2001)

A.Bonaccorso, G.F.Bertsch

Comparison of Transfer-to-Continuum and Eikonal Models of Projectile Fragmentation Reactions

NUCLEAR REACTIONS 9Be(n, n), E=20-180 MeV; calculated σ. 9Be(12Be, X), E=20-100 MeV; calculated breakup σ. Comparison of eikonal and transfer-to-continuum models. Comparison with data.

doi: 10.1103/PhysRevC.63.044604
Citations: PlumX Metrics


2001ES05      Phys.Rev. C64, 014608 (2001)

H.Esbensen, G.F.Bertsch

Eikonal Approximation in Heavy-Ion Fragmentation Reactions

NUCLEAR REACTIONS 12C(11Be, X), E=0-100 MeV/nucleon; 208Pb(11Be, X), E=20 MeV/nucleon; calculated breakup probabilities, momentum and angular distributions. Eikonal approximation, comparison with full calculation.

doi: 10.1103/PhysRevC.64.014608
Citations: PlumX Metrics


2000AL13      Phys.Rev.Lett. 84, 4313 (2000)

Y.Alhassid, G.F.Bertsch, S.Liu, H.Nakada

Parity Dependence of Nuclear Level Densities

NUCLEAR STRUCTURE 56Fe, 60Ni, 68Zn; calculated level densities, occupation numbers, parity dependences. Simple formula, comparison with Monte Carlo shell model results.

doi: 10.1103/PhysRevLett.84.4313
Citations: PlumX Metrics


2000BE03      Nucl.Phys. A665, 285 (2000)

G.E.Bertsch, T.Papenbrock, S.Reddy

A Classical Two-Body Hamiltonian Model and Its Mean Field Approximation

doi: 10.1016/S0375-9474(99)00433-9
Citations: PlumX Metrics


2000BR34      Phys.Rev. C62, 014904 (2000)

D.A.Brown, S.Y.Panitkin, G.F.Bertsch

Extracting Particle Freeze-Out Phase-Space Densities and Entropies from Sources Imaged in Heavy-Ion Reactions

doi: 10.1103/PhysRevC.62.014904
Citations: PlumX Metrics


2000HA04      Phys.Rev. C61, 024307 (2000)

K.Hagino, G.F.Bertsch

Random-Phase Approximation Approach to Rotational Symmetry Restoration in a Three-Level Lipkin Model

doi: 10.1103/PhysRevC.61.024307
Citations: PlumX Metrics


2000HA58      Nucl.Phys. A679, 163 (2000)

K.Hagino, G.F.Bertsch

Correlation Energy of the Pairing Hamiltonian

NUCLEAR STRUCTURE 14,15,16,17,18,19O; calculated ground-state energy, pairing gap, correlation energy associated with pair fluctuations. RPA approach, Lipkin-Nogami method.

doi: 10.1016/S0375-9474(00)00343-2
Citations: PlumX Metrics


2000JO01      Phys.Rev. C61, 014311 (2000)

C.W.Johnson, G.F.Bertsch, D.J.Dean, I.Talmi

Generalized Seniority from Random Hamiltonians

NUCLEAR STRUCTURE 20,22,24O, 24,26,28Mg, 44,46,48Ca; calculated pairing features, fractional pair-transfer collectivity. Random two-body matrix elements.

doi: 10.1103/PhysRevC.61.014311
Citations: PlumX Metrics


1999BE27      Nucl.Phys. A649, 423c (1999)

G.F.Bertsch, K.Yabana

Atomic Cluster with Nuclear Methods

doi: 10.1016/S0375-9474(99)00092-5
Citations: PlumX Metrics


1999BE43      Nucl.Phys. A657, 59 (1999)

G.F.Bertsch, P.F.Bortignon, K.Hagino

Anharmonic Collective Excitation in a Solvable Model

doi: 10.1016/S0375-9474(99)00326-7
Citations: PlumX Metrics


1999BE66      Phys.Rev.Lett. 83, 5412 (1999)

G.F.Bertsch, T.Papenbrock

Yrast Line for Weakly Interacting Trapped Bosons

doi: 10.1103/PhysRevLett.83.5412
Citations: PlumX Metrics


1999ES04      Phys.Rev. C59, 3240 (1999)

H.Esbensen, G.F.Bertsch

Nuclear Induced Breakup of Halo Nuclei

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=26 MeV; calculated σ(θ); deduced role of continuum-continuum coupling.

doi: 10.1103/PhysRevC.59.3240
Citations: PlumX Metrics


1999HE43      Nucl.Phys. (Supplement) A654, 669c (1999)

K.Hencken, G.Bertsch, H.Esbensen

The Nuclear Breakup of Halo Nuclei Through Diffraction and Stripping

NUCLEAR REACTIONS C, Pb(6He, X), (11Li, X), E not given; calculated diffraction, 1-neutron and 2-neutron stripping, 2-neutron removal σ. Comparison with data. Serber model.

doi: 10.1016/S0375-9474(00)88523-1
Citations: PlumX Metrics


1999PA14      Phys.Rev. C59, 2052 (1999)

T.Papenbrock, G.F.Bertsch

Pairing in Low-Density Fermi Gases

doi: 10.1103/PhysRevC.59.2052
Citations: PlumX Metrics


1998BE09      Phys.Rev. C57, 1366 (1998)

G.F.Bertsch, K.Hencken, H.Esbensen

Nuclear Breakup of Borromean Nuclei

NUCLEAR REACTIONS 12C(11Li, X), E=800 MeV/nucleon; 12C(6He, X), E=240, 800 MeV/nucleon; calculated projectile breakup channels σ; deduced neutron halo structure dependence. Eikonal theory. Comparisons with data.

doi: 10.1103/PhysRevC.57.1366
Citations: PlumX Metrics


1998JO04      Phys.Rev.Lett. 80, 2749 (1998)

C.W.Johnson, G.F.Bertsch, D.J.Dean

Orderly Spectra from Random Interactions

doi: 10.1103/PhysRevLett.80.2749
Citations: PlumX Metrics


1998PA15      Phys.Rev.Lett. 80, 4141 (1998)

T.Papenbrock, G.F.Bertsch

Bremsstrahlung in α Decay

RADIOACTIVITY 210Po(α); calculated photon emission probability. Fully quantum mechanical calculation.

doi: 10.1103/PhysRevLett.80.4141
Citations: PlumX Metrics


1997BE31      Phys.Rev. C56, 839 (1997)

G.F.Bertsch, H.Feldmeier

Variational Approach to Anharmonic Collective Motion

doi: 10.1103/PhysRevC.56.839
Citations: PlumX Metrics


1997BE53      Phys.Rev.Lett. 79, 3539 (1997)

G.F.Bertsch, A.Bulgac

Comment on ' Spontaneous Fission: A kinetic approach '

doi: 10.1103/PhysRevLett.79.3539
Citations: PlumX Metrics


1997ES07      Phys.Rev. C56, 3054 (1997)

H.Esbensen, G.F.Bertsch, K.Hencken

Application of Contact Interactions to Borromean Halos

NUCLEAR STRUCTURE 6He, 11Li; calculated two-neutron separation, halo radius. Three-body calculations, density-dependent interaction, comparison with Fadeev approach.

doi: 10.1103/PhysRevC.56.3054
Citations: PlumX Metrics


1996AL26      Phys.Rev.Lett. 77, 1444 (1996)

Y.Alhassid, G.F.Bertsch, D.J.Dean, S.E.Koonin

Shell Model Monte Carlo Studies of γ-Soft Nuclei

NUCLEAR STRUCTURE 128Te, 124Xe, 124Sn; calculated shape distributions, moments of inertia, pairing correlations vs temperature, angular velocity. Shell model Monte Carlo calculations.

doi: 10.1103/PhysRevLett.77.1444
Citations: PlumX Metrics


1996BE09      Phys.Rev. C53, 1440 (1996)

G.F.Bertsch, P.-G.Reinhard, E.Suraud

Particle Evaporation from Semiclassical Dynamics

NUCLEAR STRUCTURE A=64; calculated particle evaporation related features. BUU equation.

doi: 10.1103/PhysRevC.53.1440
Citations: PlumX Metrics


1996BE95      Phys.Lett. 367B, 55 (1996)

G.F.Bertsch, P.Danielewicz

Off-Shell Effects in Heavy Particle Production

doi: 10.1016/0370-2693(95)01402-0
Citations: PlumX Metrics


1996ES02      Nucl.Phys. A600, 37 (1996)

H.Esbensen, G.F.Bertsch

Effects of E2 Transitions in the Coulomb Dissociation of 8B

NUCLEAR REACTIONS, ICPND Pb(8B, X), E=46.5 MeV/nucleon; calculated projectile Coulomb dissociation probabilities vs impact parameter, (7Be+p) system relative kinetic energy, σ(θp) following breakup, fragment momenta. 7Be(p, γ), E not given; calculated astrophysical S-factor vs E(relative); deduced E1, E2 amplitudes interference related asymmetry, constraints determination.

doi: 10.1016/0375-9474(96)00006-1
Citations: PlumX Metrics


1996HE23      Phys.Rev. C54, 3043 (1996)

K.Hencken, G.Bertsch, H.Esbensen

Breakup Reactions of the Halo Nuclei 11Be and 8B

NUCLEAR REACTIONS 9Be(11Be, n10Be), E=66 MeV/nucleon; 12C(8B, p7Be), E=1470 MeV/nucleon; analyzed heavier ejectile transverse momentum distribution. Eikonal approximation, realistic optical potential based profile function.

NUCLEAR STRUCTURE A ≈ 10-200; calculated breakup σ for 11Be projectile with E=40, 800 MeV/nucleon. Eikonal approximation, realistic optical potential based profile function.

doi: 10.1103/PhysRevC.54.3043
Citations: PlumX Metrics


1996JA02      Phys.Rev. C53, 1028 (1996)

C.Jarzynski, G.F.Bertsch

Numerical Convergence in Solving the Vlasov Equation

doi: 10.1103/PhysRevC.53.1028
Citations: PlumX Metrics


1995ES01      Nucl.Phys. A581, 107 (1995)

H.Esbensen, G.F.Bertsch, C.A.Bertulani

Higher-Order Dynamical Effects in Coulomb Dissociation

NUCLEAR REACTIONS Pb(11Li, X), E=28 MeV/nucleon; Pb(11Be, X), E=72 MeV/nucleon; calculated projectile dissociation spectra; deduced higher order processes role in Coulomb dissociation. Time-dependent 3D-Schrodinger equation, 9Li+dineutron.

doi: 10.1016/0375-9474(94)00423-K
Citations: PlumX Metrics


1995ES06      Phys.Lett. 359B, 13 (1995)

H.Esbensen, G.F.Bertsch

Interference Effects in the Coulomb Dissociation of 8B

NUCLEAR STRUCTURE 8B; calculated Coulomb breakup into 7Be+p, E1, E2 interference on σ(θp).

doi: 10.1016/0370-2693(95)01067-Z
Citations: PlumX Metrics


1995HE01      Phys.Rev. C51, 328 (1995)

M.Herrmann, G.F.Bertsch

Source Dimensions in Ultrarelativistic Heavy-Ion Collisions

NUCLEAR REACTIONS S(S, X), E=200 GeV/nucleon; analyzed data. Prehadronic high density phase followed by hadronic gas phase.

doi: 10.1103/PhysRevC.51.328
Citations: PlumX Metrics


1994BE10      Phys.Rev. C49, 2839 (1994)

C.A.Bertulani, G.F.Bertsch

Coulomb Reacceleration as a Clock for Nuclear Reactions: A two-dimensional model

doi: 10.1103/PhysRevC.49.2839
Citations: PlumX Metrics


1994BE13      Phys.Rev.Lett. 72, 2349 (1994)

G.F.Bertsch

Meson Phase Space Density in Heavy Ion Collisions from Interferometry

doi: 10.1103/PhysRevLett.72.2349
Citations: PlumX Metrics


1994BE20      Nucl.Phys. A574, 169c (1994)

G.F.Bertsch

Large Amplitude Collective Motion

NUCLEAR STRUCTURE 124Xe, 182Os, 218Ra, 143Eu, 194Hg; compiled, reviewed data, collective motion analyses, superdeformation features in some cases; deduced hopping model suitability features.

doi: 10.1016/0375-9474(94)90044-2
Citations: PlumX Metrics


1994BR01      Phys.Rev. C49, 552 (1994)

R.A.Broglia, F.Barranco, G.F.Bertsch, E.Vigezzi

Low-Lying Surface Vibrations in the Pair-Hopping Model

NUCLEAR STRUCTURE A ≤ 250; calculated, analyzed 3- state energies systematics. Pair hopping model.

doi: 10.1103/PhysRevC.49.552
Citations: PlumX Metrics


1993AU03      Nucl.Phys. A556, 190 (1993)

N.Auerbach, G.F.Bertsch, B.A.Brown, L.Zhao

β+ Gamow-Teller Strength in Nuclei

RADIOACTIVITY 26Mg, 54Fe, 56Ni(β+); calculated Gamow-Teller transition strength, B(λ). Quasiparticle RPA, large basis shell model.

doi: 10.1016/0375-9474(93)90347-Z
Citations: PlumX Metrics


Back to query form    [Next]


Note: The following list of authors and aliases matches the search parameter G.Bertsch: , G.E.BERTSCH, G.F.BERTSCH