NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 23, 2024.

Search: Author = Y.Alhassid

Found 80 matches.

Back to query form

2024FA05      Phys.Rev. C 109, L031302 (2024)

P.Fanto, Y.Alhassid

Low-energy enhancement in the magnetic dipole γ-ray strength functions of heavy nuclei

doi: 10.1103/PhysRevC.109.L031302
Citations: PlumX Metrics

2021FA08      Phys.Rev. C 103, 064310 (2021)

P.Fanto, Y.Alhassid

State densities of heavy nuclei in the static-path plus random-phase approximation

NUCLEAR STRUCTURE 148,149,150,151,152,153,154,155Sm; calculated ground-state energies, canonical entropies as function of inverse temperature, state densities as function of excitation energy using the static-path plus random-phase approximation (SPA+RPA) in the configuration-interaction (CI) shell-model framework against exact shell-model Monte Carlo (SMMC) state densities. Comparison with mean-field state densities calculated with the finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.064310
Citations: PlumX Metrics

2021GU12      Phys.Lett. B 816, 136206 (2021)

M.Guttormsen, Y.Alhassid, W.Ryssens, K.O.Ay, M.Ozgur, E.Algin, A.C.Larsen, F.L.Bello Garrote, L.Crespo Campo, T.Dahl-Jacobsen, A.Gorgen, T.W.Hagen, V.W.Ingeberg, B.V.Kheswa, M.Klintefjord, J.E.Midtbo, V.Modamio, T.Renstrom, E.Sahin, S.Siem, G.M.Tveten, F.Zeiser

Strong enhancement of level densities in the crossover from spherical to deformed neodymium isotopes

NUCLEAR REACTIONS 142,144,146,148,150Nd(p, X), E=16 MeV; 142,144,146,148,150Nd(α, X), E=13.5 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies, nuclear level densities, quadrupole deformation parameters. Comparison with the shell model Monte Carlo (SMMC) calculations.

doi: 10.1016/j.physletb.2021.136206
Citations: PlumX Metrics

2021RY03      Eur.Phys.J. A 57, 76 (2021)

W.Ryssens, Y.Alhassid

Finite-temperature mean-field approximations for shell model Hamiltonians: the code HF-SHELL

NUCLEAR STRUCTURE 24Mg, 144Nd, 162Dy; calculated energy surfaces, nuclear state densities, quadrupole moments. Comparison with available data.

doi: 10.1140/epja/s10050-021-00365-3
Citations: PlumX Metrics

2020FA02      Phys.Rev. C 101, 014607 (2020)

P.Fanto, Y.Alhassid, H.A.Weidenmuller

Statistical-model description of γ decay from compound-nucleus resonances

NUCLEAR REACTIONS 95Mo(n, γ)96Mo*, E(γ)<10 MeV; calculated partial widths of the neutron and the γ-decay channels, and total γ-decay width distribution for all the spin-parity values of the resonances of the compound nucleus using random-matrix model with coupling to the entrance neutron channel and to a large number of nonequivalent γ channels, employing empirical parametrizations for nuclear level density (NLD) and γ strength function (γSF); deduced that Porter-Thomas distribution (PTD) described the distribution of partial widths for all the decay channels, in agreement with the statistical-model expectation, and that large fluctuations of the total γ-decay widths in experiments by 2013Ko13 could not be explained within a statistical-model description of the compound nucleus.

doi: 10.1103/PhysRevC.101.014607
Citations: PlumX Metrics

2020PO05      Phys.Rev. C 101, 054307 (2020)

A.Poves, F.Nowacki, Y.Alhassid

Limits on assigning a shape to a nucleus

NUCLEAR STRUCTURE 20,22Ne, 24Mg, 28,34Si, 48,64Cr, 44S, 68Ni, 70Zn, 76Ge; calculated β and γ deformation parameters, fluctuations in β and γ deformation parameters using the quadrupole invariants, within the framework of the configuration-interaction shell model framework. Discussion of shape coexistence in 68Ni, and rigid triaxiality in 76Ge, 76Se, and notion of spherical doubly magic nuclei.

doi: 10.1103/PhysRevC.101.054307
Citations: PlumX Metrics

2019AL09      Phys.Rev. C 99, 024621 (2019)

Y.Alhassid, G.F.Bertsch, P.Fanto, T.Kawano

Transmission coefficients in compound-nucleus reaction theory

doi: 10.1103/PhysRevC.99.024621
Citations: PlumX Metrics

2018FA06      Phys.Rev. C 98, 014604 (2018)

P.Fanto, G.F.Bertsch, Y.Alhassid

Neutron width statistics in a realistic resonance-reaction model

NUCLEAR REACTIONS 194Pt(n, n), (n, γ), E=1-14 keV; calculated neutron strength function parameter, σ(E), and reduced neutron width distributions; deduced that Porter-Thomas distribution (PTD) describes well the distribution of reduced neutron widths, and that nonstatistical interactions do not explain the experimentally observed PTD violation. Statistical model calculations combined with a realistic treatment of the neutron channel described by Gaussian orthogonal ensemble (GOE) of random-matrix theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.014604
Citations: PlumX Metrics

2018GI02      Phys.Rev. C 97, 014315 (2018)

C.N.Gilbreth, Y.Alhassid, G.F.Bertsch

Nuclear deformation in the laboratory frame

NUCLEAR STRUCTURE 162Dy, 144,146,148,150,152Nd, 148,150,152,154Sm; calculated probability distribution of the axial quadrupole operator P(q) as function of temperature, quadrupole invariants <Q.Q>, quadrupole moments, effective deformation parameters β and γ within the rotationally invariant framework of the configuration-interaction shell model, and using finite-temperature auxiliary-field quantum Monte Carlo (AFMC) method.

doi: 10.1103/PhysRevC.97.014315
Citations: PlumX Metrics

2018MU14      Phys.Rev. C 98, 034317 (2018)

M.T.Mustonen, C.N.Gilbreth, Y.Alhassid, G.F.Bertsch

Statistical theory of deformation distributions in nuclear spectra

NUCLEAR STRUCTURE 148,150,152,154Sm; calculated second, third, and fourth moments of Q20 moment as a function of temperature, intrinsic quadrupole shape contours in the (β, γ) plane, probabilities of spherical, prolate, and oblate shapes as a function of temperature, first derivatives of Landau-like expansion parameters, nuclear state densities, and shape probabilities as a function of excitation energy using auxiliary-field Monte Carlo (AFMC) approach with configuration-interaction (CI) shell model.

doi: 10.1103/PhysRevC.98.034317
Citations: PlumX Metrics

2017FA07      Phys.Rev. C 96, 014305 (2017)

P.Fanto, Y.Alhassid, G.F.Bertsch

Particle-number projection in the finite-temperature mean-field approximation

NUCLEAR STRUCTURE 162Dy, 148,150Sm; calculated canonical entropies in the HF approximation for 162Dy, in the BCS limit of the HFB approximation for 148Sm, and in the HFB approximation for 150Sm, excitation energies and state density for 150Sm in the HFB approximation, using a general formula for exact particle number projection (PNP) after variation in the finite-temperature HFB approximation, and assessing the accuracy of the PNP through the shell-model Monte Carlo (SMMC) as a benchmark.

doi: 10.1103/PhysRevC.96.014305
Citations: PlumX Metrics

2016AL09      Phys.Rev. C 93, 044320 (2016)

Y.Alhassid, G.F.Bertsch, C.N.Gilbreth, H.Nakada

Benchmarking mean-field approximations to level densities

NUCLEAR STRUCTURE 148Sm, 162Dy; calculated canonical excitation energies, mean square angular momentum and second moments of angular momentum, entropies, as function of inverse temperature, s-wave resonance spacings, state densities, particle-projected frozen-potential (FP) density versus excitation energy. Shell model Monte Carlo (SMMC) and Hartree-Fock (HF) calculations. Assessment of accuracy of finite-temperature mean-field theory. Data files presented in supplemental material depository. Benchmarking of level densities in mean-field approximations for heavy spherical (e.g. 148Sm) and heavy deformed (e.g. 162Dy) nuclei. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044320
Citations: PlumX Metrics

2015AL18      Phys.Rev. C 92, 024307 (2015)

Y.Alhassid, M.Bonett-Matiz, S.Liu, H.Nakada

Direct microscopic calculation of nuclear level densities in the shell model Monte Carlo approach

NUCLEAR STRUCTURE 56Fe, 60,62Ni, 60Co, 162Dy; calculated microscopic nuclear level densities, and moment of inertia at finite excitation energy in the shell model Monte Carlo (SMMC) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.024307
Citations: PlumX Metrics

2015AL33      Eur.Phys.J. A 51, 171 (2015)


The shell model Monte Carlo approach to level densities: Recent developments and perspectives

doi: 10.1140/epja/i2015-15171-3
Citations: PlumX Metrics

2015OZ01      Phys.Rev. C 91, 034329 (2015)

C.Ozen, Y.Alhassid, H.Nakada

Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach

NUCLEAR STRUCTURE 143,145,147,149Nd, 149,150,151,153,155Sm; calculated thermal excitation energy and partition function as function of temperature, level densities versus excitation energy. Shell model Monte Carlo (SMMC) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.034329
Citations: PlumX Metrics

2014AL12      Nucl.Data Sheets 118, 233 (2014)

Y.Alhassid, C.Ozen, H.Nakada

Calculating Level Densities of Heavy Nuclei by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 148,150,152,154Sm; calculated average total nuclear spin. 143,144,145,146,147,148,149,150,152Nd, 148,149,150,151,152,153,154,155Sm; calculated state density vs excitation energy, even-mass nuclei collective enhancement factor using Monte Carlo microscopic approach. Compared with available data.

doi: 10.1016/j.nds.2014.04.045
Citations: PlumX Metrics

2014AL34      Phys.Rev.Lett. 113, 262503 (2014)

Y.Alhassid, C.N.Gilbreth, G.F.Bertsch

Nuclear Deformation at Finite Temperature

NUCLEAR STRUCTURE 20Ne, 148,154Sm; calculated the axial quadrupole operator using the AFMC method, deformation parameters.

doi: 10.1103/PhysRevLett.113.262503
Citations: PlumX Metrics

2013BO16      Phys.Rev. C 88, 011302 (2013)

M.Bonett-Matiz, A.Mukherjee, Y.Alhassid

Level densities of nickel isotopes: Microscopic theory versus experiment

NUCLEAR STRUCTURE 59,60,61,62,63,64Ni; calculated level densities, ground-state energies using the spin projection method, and shell model Monte Carlo (SMMC) approach in complete pfg9/2 shell. Comparison with experimental data for proton evaporation spectra and neutron resonances.

doi: 10.1103/PhysRevC.88.011302
Citations: PlumX Metrics

2013OZ01      Phys.Rev.Lett. 110, 042502 (2013)

C.Ozen, Y.Alhassid, H.Nakada

Crossover from Vibrational to Rotational Collectivity in Heavy Nuclei in the Shell-Model Monte Carlo Approach

NUCLEAR STRUCTURE 148,150,152,154Sm, 144,146,148,150,152Nd; calculated the crossover from vibrational to rotational collectivity in the low-temperature behavior. HFB approximation.

doi: 10.1103/PhysRevLett.110.042502
Citations: PlumX Metrics

2012MU09      Phys.Rev.Lett. 109, 032503 (2012)

A.Mukherjee, Y.Alhassid

Odd-Particle Systems in the Shell Model Monte Carlo Method: Circumventing a Sign Problem

NUCLEAR STRUCTURE 47,48,49Ti, 51,52,53,54,55Cr, 53,54,55,56,57,58,59,60,61Fe, 59,60,61,62,63,64,65Ni, 63,64,65,66,67Zn, 69,70,71Ge; calculated neutron pairing gaps, ground state energy. Shell model Monte Carlo method, comparison with available data.

doi: 10.1103/PhysRevLett.109.032503
Citations: PlumX Metrics

2011MU01      Phys.Rev. C 83, 014319 (2011)

A.Mukherjee, Y.Alhassid, G.F.Bertsch

Number-conserving theory of nuclear pairing gaps: A global assessment

NUCLEAR STRUCTURE A=50-250, N=10-150, Z=10-102; Z=50, N=55-83; calculated odd-even staggering or pairing gaps using pairing Hamiltonian from the self-consistent mean field (SCMF) output and configuration space Monte Carlo (CSMC) method. Global survey (of 443 neutron pairing gaps) using a numerically exact technique to calculate pairing correlation energies at fixed particle number.

doi: 10.1103/PhysRevC.83.014319
Citations: PlumX Metrics

2009VA03      Phys.Rev. C 79, 024302 (2009)

K.Van Houcke, S.M.A.Rombouts, K.Heyde, Y.Alhassid

Microscopic calculation of symmetry projected nuclear level densities

NUCLEAR STRUCTURE 55,56,57Fe; calculated level densities as a function of angular momentum, moments of inertia and pair correlation energies as a function of excitation energy. 56Fe; calculated parity-projected level densities and total quantum Monte Carlo densities as a function of excitation energy. Quantum Monte Carlo microscopic calculation of symmetry projected level densities.

doi: 10.1103/PhysRevC.79.024302
Citations: PlumX Metrics

2008AL25      Phys.Rev.Lett. 101, 082501 (2008)

Y.Alhassid, L.Fang, H.Nakada

Heavy Deformed Nuclei in the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 162Dy; calculated ground state energy, moment of inertia, level density; comparison with experimental results; shell model Monte Carlo approach;

doi: 10.1103/PhysRevLett.101.082501
Citations: PlumX Metrics

2008NA24      Phys.Rev. C 78, 051304 (2008); Publishers Note Phys.Rev. C 78, 069907 (2008)

H.Nakada, Y.Alhassid

Isospin-projected nuclear level densities by the shell model Monte Carlo method

NUCLEAR STRUCTURE 58Cu, 70Zn; calculated level densities. Shell Model Monte Carlo approach.

doi: 10.1103/PhysRevC.78.051304
Citations: PlumX Metrics

2008RO15      Phys.Rev. C 77, 064308 (2008)

R.Rodriguez-Guzman, Y.Alhassid, G.F.Bertsch

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations

NUCLEAR STRUCTURE 20Ne, 24Mg, 36Ar; calculated correlation energy, occupation probabilities of valence orbitals, deformation energies, pairing energies, energy curves, coupling constants. Hartree-Fock plus Bardeen-Cooper-Schrieffer approximation with Skyrme energy density functional.

doi: 10.1103/PhysRevC.77.064308
Citations: PlumX Metrics

2007AL45      Nucl.Phys. A788, 357c (2007)


Thermal Signatures of Pairing Correlations in Nuclei and Nanoparticles

NUCLEAR STRUCTURE 55,56,57,58,59,60Fe; calculated moments of inertia vs temperature.

doi: 10.1016/j.nuclphysa.2007.01.065
Citations: PlumX Metrics

2007AL51      Phys.Rev.Lett. 99, 162504 (2007)

Y.Alhassid, S.Liu, H.Nakada

Spin Projection in the Shell Model Monte Carlo Method and the Spin Distribution of Nuclear Level Densities

NUCLEAR STRUCTURE 55,56Fe, 60Co; calculated spin distributions of level densities using the shell model monte carlo approach.

doi: 10.1103/PhysRevLett.99.162504
Citations: PlumX Metrics

2007MO15      Phys.Rev. C 75, 045805 (2007)

D.Mocelj, T.Rauscher, G.Martinez-Pinedo, K.Langanke, L.Pacearescu, A.Faessler, F.-K.Thielemann, Y.Alhassid

Large-scale prediction of the parity distribution in the nuclear level density and application to astrophysical reaction rates

NUCLEAR STRUCTURE 56,58,60,62,64,66Fe, 47,48,49,50,66,68,70,72Ni, 66,70Zn, 76,78,80,82Sr, 89Y, 90Zr, 91Nb, 92Mo, 118,120,122,124Sn; calculated parity-projected level density ratios.

NUCLEAR REACTIONS 67,69Se(n, γ), (p, γ), E=low; 94Nb, 95Zr(p, γ), E=low; calculated astrophysical reaction rates.

doi: 10.1103/PhysRevC.75.045805
Citations: PlumX Metrics

2006AL23      Phys.Rev. C 74, 034301 (2006)

Y.Alhassid, G.F.Bertsch, L.Fang, B.Sabbey

Effective quadrupole-quadrupole interaction from density functional theory

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 36Ar; calculated wave functions, quadrupole-quadrupole interaction, correlation energies. Density functional theory.

doi: 10.1103/PhysRevC.74.034301
Citations: PlumX Metrics

2005AL47      Phys.Rev. C 72, 064326 (2005)

Y.Alhassid, G.F.Bertsch, L.Fang, S.Liu

Nuclear moment of inertia and spin distribution of nuclear levels

NUCLEAR STRUCTURE 55,56,57,58,59,60Fe, 55,56Mn; calculated moments of inertia vs temperature.

doi: 10.1103/PhysRevC.72.064326
Citations: PlumX Metrics

2004NA03      Nucl.Phys. A731, 153 (2004)

V.Nanal, T.L.Khoo, D.J.Hofman, B.B.Back, M.P.Carpenter, I.Dioszegi, K.Eisenman, M.L.Halbert, P.Heckman, A.M.Heinz, D.Henderson, D.Jenkins, M.P.Kelly, F.G.Kondev, T.Lauritsen, C.J.Lister, B.McClintock, S.Mitsuoka, T.Pennington, J.Seitz, R.H.Siemssen, M.Thoennessen, R.J.van Swol, R.L.Varner, P.Wilt, Y.Alhassid

Highly Selective Studies of GDR in 164Er

NUCLEAR REACTIONS 124Sn(40Ar, xn), E=163, 187 MeV; measured Eγ, Iγ, (recoil)γ-coin. 164Er deduced GDR parameters, angular momentum dependence of strength function.

doi: 10.1016/j.nuclphysa.2003.11.028
Citations: PlumX Metrics

2003AL30      Phys.Rev. C 68, 044322 (2003)

Y.Alhassid, G.F.Bertsch, L.Fang

Nuclear level statistics: Extending shell model theory to higher temperatures

NUCLEAR STRUCTURE 56Fe; calculated level density, partition functions vs temperature. Shell model Monte Carlo approach.

doi: 10.1103/PhysRevC.68.044322
Citations: PlumX Metrics

2003MO25      Nucl.Phys. A718, 650c (2003)

D.Mocelj, T.Rauscher, G.Martinez-Pinedo, Y.Alhassid

Influence of Parity-Dependence in the nuclear Level Density on the Prediction of Astrophysical Reaction Rates

NUCLEAR REACTIONS 64Co, 66Cu, 66Ga(n, p), 63Fe, 65Ni, 65Zn(n, γ), 67Ni, 69Zn, 69Ge(n, α), E=low; calculated astrophysical reaction rates, effects of parity dependence in level density.

doi: 10.1016/S0375-9474(03)00876-5
Citations: PlumX Metrics

2003NA24      Nucl.Phys. A718, 691c (2003)

H.Nakada, Y.Alhassid

Microscopic Nuclear Level Densities by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 56Fe, 58Cu, 60Ni, 68Zn; calculated level densities. Shell Model Monte Carlo approach.

doi: 10.1016/S0375-9474(03)00890-X
Citations: PlumX Metrics

2002HA29      Phys.Rev. C65, 064311 (2002)

A.Hamoudi, R.G.Nazmitdinov, E.Shahaliev, Y.Alhassid

Statistical Fluctuations of Electromagnetic Transition Intensities and Electromagnetic Moments in pf-Shell Nuclei

NUCLEAR STRUCTURE A=60; analyzed level spacing, B(E2) and B(M1) strength distributions, magnetic dipole moments, fluctuation properties. Porter-Thomas distribution.

doi: 10.1103/PhysRevC.65.064311
Citations: PlumX Metrics

2001AL29      Nucl.Phys. A690, 163c (2001)


Quantum Monte Carlo Methods for the Nuclear Shell Model at Finite Temperature

NUCLEAR STRUCTURE 55Mn, 55,56Fe, 55Co, 60Ni, 68Zn; calculated level density vs excitation energy, related features. Shell model, quantum Monte Carlo approach. Comparisons with data.

doi: 10.1016/S0375-9474(01)00940-X
Citations: PlumX Metrics

2001KU10      Nucl.Phys. A687, 212c (2001)

D.Kusnezov, Y.Alhassid, K.A.Snover, W.E.Ormand

Giant Dipole Resonances in Hot, Rotating Nuclei: Nuclear shapes and shell corrections

NUCLEAR STRUCTURE Sc, Cu, Zr, Mo, Sn, Dy, Pb; calculated GDR width vs temperature and angular momentum. 92,96,100Mo; calculated GDR width as a function of temperature and angular momentum. 44Ti, 90Zr, 120Sn, 168Er, 208Pb; calculated deformation parameters vs temperature and spin for hot rotating nuclei. Shell effects discussed, comparison with data.

doi: 10.1016/S0375-9474(01)00623-6
Citations: PlumX Metrics

2001LI38      Phys.Rev.Lett. 87, 022501 (2001)

S.Liu, Y.Alhassid

Signature of a Pairing Transition in the Heat Capacity of Finite Nuclei

NUCLEAR STRUCTURE 52,53,54,55,56,57,58,59,60,61,62Fe; calculated heat capacity vs temperature; deduced pairing transition features. Shell model Monte Carlo approach.

doi: 10.1103/PhysRevLett.87.022501
Citations: PlumX Metrics

2000AL13      Phys.Rev.Lett. 84, 4313 (2000)

Y.Alhassid, G.F.Bertsch, S.Liu, H.Nakada

Parity Dependence of Nuclear Level Densities

NUCLEAR STRUCTURE 56Fe, 60Ni, 68Zn; calculated level densities, occupation numbers, parity dependences. Simple formula, comparison with Monte Carlo shell model results.

doi: 10.1103/PhysRevLett.84.4313
Citations: PlumX Metrics

1999AL19      Nucl.Phys. A649, 107c (1999)


Giant Dipole Resonances in Hot Rotating Nuclei: Overview and recent advances

doi: 10.1016/S0375-9474(99)00047-0
Citations: PlumX Metrics

1999AL34      Phys.Rev.Lett. 83, 4265 (1999)

Y.Alhassid, S.Liu, H.Nakada

Particle-Number Reprojection in the Shell Model Monte Carlo Method: Application to nuclear level densities

NUCLEAR STRUCTURE 50,51,52,53,54,55,56Mn, 52,53,54,55,56,57,58Fe, 54,55,56,57,58,59,60Co; calculated level density vs excitation energy, related parameters. Shell model Monte Carlo approach, particle number reprojection method. Comparisons with data.

doi: 10.1103/PhysRevLett.83.4265
Citations: PlumX Metrics

1999KU14      Nucl.Phys. A649, 193c (1999)

D.Kusnezov, Y.Alhassid, K.A.Snover

Systematics of the Nuclear Giant Dipole Resonance

NUCLEAR STRUCTURE A=45-208; analyzed GDR widths vs temperature, spin, mass; deduced phenomenological function. Liquid drop, Nilsson-Strutinsky approaches.

doi: 10.1016/S0375-9474(99)00059-7
Citations: PlumX Metrics

1999NA20      Nucl.Phys. A649, 153c (1999)

V.Nanal, B.B.Back, D.J.Hofman, G.Hackman, D.Ackermann, S.Fischer, D.Henderson, R.V.F.Janssens, T.L.Khoo, A.A.Sonzogni, Y.Alhassid

Exclusive Studies of the GDR in Excited Nuclei

NUCLEAR REACTIONS 124Sn(40Ar, 4n), E=160 MeV; measured Eγ, Iγ, (recoil)γ-coin. 164Er deduced GDR parameters. Fragment mass analyzer.

doi: 10.1016/S0375-9474(99)00053-6
Citations: PlumX Metrics

1998KU16      Phys.Rev.Lett. 81, 542 (1998)

D.Kusnezov, Y.Alhassid, K.A.Snover

Scaling Properties of the Giant Dipole Resonance Width in Hot Rotating Nuclei

NUCLEAR STRUCTURE A=45-208; compiled, analyzed GDR widths vs temperature, spin, mass; deduced phenomenological formula.

doi: 10.1103/PhysRevLett.81.542
Citations: PlumX Metrics

1998NA33      Phys.Lett. 436B, 231 (1998)

H.Nakada, Y.Alhassid

Microscopic Nuclear Level Densities from Fe to Ge by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 54,56,58Fe, 58,60,62,64Ni, 64,66,68,70Zn, 70,72Ge; calculated total, parity-projected level densities, first 2+ state excitation energies, related features. Shell model Monte Carlo method.

doi: 10.1016/S0370-2693(98)00911-3
Citations: PlumX Metrics

1997AT04      Nucl.Phys. A625, 565 (1997)

H.Attias, Y.Alhassid

The Perturbed Static Path Approximation at Finite Temperature: Observables and strength functions

doi: 10.1016/S0375-9474(97)00486-7
Citations: PlumX Metrics

1997NA16      Phys.Rev.Lett. 79, 2939 (1997)

H.Nakada, Y.Alhassid

Total and Parity-Projected Level Densities of Iron-Region Nuclei in the Auxiliary Fields Monte Carlo Shell Model

NUCLEAR STRUCTURE 56Fe; calculated level density, total energy, related features; deduced model parameter dependence. Shell model Monte Carlo method. Comparison to data, Hartree-Fock approximation.

doi: 10.1103/PhysRevLett.79.2939
Citations: PlumX Metrics

1996AL26      Phys.Rev.Lett. 77, 1444 (1996)

Y.Alhassid, G.F.Bertsch, D.J.Dean, S.E.Koonin

Shell Model Monte Carlo Studies of γ-Soft Nuclei

NUCLEAR STRUCTURE 128Te, 124Xe, 124Sn; calculated shape distributions, moments of inertia, pairing correlations vs temperature, angular velocity. Shell model Monte Carlo calculations.

doi: 10.1103/PhysRevLett.77.1444
Citations: PlumX Metrics

1995DE15      Phys.Rev.Lett. 74, 2909 (1995)

D.J.Dean, S.E.Koonin, K.Langanke, P.B.Radha, Y.Alhassid

Thermal Properties of 54Fe

NUCLEAR STRUCTURE 54Fe; calculated B(λ), isoscalar, isovector quadrupole strengths, other observables vs temperature.

doi: 10.1103/PhysRevLett.74.2909
Citations: PlumX Metrics

1995DR05      Phys.Rev. C52, 578 (1995)

Z.M.Drebi, K.A.Snover, A.W.Charlop, M.S.Kaplan, D.P.Wells, D.Ye, Y.Alhassid

Spin-Induced Shape Changes in Light-Medium Mass Compound Nuclei

NUCLEAR REACTIONS 27Al(32S, X), E=90-215 MeV; 45Sc(18O, X), E=54-149 MeV; measured γ(θ), production σ. 59,63Cu deduced GDR characteristics.

doi: 10.1103/PhysRevC.52.578
Citations: PlumX Metrics

1995LA13      Phys.Rev. C52, 718 (1995)

K.Langanke, D.J.Dean, P.B.Radha, Y.Alhassid, S.E.Koonin

Shell-Model Monte Carlo Studies of fp-Shell Nuclei

NUCLEAR STRUCTURE 48,50,52,54Ti, 48,50,52,54,56Cr, 52,54,56,58,60Fe, 56,58,60,62,64Ni, 60,62,64Zn; calculated mass excesses, Coulomb, binding energies, B(λ), Gamow-Teller transition strengths, proton, neutron pairing fields expectation values. Shell model, Monte Carlo techniques.

doi: 10.1103/PhysRevC.52.718
Citations: PlumX Metrics

1995VA07      Phys.Lett. 343B, 64 (1995)

J.P.S.van Schagen, Y.Alhassid, J.C.S.Bacelar, B.Bush, M.N.Harakeh, W.H.A.Hesselink, H.J.Hofmann, N.Kalantar-Nayestanaki, R.F.Noorman, A.J.M.Plompen, A.Stolk, Z.Sujkowski, A.van der Woude

GDR γ-Ray Decay in 156Dy(*) from Regions Selected on Temperature and Angular Momentum

NUCLEAR REACTIONS 116Cd(40Ar, X), E=200 MeV; 114Cd(40Ar, X), E=173 MeV; measured γ difference spectra. 156,154Dy GDR γ-decay features from restricted temperature, angular momentum regions.

doi: 10.1016/0370-2693(94)01467-Q
Citations: PlumX Metrics

1994AL06      Phys.Rev.Lett. 72, 613 (1994)

Y.Alhassid, D.J.Dean, S.E.Koonin, G.Lang, W.E.Ormand

Practical Solution to the Monte Carlo Sign Problem: Realistic calculations of 54Fe

NUCLEAR STRUCTURE 54Fe; calculated isoscalar, isovector quadrupole, Gamow-Teller transition strengths; deduced Gamow-Teller β+ strength quenching, solution to Monte Carlo sign problem.

doi: 10.1103/PhysRevLett.72.613
Citations: PlumX Metrics

1994AL13      Nucl.Phys. A569, 37c (1994)


The Giant Dipole Resonance in Hot Rotating Nuclei

NUCLEAR STRUCTURE 90Zr, 92Mo, 156Dy, 45Sc, 59Cu; analyzed GDR associated absorption σ vs E. Macroscopic approach, large amplitude shape fluctuations.

doi: 10.1016/0375-9474(94)90094-9
Citations: PlumX Metrics

1994AL26      Nucl.Phys. A577, 709 (1994)

Y.Alhassid, H.Attias

Algebraic Rotating-Frame Approach to Nuclear Reactions

NUCLEAR REACTIONS 154Sm(α, α'), (α, α), E=50 MeV; calculated σ(θ); deduced Coulomb excitation inclusion features. Algebraic rotating frame approach.

doi: 10.1016/0375-9474(94)90941-5
Citations: PlumX Metrics

1994DE31      Phys.Rev.Lett. 72, 4066 (1994)

D.J.Dean, P.B.Radha, K.Langanke, Y.Alhassid, S.E.Koonin, W.E.Ormand

Complete 0(h-bar x Omega) Calculations of Gamow-Teller Strengths for Nuclei in the Iron Region

NUCLEAR STRUCTURE 56,54Fe, 56,58Ni, 54Cr, 55Mn; calculated B(λ), quadrupole moments, Gamow-Teller transition strength. Shell model, Monte Carlo techniques, different interactions.

doi: 10.1103/PhysRevLett.72.4066
Citations: PlumX Metrics

1994LA13      Phys.Rev.Lett. 72, 2809 (1994)

B.Lauritzen, Y.Alhassid, N.Whelan

Nongeneric Nuclear Spectral Fluctuations

doi: 10.1103/PhysRevLett.72.2809
Citations: PlumX Metrics

1994PA10      Phys.Rev. C49, 2919 (1994)

M.P.Pato, C.A.Nunes, C.L.Lima, M.S.Hussein, Y.Alhassid

Deformed Gaussian Orthogonal Ensemble Analysis of the Interacting Boson Model

doi: 10.1103/PhysRevC.49.2919
Citations: PlumX Metrics

1993AL08      Nucl.Phys. A553, 137c (1993)


Hot Rotating Nuclei

NUCLEAR REACTIONS 92Mo, 90Zr(γ, X), E ≤ 25 MeV; 45Sc(γ, X), E ≤ 30 MeV; compiled, reviewed photoabsorption σ(E) data, calculations. Hot rotating nuclei.

NUCLEAR STRUCTURE 166Er, 112Sn; compiled, reviewed dipole correlation, GDR excitation σ data, calculations. Hot rotating nuclei.

doi: 10.1016/0375-9474(93)90620-D
Citations: PlumX Metrics

1993AL24      Nucl.Phys. A565, 427 (1993)

Y.Alhassid, N.Whelan

The Jacobi Transition and the Giant-Dipole Resonance in Rapidly Rotating Hot Nuclei

NUCLEAR STRUCTURE 45Sc; calculated free energy surface, GDR σ(Eγ); deduced Jacobi phase transition with shape change. Hot rotating nuclei.

doi: 10.1016/0375-9474(93)90219-N
Citations: PlumX Metrics

1993KI12      Phys.Lett. 308B, 225 (1993)

M.Kicinska-Habior, K.A.Snover, J.A.Behr, C.A.Gossett, Y.Alhassid, N.Whelan

Search for a Phase Transition in the Nuclear Shape at Finite Temperature and Rapid Rotation

NUCLEAR REACTIONS 27Al(18O, X), E=44.9-109.6 MeV; measured Eγ, Iγ; deduced σ(E). 45Sc deduced GDR strength function, deformation features. Liquid drop model.

doi: 10.1016/0370-2693(93)91276-S
Citations: PlumX Metrics

1993VA06      Phys.Lett. 308B, 231 (1993)

J.P.S.van Schagen, Y.Alhassid, J.C.Bacelar, B.Bush, M.N.Harakeh, W.H.A.Hesselink, H.J.Hofmann, N.Kalantar-Nayestanaki, R.F.Noorman, A.J.M.Plompen, A.Stolk, Z.Sujkowski, A.van der Woude

GDR Dissipation and Nuclear Shape in Hot Fast-Rotating Dy Nuclei

NUCLEAR REACTIONS 116Cd(40Ar, X), E=200 MeV; measured Eγ, Iγ, γ-multiplicity; deduced absorption σ(Eγ, E). 156Dy deduced GDR parameters, deformation.

doi: 10.1016/0370-2693(93)91277-T
Citations: PlumX Metrics

1992AL16      Nucl.Phys. A549, 12 (1992)

Y.Alhassid, B.Bush

The Systematics of the Landau Theory of Hot Rotating Nuclei

NUCLEAR STRUCTURE 154Nd; calculated free-energy, moment of inertia surfaces. 166Er; calculated rigid body, inrotational flow moment of inertia surfaces. 160Gd, 160Yb; calculated equilbrium shape trajectories, phase diagrams. 168Hf; calculated phase diagrams; deduced model parameters. Landau theory of hot rotating nuclei.

doi: 10.1016/0375-9474(92)90065-R
Citations: PlumX Metrics

1991BU09      Nucl.Phys. A531, 27 (1991)

B.Bush, Y.Alhassid

On the Width of the Giant Dipole Resonance in Deformed Nuclei

NUCLEAR STRUCTURE 166Er; calculated GDR width. Surface dissipation models, deformed nuclei.

doi: 10.1016/0375-9474(91)90566-O
Citations: PlumX Metrics

1990AL04      Nucl.Phys. A509, 461 (1990)

Y.Alhassid, B.Bush

Effects of Thermal Fluctuations on Giant Dipole Resonances in Hot Rotating Nuclei

NUCLEAR STRUCTURE 160,166Er, 140Ce, 116,108Sn; calculated GDR excitation σ vs energy surface, excitation energy. Thermal fluctuations.

doi: 10.1016/0375-9474(90)90087-3
Citations: PlumX Metrics

1990AL25      Nucl.Phys. A514, 434 (1990)

Y.Alhassid, B.Bush

Time-Dependent Shape Fluctuations and the Giant Dipole Resonance in Hot Nuclei: Realistic calculations

NUCLEAR STRUCTURE 166Er, 112,114Sn; calculated dipole correlation function, Fourier transform. Landau theory.

doi: 10.1016/0375-9474(90)90151-B
Citations: PlumX Metrics

1990AL30      Phys.Rev.Lett. 65, 2527 (1990)

Y.Alhassid, B.Bush

Orientation Fluctuations and the Angular Distribution of the Giant-Dipole-Resonance γ Rays in Hot Rotating Nuclei

NUCLEAR STRUCTURE 90Zr, 92Mo; analyzed (HI, X) reaction data. Macroscopic model, GDR in hot rotating nuclei.

doi: 10.1103/PhysRevLett.65.2527
Citations: PlumX Metrics

1989AL09      Phys.Rev.Lett. 63, 31 (1989)

Y.Alhassid, J.M.Manoyan, S.Levit

Simple Systematics of the Shape Transitions in Hot Rare-Earth Nuclei

NUCLEAR STRUCTURE N=70-78; N=86-110; calculated critical temperature vs neutron number for Ce, Nd, Sm, Gd, Dy, Er, Yb, Hf isotopes. Hot rotating nuclei, Landau theory of shape transitions.

doi: 10.1103/PhysRevLett.63.31
Citations: PlumX Metrics

1989AL21      Nucl.Phys. A501, 585 (1989)

Y.Alhassid, F.Iachello

Algebracic Approach to Heavy-Ion Reactions

NUCLEAR REACTIONS 24Mg(16O, 16O), (16O, 16O'), (16O, 12C), E(cm)=27.8 MeV; calculated σ(θ). Algebraic approach.

doi: 10.1016/0375-9474(89)90150-4
Citations: PlumX Metrics

1989AL26      Phys.Rev.Lett. 63, 2452 (1989)

Y.Alhassid, B.Bush

Stochastic Approach to Giant Dipole Resonances in Hot Rotating Nuclei

NUCLEAR STRUCTURE 166Er; calculated dipole correlation function Fourier transform. 112Sn; calculated GDR σ(E). Stochastic, microscopic approach, hot rotating nuclei.

doi: 10.1103/PhysRevLett.63.2452
Citations: PlumX Metrics

1988AL06      Phys.Lett. 201B, 183 (1988)

Y.Alhassid, F.Iachello, B.Shao

A Study of Heavy-Ion Reactions in the Algebraic Scattering Theory

NUCLEAR REACTIONS 24Mg(16O, 16O), (16O, 16O'), 28Si(12C, 12C), (12C, 12C'), E(cm)=27.8 MeV; calculated σ(θ). Algebraic scattering theory.

doi: 10.1016/0370-2693(88)90208-0
Citations: PlumX Metrics

1988AL17      Nucl.Phys. A482, 57c (1988)

Y.Alhassid, B.Bush, S.Levit

Landau Theory of Shapes, Shape Fluctuations and Giant Dipole Resonances in Hot Nuclei

NUCLEAR STRUCTURE 166,160Er, 140Ce; calculated GDR excitation σ, energy vs temperature. Landau theory.

doi: 10.1016/0375-9474(88)90575-1
Citations: PlumX Metrics

1988AL31      Phys.Rev.Lett. 61, 1926 (1988)

Y.Alhassid, B.Bush, S.Levit

Thermal Shape Fluctuations, Landau Theory, and Giant Dipole Resonances in Hot Rotating Nuclei

NUCLEAR REACTIONS 160,166Er(γ, X), E ≈ 10-20 MeV; calculated photoabsorption σ(E); deduced GDR sensitivity to hot nuclei shape.

doi: 10.1103/PhysRevLett.61.1926
Citations: PlumX Metrics

1987AL14      Nucl.Phys. A469, 205 (1987)

Y.Alhassid, J.Zingman, S.Levit

Landau Theory of Shape Transitions in Hot Rotating Nuclei

NUCLEAR STRUCTURE 166Er; calculated shape transitions, phase diagrams, isentropes. Landau theory.

doi: 10.1016/0375-9474(87)90107-2
Citations: PlumX Metrics

1986AL12      Phys.Rev.Lett. 57, 539 (1986)

Y.Alhassid, S.Levit, J.Zingman

Universal Features of Shape Transitions in Hot Rotating Nuclei

NUCLEAR STRUCTURE 166Er; calculated phase diagrams vs level energy, spin. Hot rotating nuclei, Landau shape transition theory.

doi: 10.1103/PhysRevLett.57.539
Citations: PlumX Metrics

1985AL12      Z.Phys. A321, 677 (1985)

Y.Alhassid, G.Maddison, K.Langanke, K.Chow, S.E.Koonin

Path Integral Monte Carlo Calculations of 4He and 6Li

NUCLEAR STRUCTURE 4He, 6Li; calculated ground state energy, density distributions. Path integral Monte Carlo calculations.

doi: 10.1007/BF01432445
Citations: PlumX Metrics

1984LE05      Nucl.Phys. A413, 439 (1984)

S.Levit, Y.Alhassid

Phenomenology of Shape Transitions in Hot Nuclei

NUCLEAR STRUCTURE 168Yb; calculated free energy vs deformation, temperature. General Landau theory framework.

doi: 10.1016/0375-9474(84)90421-4
Citations: PlumX Metrics

1982AL30      Phys.Rev.Lett. 49, 1482 (1982)

Y.Alhassid, M.Gai, G.F.Bertsch

Radiative Width of Molecular-Cluster States

NUCLEAR STRUCTURE 18O; calculated B(λ), electric transition enhancements. Molecular sum rules.

doi: 10.1103/PhysRevLett.49.1482
Citations: PlumX Metrics

1979AL22      Phys.Rev. C20, 1789 (1979)

Y.Alhassid, R.D.Levine, J.S.Karp, S.G.Steadman

Information-Theoretic Analysis of Energy Disposal in Heavy-Ion Transfer Reactions

NUCLEAR REACTIONS 232Th(16O, X), E=105 MeV; Mo(14N, X), E=97 MeV; 53Cr(15N, X), E=90 MeV; 232Th(15N, X), E=145 MeV; 232Th(22Ne, X), E=174 MeV; 197Au(16O, X), E=218, 250 MeV; Ni(16O, 12C), E=96 MeV; calculated energy spectra, Q-dependence for X from 7Li to 15O. Constrained statistical approach to multinucleon transfer.

doi: 10.1103/PhysRevC.20.1789
Citations: PlumX Metrics

1978LE15      Phys.Rev.Lett. 41, 1537 (1978)

R.D.Levine, S.G.Steadman, J.S.Karp, Y.Alhassid

Heavy-Ion Transfer Reactions to the Continuum: Surprisal Analysis and The Condition of Maximal Entropy

NUCLEAR REACTIONS 232Th(16O, 16N), (16O, 15N), (16O, 14C), (16O, 13C), (16O, 12C), 232Th(16O, 11B), E=105 MeV; measured σ.

doi: 10.1103/PhysRevLett.41.1537
Citations: PlumX Metrics

Back to query form