NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = P.Jachimowicz

Found 26 matches.

Back to query form



2023JA12      Phys.Rev. C 108, 064309 (2023)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for three-quasiparticle K isomers in odd-even Md-Rg nuclei

doi: 10.1103/PhysRevC.108.064309
Citations: PlumX Metrics


2022HO12      Phys.Rev. C 106, 014614 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Isthmus connecting mainland and island of stability of superheavy nuclei

NUCLEAR REACTIONS 245,248Cm, 242,244Pu, 238U, 232Th, 226Ra(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=10-70 MeV; calculated σ(E), excitation functions. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.014614
Citations: PlumX Metrics


2022HO13      Eur.Phys.J. A 58, 180 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Hot and cold fusion reactions leading to the same superheavy evaporation residue

NUCLEAR REACTIONS 233,235U(48Ca, X)277Cn, E not given; calculated σ; deduced the possibility of filling the gap between the isotopes of superheavy nuclei with Z=112 produced in cold and hot fusion reactions. Comparison with available data.

doi: 10.1140/epja/s10050-022-00826-3
Citations: PlumX Metrics


2022RA06      Phys.Rev. C 105, 044328 (2022)

A.Rahmatinejad, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Energy dependent ratios of level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 282,283,284,285,286,287,288,289,290,291,292,293,294,295Mc, 283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 291,292,293,294,295,296,297,298Ts, 291,292,293,294,295,296,297,298,299Og, 292Fl, 295,296,297,298,299,300119, 295,296,297,298,299,300,301,302120; calculated intrinsic nuclear level densities, energy-dependent level-density parameters, energy-dependent ratios of level-density parameters corresponding to the nuclei at the fission saddle point and to proton and α-particle emission residues at their ground state to those obtained for the daughter nuclei after neutron emission. Thermodynamic superfluid formalism using the single-particle energies obtained from the diagonalization of the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.105.044328
Citations: PlumX Metrics


2021GO26      Eur.Phys.J. A 57, 321 (2021)

T.Goigoux, Ch.Theisen, B.Sulignano, M.Airiau, K.Auranen, H.Badran, R.Briselet, T.Calverley, D.Cox, F.Dechery, F.Defranchi Bisso, A.Drouart, Z.Favier, B.Gall, T.Grahn, P.T.Greenlees, K.Hauschild, A.Herzan, R.-D.Herzberg, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Leino, A.Lightfoot, A.Lopez-Martens, A.Mistry, P.Nieminen, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, E.Rey-Herme, J.Rubert, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, M.Vandebrouck, A.Ward, M.Zielinska, P.Jachimowicz, M.Kowal, J.Skalski

First observation of high-K isomeric states in 249Md and 251Md

RADIOACTIVITY 249,251Md(IT) [from 203Tl(48Ca, 2n)249Md, E=219 MeV; 205Tl(48Ca, 2n)251Md, E=218 MeV]; measured decay products, Eα, Iα, Eβ, Iβ, Eγ, Iγ, β-α-coin.; deduced level energies, J, π, 3 quasi-particle high-K states, isomeric states T1/2. Comparison theoretical calculations. SAGE spectrometer, the K130 cyclotron at the Accelerator Laboratory of the University of Jyvaskyla.

doi: 10.1140/epja/s10050-021-00631-4
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021HO08      Phys.Rev. C 103, L041601 (2021)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Rate of decline of the production cross section of superheavy nuclei with Z = 114-117 at high excitation energies

NUCLEAR REACTIONS 242,244Pu(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=10-65 MeV; 242,244Pu, 243Am, 248Cm, 249Bk(48Ca, 5n), (48Ca, 6n), (48Ca, 7n), (48Ca, 8n), (48Ca, 9n), E*=40-120 MeV; calculated σ(E) using microscopic-macroscopic (MM) method, and compared with available experimental data for superheavy nuclei (SHN).

NUCLEAR STRUCTURE 290Ts; calculated potential energy surface (PES) in (β20, β22) plane. 286,287,288,289,290,291,292,293,294,295,296,297,298Fl, 287,288,289,290,291,292,293,294,295,296,297,298,299Mc, 288,289,290,291,292,293,294,295,296,297,298,299,300Lv, 289,290,291,292,293,294,295,296,297,298,299,300,301Ts; calculated fission barriers and S(n) using microscopic-macroscopic (MM) method, and standard BCS method with blocking for nuclei with odd numbers of protons, neutrons, or both.

doi: 10.1103/PhysRevC.103.L041601
Citations: PlumX Metrics


2021JA01      At.Data Nucl.Data Tables 138, 101393 (2021)

P.Jachimowicz, M.Kowal, J.Skalski

Properties of heaviest nuclei with 98 ≤ Z ≤ 126 and 134 ≤ N ≤ 192

NUCLEAR STRUCTURE Z=96-126; calculated ground-state and saddle-point shapes and masses, ground-state mass excess, nucleon separation- and energies, total, macroscopic (normalized to the macroscopic energy at the spherical shape) and shell corrections energies, and deformations within the microscopic-macroscopic method with the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy taken as the smooth part.

doi: 10.1016/j.adt.2020.101393
Citations: PlumX Metrics


2021RA04      Phys.Rev. C 103, 034309 (2021)

A.Rahmatinejad, A.N.Bezbakh, T.M.Shneidman, G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 296Lv; calculated potential energy contour in the (β20, β22) plane, proton and neutron single-particle spectra along the fission paths using the Woods-Saxon potential diagonalization. 292Fl, 296Lv, 300120; calculated energy dependencies of the ground-state and saddle-point level-density parameters. A=277-302; calculated mass number dependence of the asymptotic ground state and saddle-point level-density parameters. 282,283,284,285,286,287,288,289,290,291,292Fl; calculated ratios of the level density parameters at the saddle point and ground state. 236U, 240Pu; calculated dependence of fission probability on excitation energy for the fissioning nuclei. 293,294,295,296,297Ts, 295,296,297,298,299,300,301,302120; calculated ratios of the level density parameter of the mother nucleus at the saddle point to that of the daughter nucleus after neutron separation at the ground state. 278Cn, 294Og, 296,298120; calculated dependence of neutron emission probability on excitation energy. Level density parameter calculated by fitting the obtained results with the standard Fermi gas expression.

doi: 10.1103/PhysRevC.103.034309
Citations: PlumX Metrics


2020HO13      Phys.Lett. B 809, 135760 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Possibilities of direct production of superheavy nuclei with Z=112-118 in different evaporation channels

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248Cm, 249Bk, 249,252Cf(48Ca, X), E not given; analyzed available data. 276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 286,287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299Og, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 285,286,287,288,289,290,291,292,293,294,295Mc, 291,292,293,294,295,296,297,298Ts; deduced theoretical barriers and energy thresholds n the evaporation channels with emission of proton and alpha-particle.

doi: 10.1016/j.physletb.2020.135760
Citations: PlumX Metrics


2020JA01      Phys.Rev. C 101, 014311 (2020)

P.Jachimowicz, M.Kowal, J.Skalski

Static fission properties of actinide nuclei

NUCLEAR STRUCTURE 226,227,228Ac, 227,228,229,230,231,232,233,234Th, 230,231,232,233,234Pa, 231,232,233,234,235,236,237,238,239,240U, 233,234,235,236,237,238,239Np, 235,236,237,238,239,240,241,242,243,244,245,246Pu, 239,240,241,242,243,244,245,246,247Am, 241,242,243,244,245,246,247,248,249,250Cm, 244,245,246,247,248,249,250Bk, 250,251,252,253Cf; calculated masses of the ground states, first- and second-fission barriers heights, excitation energies of superdeformed (SD) isomeric minima, quadrupole deformation for SD minimum, energy surface contours in (β20, β30) plane for 227Ac, 227,228,229,231,233Th, 235U, 251Cf. Microscopic-macroscopic Woods-Saxon model with State-of-the-art methods. Comparison with experimental data. Discussed the "thorium anomaly".

doi: 10.1103/PhysRevC.101.014311
Citations: PlumX Metrics


2019TU09      Phys.Rev. C 100, 014330 (2019)

A.Tucholski, Ch.Droste, J.Srebrny, C.M.Petrache, J.Skalski, P.Jachimowicz, M.Fila, T.Abraham, M.Kisielinski, A.Kordyasz, M.Kowalczyk, J.Kownacki, T.Marchlewski, P.J.Napiorkowski, L.Prochniak, J.Samorajczyk-Pysk, A.Stolarz, A.Astier, B.F.Lv, E.Dupont, S.Lalkovski, P.Walker, E.Grodner, Z.Patyk

Lifetime of the recently identified 10+ isomeric state at 3279 keV in the 136Nd nucleus

NUCLEAR REACTIONS 120Sn(20Ne, 4n), E=85 MeV; measured Eγ, Iγ, γγ-coin, level half-lives using recoil-distance Doppler shift (RDDS) method with a plunger device using the EAGLE array of 16 HPGe detector at the U-200P cyclotron facility of the Heavy Ion Laboratory in Warsaw. 136Nd; deduced levels, B(E1), B(E2), reduced hindrance factor for the 10+ state at 3279 keV; calculated energy surface contour in (β20, β22) plane, neutron and proton single-particle energies using microscopic-macroscopic approach, based on deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy.

doi: 10.1103/PhysRevC.100.014330
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018BR12      Acta Phys.Pol. B49, 621 (2018)

W.Brodzinski, M.Kowal, J.Skalski, P.Jachimowicz

Fission of SHN and Its Hindrance: Odd Nuclei and Isomers

NUCLEAR REACTIONS 132Ba(58Ni, 58Ni'), E-175 MeV; measured Coulomb excitation Eγ, Iγ, γγ-coin of 132Ba using Gamma Detector Array (GDA); deduced Doppler-shift-corrected γ-ray energy spectrum in coincidence with scattered 58Ni detected in PPAC, γ-ray spectrum in coinc with Ba recoils detected in PPAC, B(E2) values between specified 132Ba states using GSI Object Oriented On-line Off-line (GO4) software package; compared with earlier Coulomb excitation measurements.

doi: 10.5506/aphyspolb.49.621
Citations: PlumX Metrics


2018JA11      Phys.Rev. C 98, 014320 (2018)

P.Jachimowicz, M.Kowal, J.Skalski

Hindered α decays of heaviest high-K isomers

NUCLEAR STRUCTURE 254,256,258,260,262,264,266,268,270,272,274Sg, 256,258,260,262,264,266,268,270,272,274,276Hs, 258,260,262,264,266,268,270,272,274,276,278Ds, 260,262,264,266,268,270,272,274,276,278,280Cn; calculated excitation energy of two-proton, two-neutron, and two-proton plus two-neutron configuration using microscopic-macroscopic approach with the deformed Woods-Saxon potential.

RADIOACTIVITY 260,262,264,266,268,270,272,274,276,278Ds(α); calculated Q(α) values, half-lives of α emitters, α-hindrance factors for decays of ground states and high-K isomers. 262,264,266,268,270,272,274,276,278,280Cn(α); calculated hindrance factors for α transitions between states of the same high-K values; deduced strong hindrance against decay for four-quasiparticle states with high Kπ, and that α-decay hindrances results mainly from the proton 2-qp component. Microscopic-macroscopic approach with the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.98.014320
Citations: PlumX Metrics


2017JA01      Phys.Rev. C 95, 014303 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Adiabatic fission barriers in superheavy nuclei

NUCLEAR STRUCTURE 252Lr, 270Db, 276Mt, 280Cn, 297119, 285122; calculated potential energy surfaces (PES) in (β20, β22) plane. Z=109, A=266-269; Z=110, A=267-272; Z=111, A=268-277; Z=112, A=269-279; Z=113, A=268-281; Z=114, A=269-282; Z=115, A=272-285; Z=116, A=271-285; Z=117, A=274-286; Z=118, A=281-286; Z=119, A=284-290; Z=120, A=285-289; Z=121, A=286-291; Z=122, A=286-291; Z=123, A=289-290; Z=124, A=289-291; calculated mass-asymmetry (reflection-asymmetry) effect on the fission saddle from the minimization (MIN) and from the imaginary water flow method (IWF). Z=119, A=274-281, 289, 291, 293, 294, 295; Z=120, A=276-283; Z=121, A=278-283; Z=122, A=280-286, 291, 292; Z=123, A=282-287, 291, 292; Z=124, A=284-294; Z=125, A=286-295; Z=126, A=288-298; calculated lowering of the saddle by the nonaxial hexadecapole deformation. Z=98, A=232-290; Z=99, A=234-291; Z=100, A=236-292; Z=101, A=238-293; Z=102, A=240-294; Z=103, A=242-295; Z=104, A=244-296; Z=105, A=246-297; Z=106, A=248-298; Z=107, A=250-299; Z=108, A=252-300; Z=109, A=254-301; Z=110, A=256-302; Z=111, A=258-303; Z=112, A=260-304; Z=113, A=262-305; Z=114, A=264-306; Z=115, A=266-307; Z=116, A=268-308; Z=117, A=270-309; Z=118, A=272-310; Z=119, A=274-311; Z=120, A=276-312; Z=121, A=278-313; Z=122, A=280-314; Z=123, A=282-315; Z=124, A=284-316; Z=125, A=286-317; Z=126, A=288-318; calculated fission-barrier heights and isotopic dependence of fission barriers for 1305 heavy and superheavy nuclei. Macroscopic-microscopic method with Woods-Saxon model.

doi: 10.1103/PhysRevC.95.014303
Citations: PlumX Metrics


2017JA06      Phys.Rev. C 95, 034329 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Effect of non-axial octupole shapes in heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=82-126, N=96-192; calculated tetrahedral deformation β32 for about 3000 heavy and superheavy nuclei, energy minima with a nonzero tetrahedral distortion; deduced evidence for combined oblate-plus-β33 g.s. deformation in a restricted region of superheavy nuclei, but no evidence for stable tetrahedral shapes, 219Po, 296123, 305124; calculated energy landscapes in (β20, β22), (β20, β30), and (β20, β32) planes. Microscopic-macroscopic model based on deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.95.034329
Citations: PlumX Metrics


2015JA05      Phys.Rev. C 92, 044306 (2015)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for long-lived high-K ground states in superheavy nuclei

RADIOACTIVITY Z=102-118, N=145-175(α); 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg(α); calculated apparent Qα values, T1/2 for Mt isotopes; predicted high-K ground states in superheavy (SH) nuclei. Macroscopic-microscopic model based on the deformed Woods-Saxon single-particle potential.

NUCLEAR STRUCTURE 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg; predicted high-K ground states in superheavy (SH) nuclei On the basis of systematic calculations for 1364 heavy and superheavy (SH) nuclei. 272Mt; predicted especially promising candidate for long-lived high-K ground state from multidimensional hypercube configuration-constrained calculations of the potential energy surfaces (PESs). Macroscopic-microscopic model based on deformed Woods-Saxon single-particle potential and Yukawa plus exponential macroscopic energy with seven mass-and axially-symmetric deformations, β20, β30, β40, β50, β60, β70 and β80.

doi: 10.1103/PhysRevC.92.044306
Citations: PlumX Metrics


2014JA03      Phys.Rev. C 89, 024304 (2014)

P.Jachimowicz, M.Kowal, J.Skalski

Qa values in superheavy nuclei from the deformed Woods-Saxon model

RADIOACTIVITY 246,247,248,249,250,251,252,253,254,255,256,257,258Md, 251,252,253,254,255,256,257No, 252,253,254,255,256,257,258,260Lr, 255,256,257,258,259,260,261,263Rf, 256,257,258,259,260,261,262,263Db, 259,260,261,262,263,264,265,266,267,268,269,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 267,268,269,270,271,272,273,279Ds, 272,273,274,275,276,277,278,279,280,281,282Rg, 277,278,279,280,281,282,283,284,285Cn, 278,279,280,281,282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 297119(α); calculated Qα, deformation parameters, ground-state configurations, α-decay hindrance. 270Db, 274Bh, 278Mt, 282Rg, 286Nh, 290Mc, 294Ts(α); calculated half-lives. Microscopic-macroscopic model based on deformed Woods-Saxon potential, with pairing treated either by blocking or by adding the BCS energy. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.024304
Citations: PlumX Metrics


2013JA03      Phys.Rev. C 87, 044308 (2013)

P.Jachimowicz, M.Kowal, J.Skalski

Eight-dimensional calculations of the third barrier in 232Th

NUCLEAR STRUCTURE 232Th, 232U; calculated potential energy surfaces, ground state mass excess, first barrier height BI, second barrier height BII and energy of the second minimum EII, third fission barrier height BIII and energy of the third minimum EIII or hyperdeformation. Eight-dimensional hypercube and macroscopic-microscopic model calculations. Comparison with experimental data. Previous experimental report on Hyperdeformation in 232Th needs to be confirmed.

doi: 10.1103/PhysRevC.87.044308
Citations: PlumX Metrics


2012JA08      Phys.Rev. C 85, 034305 (2012)

P.Jachimowicz, M.Kowal, J.Skalski

Secondary fission barriers in even-even actinide nuclei

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246,248Pu, 240,242,244,246,248,250,252Cm, 248,250,252,254Cf; calculated mass excess, microscopic and macroscopic energies, deformation parameters, second fission barriers, surface contours, second minima excitation energies. macroscopic-microscopic model in six-dimensional deformation space for even-even actinides. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034305
Citations: PlumX Metrics


2011JA02      Int.J.Mod.Phys. E20, 514 (2011)

P.Jachimowicz, P.Rozmej, M.Kowal, J.Skalski, A.Sobiczewski

Test of tetrahedral symmetry for heavy and superheavy nuclei

NUCLEAR STRUCTURE 226Th, 232No, 310124; calculated energy landscape, equilibrium values, tetrahedral and global minima.

doi: 10.1142/S0218301311017934
Citations: PlumX Metrics


2011JA03      Phys.Rev. C 83, 054302 (2011)

P.Jachimowicz, M.Kowal, J.Skalski

Superdeformed oblate superheavy nuclei

NUCLEAR STRUCTURE 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120; calculated energy versus quadrupole deformation, half-lives, Qα, single-particle energies, α decay hindrance for superdeformed oblate superheavy nuclei. 288122; calculated energy surface contour. Z=98-126, N=132-192; calculated ground state quadrupole deformation. Microscopic-macroscopic calculations in 12D deformation space, confirmed by Skyrme Hartree-Fock calculations with SLy6 force.

doi: 10.1103/PhysRevC.83.054302
Citations: PlumX Metrics


2010JA01      Int.J.Mod.Phys. E19, 508 (2010)

P.Jachimowicz, M.Kowal, J.Skalski

Competing minima and non-axial saddles in superheavy nuclei

NUCLEAR STRUCTURE Z=116-126, N=176-184; calculated energy landscapes of superheavy nuclei. Woods-Saxon model.

doi: 10.1142/S0218301310014911
Citations: PlumX Metrics


2010JA02      Int.J.Mod.Phys. E19, 768 (2010)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Role of the non-axial octupole deformation in the potential energy of heavy nuclei

NUCLEAR STRUCTURE 228,238Fm; calculated deformation energy; deduced effects of deformation on energy. Macroscopic-microscopic approach.

doi: 10.1142/S0218301310015205
Citations: PlumX Metrics


2010KO23      Phys.Rev. C 82, 014303 (2010)

M.Kowal, P.Jachimowicz, A.Sobiczewski

Fission barriers for even-even superheavy nuclei

NUCLEAR STRUCTURE A=232-318, Z=92-126 (even), N=134-192 (even); calculated fission barriers heights and their contour plots for even-even superheavy nuclei. 120320; calculated potential energy surface plot. Macroscopic-microscopic approach. Comparison with other theoretical calculations and with experimental data.

doi: 10.1103/PhysRevC.82.014303
Citations: PlumX Metrics


2010SO07      Int.J.Mod.Phys. E19, 493 (2010)

A.Sobiczewski, P.Jachimowicz, M.Kowal

Effect of non-axial deformations of higher multipolarity on the fission-barrier height of heaviest nuclei

NUCLEAR STRUCTURE 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312122; calculated potential-energy surfaces, effects of oblate shape on ground state energy.

doi: 10.1142/S0218301310014893
Citations: PlumX Metrics


2009JA06      Int.J.Mod.Phys. E18, 1088 (2009)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Non-axial octupole deformation of a heavy nucleus

doi: 10.1142/S0218301309013300
Citations: PlumX Metrics


Back to query form