NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = N.V.Antonenko

Found 268 matches.

    Showing 1 to 100.


Back to query form

2024AD01      Phys.Rev. C 109, 014602 (2024)

G.G.Adamian, N.V.Antonenko, H.Lenske, V.V.Sargsyan

Application of a universal reaction function to the description of heavy-ion reaction cross sections

doi: 10.1103/PhysRevC.109.014602
Citations: PlumX Metrics

2024DI02      Phys.Lett. B 849, 138476 (2024)

A.Diaz-Torres, L.R.Gasques, N.V.Antonenko

Cluster effects on low-energy carbon burning

NUCLEAR REACTIONS 12C(12C, X)24Mg, 20Ne(α, X)24Mg, E not given; calculated potential, phase shifts, fusion probability using the simplified dynamical coupled-channels method; deduced resonance structures in the fusion probability as a function of the collision energy echo molecular resonances of different cluster configurations of 24Mg.

doi: 10.1016/j.physletb.2024.138476
Citations: PlumX Metrics

2024PA17      Phys.Rev. C 109, 044601 (2024)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Excitation-energy dependence of fission-fragment neutron multiplicity in the improved scission-point model

doi: 10.1103/PhysRevC.109.044601
Citations: PlumX Metrics

2024SE01      Phys.Rev. C 109, 034604 (2024)

W.M.Seif, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Influences of isospin-asymmetry and skin thickness on fusion of oxygen isotopes at stellar energies

doi: 10.1103/PhysRevC.109.034604
Citations: PlumX Metrics

2023KA32      Phys.Rev. C 108, 054612 (2023)

Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko

Excitation functions of evaporation residues in heavy-ion reactions leading to compound nuclei with Z = 80-90

doi: 10.1103/PhysRevC.108.054612
Citations: PlumX Metrics

2023MA47      Phys.Rev. C 108, 044302 (2023)

L.A.Malov, A.N.Bezbakh, G.G.Adamian, N.V.Antonenko, R.V.Jolos

Excitation spectra and electromagnetic transitions between low-lying nonrotational states of odd-proton nuclei with Z = 97 - 109

doi: 10.1103/PhysRevC.108.044302
Citations: PlumX Metrics

2023PA05      Phys.Rev. C 107, 024603 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Excitation-energy dependence of the fission-fragment neutron-excess ratio

RADIOACTIVITY 250Cf(SF); calculated charge and total kinetic energy distributions resulting from fission of 250Cf excited to 46 MeV energy, average number of neutron per one fission fragment. 250Cf, 240Pu(SF); calculated neutron-excess ratio in fragments. Calculation in the framework of scission-point model, where the scission configurations are dinuclear systems with two touching individual nuclei (fragments). Comparison to experimental data on fission of 240Pu [from 12C(238U, 10Be), E*=9 MeV] and 250Cf [from 12C(238U, X), E*=46 MeV].

NUCLEAR REACTIONS 239Pu(n, F), E=0.5 MeV; calculated primary mass distribution, average number of neutrons emitted by one of the fragments. 12C(238U, X)238U*, E*=7.4 MeV; 12C(238U, X)240Pu*, E*=10.7 MeV; 12C(238U, X)244Cm*, E*=23 MeV; 12C(238U, X)250Cf*, E*=46 MeV; calculated neutron-excess ratio in fission fragments, fission fragments charge distribution. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024603
Citations: PlumX Metrics

2023PA21      Phys.Rev. C 108, 014613 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Influence of the transition from symmetric to asymmetric fission mode on the average total kinetic energy and neutron multiplicity

NUCLEAR REACTIONS 235U(n, F), E=thermal;239Pu(n, F), E=0.5 MeV;222,224,226,228,230Th(γ, F), E*=11 MeV; calculated average numbers of neutrons emitted per fission event, neutron multiplicities, charge and mass distributions of fission fragments, average total kinetic energies. Comparison to experimental data.

RADIOACTIVITY 230Th, 236U, 244,252Cf, 240Pu(SF); calculated average numbers of neutrons emitted per fission event, neutron multiplicities, charge and mass distributions of fission fragments, average total kinetic energies. Comparison to experimental data.

NUCLEAR STRUCTURE 236U; calculated potential energy surface for the binary fragmentation.

doi: 10.1103/PhysRevC.108.014613
Citations: PlumX Metrics

2023PA43      Int.J.Mod.Phys. E32, 2340005 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Fission within dinuclear system approach

NUCLEAR STRUCTURE 180,182Hg, 190Hg, 198Hg, 250,251,252,253,254,255,256,257,258Fm, 250,251,252,253,254,255,256,257,258No, Pb, Rn, Th, U, Cf; calculated fission properties with the improved scission-point statistical model based on the dinuclear system approach.

doi: 10.1142/S0218301323400050
Citations: PlumX Metrics

2023SE06      Phys.Rev. C 107, 044601 (2023)

W.M.Seif, A.Adel, N.V.Antonenko, G.G.Adamian

Enhanced α decays to negative-parity states in even-even nuclei with octupole deformation

RADIOACTIVITY 222,224,226,228,230,232Th, 222,224,226Ra, 228,232U, 230Pu(α); calculated branching ratios with and without the inclusion of the hindrance factor to the ground and excited states in daughter nuclei. Described the correlation of static octupole deformation with enhancement of decay to low lying asymmetry states of negative parity. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.044601
Citations: PlumX Metrics

2022AD08      Eur.Phys.J. A 58, 111 (2022)

G.G.Adamian, N.V.Antonenko

Optimal ways to produce heavy and superheavy nuclei

NUCLEAR REACTIONS 248Cm(26Mg, X), (25Mg, X), 244Pu(30Si, X), 238U(36S, X), (34S, X), 226Ra(48Ca, X), 249Cf(22Ne, X), 232Th(40Ar, X), E not given; calculated σ for xn evaporation channels. Comparison with experimental data.

doi: 10.1140/epja/s10050-022-00764-0
Citations: PlumX Metrics

2022AN23      Eur.Phys.J. A 58, 211 (2022)

N.V.Antonenko, G.G.Adamian, V.V.Sargsyan, H.Lenske

Double-folding nucleus-nucleus interaction potential based on the self-consistent calculations

NUCLEAR STRUCTURE 16O, 40,48Ca; calculated self-consistent HFB nucleon-density distributions.

NUCLEAR REACTIONS 12C, 16O, 30Si(12C, X), 16O(16O, X), 28Si, 30Si(28Si, X), 30Si, 24Mg(30Si, X), 40Ca(40Ca, X), 48Ca, 36S(48Ca, X), 36S(64Ni, X), E not given; analyzed available data; deduced the centroids of the experimental barrier distributions for self-consistently defined nucleus–nucleus potentials.

doi: 10.1140/epja/s10050-022-00865-w
Citations: PlumX Metrics

2022BE15      Phys.Rev. C 105, 054305 (2022)

A.N.Bezbakh, G.G.Adamian, N.V.Antonenko

Role of spin-orbit strength in the prediction of closed shells in superheavy nuclei

NUCLEAR STRUCTURE 279,280,281,282,283,284Cn, 283,284,285,286,288Fl, 287,288,289,290,291,292Lv, 291,292,293,294,295,296118, 295,296,297,298,299,300,302,304120, 299,300,301,302,303,304122, 303,304,305,306,307,308124, 307,308,309,310,311,312126; calculated shell corrections. 251Cf, 243Cm, 243Bk, 251Es; calculated levels, J, π, spectra of low-lying one-quasineutron states. Modified two-center shell model (TCSM). Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054305
Citations: PlumX Metrics

2022BE35      Phys.Part. and Nucl.Lett. 19, 454 (2022)

A.N.Bezbakh, G.G.Adamian, N.V.Antonenko

Influence of Spin-Orbit Strength in Superheavy Nuclei

RADIOACTIVITY 295,297,299,302,304120(α); calculated values of shell corrections using the modified two-center shell model (TCSM); deduced strong shell effect for Z=120-126 and N=184.

doi: 10.1134/S1547477122050119
Citations: PlumX Metrics

2022HO12      Phys.Rev. C 106, 014614 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Isthmus connecting mainland and island of stability of superheavy nuclei

NUCLEAR REACTIONS 245,248Cm, 242,244Pu, 238U, 232Th, 226Ra(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=10-70 MeV; calculated σ(E), excitation functions. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.014614
Citations: PlumX Metrics

2022HO13      Eur.Phys.J. A 58, 180 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Hot and cold fusion reactions leading to the same superheavy evaporation residue

NUCLEAR REACTIONS 233,235U(48Ca, X)277Cn, E not given; calculated σ; deduced the possibility of filling the gap between the isotopes of superheavy nuclei with Z=112 produced in cold and hot fusion reactions. Comparison with available data.

doi: 10.1140/epja/s10050-022-00826-3
Citations: PlumX Metrics

2022MA46      Phys.Rev. C 106, 034302 (2022)

L.A.Malov, A.N.Bezbach, G.G.Adamian, N.V.Antonenko, R.V.Jolos

Electromagnetic transitions between low-lying nonrotational states of odd-neutron nuclei in α-decay chains starting from 265, 267, 269Hs

RADIOACTIVITY 265,267,269Hs(α); analyzed levels, J, π, reduced γ-transition probabilities of the excited states in α-decay chains of 265,267,269Hs to daughter nuclei up to Fm nuclei using quasiparticle-phonon model.

NUCLEAR STRUCTURE 265,267,269Hs, 261,263,265Sg, 257,259,261Rf, 253,255,257No, 249,251,253Fm; calculated levels, J, π, B(E1), B(M1), B(E2), B(E3) using quasiparticle-phonon model.

doi: 10.1103/PhysRevC.106.034302
Citations: PlumX Metrics

2022RA06      Phys.Rev. C 105, 044328 (2022)

A.Rahmatinejad, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Energy dependent ratios of level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 282,283,284,285,286,287,288,289,290,291,292,293,294,295Mc, 283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 291,292,293,294,295,296,297,298Ts, 291,292,293,294,295,296,297,298,299Og, 292Fl, 295,296,297,298,299,300119, 295,296,297,298,299,300,301,302120; calculated intrinsic nuclear level densities, energy-dependent level-density parameters, energy-dependent ratios of level-density parameters corresponding to the nuclei at the fission saddle point and to proton and α-particle emission residues at their ground state to those obtained for the daughter nuclei after neutron emission. Thermodynamic superfluid formalism using the single-particle energies obtained from the diagonalization of the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.105.044328
Citations: PlumX Metrics

2022RO07      Phys.Rev. C 105, 034619 (2022)

I.S.Rogov, G.G.Adamian, N.V.Antonenko

Spontaneous fission hindrance in even-odd nuclei within a cluster approach

RADIOACTIVITY 242,243,244,245,246Cm, 242,243,244,245,246,253,254,255,256,257,258Fm, 254,255,256,257,258Rf, 235U, 239,241Pu(α)(SF); calculated T1/2. Dinuclear system cluster approach. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.034619
Citations: PlumX Metrics

2022SA02      Phys.Lett. B 824, 136792 (2022)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, H.Lenske

Constraints on the appearance of a maximum in astrophysical S-factor

NUCLEAR REACTIONS 12C, 16O, 30Si(12C, X), 16O(16O, X), 28,30Si(28Si, X), (30Si, X), 30Si(24Mg, X), 40Ca(40Ca, X), 48Ca(48Ca, X), (36S, X), 64Ni(36S, X), E not given; analyzed available data; deduced σ, S-factors.

doi: 10.1016/j.physletb.2021.136792
Citations: PlumX Metrics

2022SH31      Phys.Rev. C 106, 014310 (2022)

T.M.Shneidman, N.Minkov, G.G.Adamian, N.V.Antonenko

Effect of Coriolis mixing on lifetime of isomeric states in heavy nuclei

NUCLEAR STRUCTURE 249Cm, 251Cf, 253Fm, 255No, 257Rf; calculated one-quasiparticle spectra, levels, J, π, Nilsson configurations using the two-center shell model (TCSM), and axially symmetric deformed shell model, matrix elements for the Coriolis interaction between different quasiparticle states, components contributing to the wave functions of second 7/2+ states, energy interval between the two lowest 7/2+ states, B(E2), B(M1), half-lives of the 7/2+ isomeric states; deduced that Coriolis mixing leads to the enhanced quadrupole transition rate from the isomeric state in 251Cf, and reduced half-life of its lowest isomeric state. Comparison with available experimental data.

doi: 10.1103/PhysRevC.106.014310
Citations: PlumX Metrics

2021AD07      Eur.Phys.J. A 57, 89 (2021)

G.G.Adamian, N.V.Antonenko, H.Lenske, L.A.Malov, S.-G.Zhou

Self-consistent methods for structure and production of heavy and superheavy nuclei

RADIOACTIVITY 295119, 295,297120(α); calculated Q-values, T1/2. Compared with available experimental data.

doi: 10.1140/epja/s10050-021-00375-1
Citations: PlumX Metrics

2021HO08      Phys.Rev. C 103, L041601 (2021)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Rate of decline of the production cross section of superheavy nuclei with Z = 114-117 at high excitation energies

NUCLEAR REACTIONS 242,244Pu(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=10-65 MeV; 242,244Pu, 243Am, 248Cm, 249Bk(48Ca, 5n), (48Ca, 6n), (48Ca, 7n), (48Ca, 8n), (48Ca, 9n), E*=40-120 MeV; calculated σ(E) using microscopic-macroscopic (MM) method, and compared with available experimental data for superheavy nuclei (SHN).

NUCLEAR STRUCTURE 290Ts; calculated potential energy surface (PES) in (β20, β22) plane. 286,287,288,289,290,291,292,293,294,295,296,297,298Fl, 287,288,289,290,291,292,293,294,295,296,297,298,299Mc, 288,289,290,291,292,293,294,295,296,297,298,299,300Lv, 289,290,291,292,293,294,295,296,297,298,299,300,301Ts; calculated fission barriers and S(n) using microscopic-macroscopic (MM) method, and standard BCS method with blocking for nuclei with odd numbers of protons, neutrons, or both.

doi: 10.1103/PhysRevC.103.L041601
Citations: PlumX Metrics

2021MA47      Phys.Rev. C 104, L011304 (2021)

L.A.Malov, G.G.Adamian, N.V.Antonenko, H.Lenske

Shaping the archipelago of stability by the competition of proton and neutron shell closures

NUCLEAR STRUCTURE Z=112-126, N=170-190; calculated ground-state shell correction energies. 298,300,302,304120; calculated ground-state shell correction energies in the nuclei of α-decay chains. 288Fl, 304120; predicted as doubly-magic nuclei after 208Pb. Self-consistent energy-density functional (EDF) theory plus-HFB theory in the framework of microscopic-macroscopic method. Comparison to other theoretical approaches.

doi: 10.1103/PhysRevC.104.L011304
Citations: PlumX Metrics

2021MA82      Phys.Rev. C 104, 064303 (2021)

L.A.Malov, G.G.Adamian, N.V.Antonenko, H.Lenske

Landscape of the island of stability with self-consistent mean-field potentials

NUCLEAR STRUCTURE 272Ds; calculated ratio of density-dependent mass and mass of nucleus for proton and neutrons of the spherical nucleus 272Ds. 288Fl, 292Lv, 300120; calculated energy dependencies of the ground-state level-density parameters using mean-field potentials. 243Cm, 251Cf; calculated energies of low-lying one-quasineutron states using phenomenological Woods-Saxon (WS) potentials. 247Bk, 251Es; calculated energies of low-lying one-quasiproton states using phenomenological Woods-Saxon (WS) potentials. 295119, 291Ts, 287Mc, 283Nh, 279Rg; 297120, 293Og, 289Lv, 285Fl, 281Cn; 295120, 291Og, 287Lv, 283Fl, 279Cn; 299120, 295Og, 291Lv, 287Fl, 283Cn; calculated energies, J, π of low-lying one-quasiproton states for α decay chains of 295119 and 295,297,299120. 295119, 291Ts, 287Mc, 283Nh, 279Rg; 296120, 292Og, 288Lv, 284Fl, 280Cn; 297120, 293Og, 289Lv, 285Fl, 281Cn; 295120, 291Og, 287Lv, 283Fl, 279Cn; 299120, 295Og, 291Lv, 287Fl, 283Cn; 301120, 297Og, 293Lv, 289Fl, 285Cn; 304120, 300Og, 296Lv, 292Fl, 288Cn; calculated ground-state shell correction energies for α decay chains of 295119 and 295,296,297,299,301,304120. 286,290Fl, 296,300120; calculated potential energy surfaces in (β2, β4) planes. Microscopic-macroscopic method to calculate the ground-state shell corrections in superheavy nuclei, incorporating effective nucleon mass from the noncovariant energy-density functionals, with Schrodinger-equivalent central and spin-orbit mean-field potentials. Relevance to island of stability of superheavy nuclei and shape coexistence in superheavy nuclei and effect on spectrum of α decay. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.064303
Citations: PlumX Metrics

2021PA27      Phys.Rev. C 104, 014604 (2021)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Simultaneous description of charge, mass, total kinetic energy, and neutron multiplicity distributions in fission of Th and U isotopes

NUCLEAR REACTIONS 222,226,230Th, 230,234U(γ, F), E*=11 MeV; calculated charge, mass, total kinetic energy (TKE), and neutron multiplicity distributions of fission fragments, and correlations between these parameters using the improved scission-point model in the general framework of dinuclear system (DNS) model; deduced influence of transition from symmetric to asymmetric fission mode. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.014604
Citations: PlumX Metrics

2021RA04      Phys.Rev. C 103, 034309 (2021)

A.Rahmatinejad, A.N.Bezbakh, T.M.Shneidman, G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 296Lv; calculated potential energy contour in the (β20, β22) plane, proton and neutron single-particle spectra along the fission paths using the Woods-Saxon potential diagonalization. 292Fl, 296Lv, 300120; calculated energy dependencies of the ground-state and saddle-point level-density parameters. A=277-302; calculated mass number dependence of the asymptotic ground state and saddle-point level-density parameters. 282,283,284,285,286,287,288,289,290,291,292Fl; calculated ratios of the level density parameters at the saddle point and ground state. 236U, 240Pu; calculated dependence of fission probability on excitation energy for the fissioning nuclei. 293,294,295,296,297Ts, 295,296,297,298,299,300,301,302120; calculated ratios of the level density parameter of the mother nucleus at the saddle point to that of the daughter nucleus after neutron separation at the ground state. 278Cn, 294Og, 296,298120; calculated dependence of neutron emission probability on excitation energy. Level density parameter calculated by fitting the obtained results with the standard Fermi gas expression.

doi: 10.1103/PhysRevC.103.034309
Citations: PlumX Metrics

2021RO20      Phys.Rev. C 104, 034618 (2021)

I.S.Rogov, G.G.Adamian, N.V.Antonenko

Cluster approach to spontaneous fission of even-even isotopes of U, Pu, Cm, Cf, Fm, No, Rf, Sg, and Hs

RADIOACTIVITY 230,232,234,236,238U, 236,238,240,242,244Pu, 234,236,238,240,242,244,246,248Cm, 238,240,242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256,258Fm, 252,254,256,258,260No, 256,258,260,262Rf, 258,260,262,264,266,268,270,272Sg, 264,266,268,270,272,274Hs(α), (SF); calculated half-lives, and decay Q values. 232U(24Ne); 234U(26Ne); 236U, 238Pu(28Mg), (30Mg); 238Pu(32Si); 242Cm(34S); calculated half-lives for cluster decays. Dinuclear system (DNS) model with cluster approach. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.034618
Citations: PlumX Metrics

2021SE11      Phys.Rev. C 104, 014317 (2021)

W.M.Seif, G.G.Adamian, N.V.Antonenko, A.S.Hashem

Correlations of α-decay properties and isospin-asymmetry

NUCLEAR STRUCTURE Z=22-118, N=24-178; N-Z=2-60; calculated neutron skin thicknesses as a function of neutron number N and angular momentum, α-decay half-lives versus Q(α) for even-even α emitters; deduced correlations between the properties of α decay of even-even nuclei and their isospin asymmetry N-Z. Self-consistent Skyrme Hartree-Fock-Bogoliubov (SHFB) model.

doi: 10.1103/PhysRevC.104.014317
Citations: PlumX Metrics

2020AD03      Eur.Phys.J. A 56, 47 (2020)

G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, S.Heinz

How to extend the chart of nuclides?

doi: 10.1140/epja/s10050-020-00046-7
Citations: PlumX Metrics

2020AD06      Phys.Rev. C 101, 034301 (2020)

G.G.Adamian, N.V.Antonenko, H.Lenske, L.A.Malov

Predictions of identification and production of new superheavy nuclei with Z=119 and 120

ATOMIC MASSES 275,276,277,278,279,280,281,282Ds, 279,280,281,282,283,284,285,286Cn, 281,282,283,284,285,286,287,288,289,290,291,292Fl, 287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299,300,301,302Og, 293,294,295,296,297,298,299,300,301,302120, 279,280,281,282,283Rg, 283,284,285,286,287Nh, 287,288,289,290,291Mc, 291,292,293,294,295Ts, 295,296,297,298,299,300,301119; calculated atomic masses, Q(α). Microscopic-macroscopic method with Woods-Saxon potential extracted from the HFB self-consistent consideration. Comparison with other theoretical calculations.

NUCLEAR STRUCTURE 279Rg, 283Nh, 287Mc, 291Ts, 295119, 275,277Ds, 279,281Cn, 283,285Fl, 287,289Lv, 291,293Og, 295,297120; calculated low-lying levels, J, π, ground-state shell corrections, Q(α) for the nuclei of α-decay chains of 295119, 295120, and 297120. Microscopic-macroscopic method with Woods-Saxon potential extracted from the HFB self-consistent consideration. Comparison with experimental values, and with other theoretical calculations.

NUCLEAR REACTIONS 238U, 244Pu, 248Cm, 249Cf(48Ca, X), (50Ti, X), 238U, 244Pu, 248Cm, (54Cr, X), 238U, 244Pu(58Fe, X), 238U(64Ni, X), 248,249,250,251Cf(48Ti, X), (50Ti, X), 244,245,246,247,248Cm(54Cr, X), 235,236,237,238U, 247,248,249Bk(50Ti, X), E not given; calculated Q-values, evaporation residue production cross sections of superheavy elements. DNS fusion model.

doi: 10.1103/PhysRevC.101.034301
Citations: PlumX Metrics

2020BE26      Bull.Rus.Acad.Sci.Phys. 84, 943 (2020)

A.N.Bezbakh, A.Rahmati Nejad, T.M.Shneidman, N.V.Antonenko

Level Densities of Nuclei with Z = 112-120

NUCLEAR STRUCTURE Z=112-120; calculated level densities of superheavy nuclei using single-particle spectra obtained in a macroscopic and microscopic model based on the Woods–Saxon single-particle potential.

doi: 10.3103/S1062873820080092
Citations: PlumX Metrics

2020HO07      Phys.Lett. B 805, 135438 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko

Could new isotopes of superheavies with Z=112-118 be produced in 48Ca-induced cold fusion reactions?

NUCLEAR REACTIONS 238U, 237Np, 239,240,242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X), E not given; calculated σ forthe production of new heaviest isotopes of the SHN with charge numbers 112-118 1-n and 2-n evaporation channels. Comparison with experimental data.

doi: 10.1016/j.physletb.2020.135438
Citations: PlumX Metrics

2020HO13      Phys.Lett. B 809, 135760 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Possibilities of direct production of superheavy nuclei with Z=112-118 in different evaporation channels

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248Cm, 249Bk, 249,252Cf(48Ca, X), E not given; analyzed available data. 276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 286,287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299Og, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 285,286,287,288,289,290,291,292,293,294,295Mc, 291,292,293,294,295,296,297,298Ts; deduced theoretical barriers and energy thresholds n the evaporation channels with emission of proton and alpha-particle.

doi: 10.1016/j.physletb.2020.135760
Citations: PlumX Metrics

2020KA43      Phys.Rev. C 102, 024612 (2020)

Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko, H.M.Devaraja, S.Heinz

Production of neutron deficient isotopes in the multinucleon transfer reaction 48Ca(Elab = 5.63 MeV / nucleon) + 248Cm

NUCLEAR REACTIONS 248Cm(48Ca, X), E=5.63 MeV/nucleon; calculated production cross sections of primary and secondary fragments produced in multinucleon transfer reaction, and excitation energies of primary products using dinuclear system (DNS) model. Comparison with experimental data from SHIP separator at GSI.

doi: 10.1103/PhysRevC.102.024612
Citations: PlumX Metrics

2020MU05      Phys.Rev. C 101, 044602 (2020)

M.-H.Mun, K.Kwak, G.G.Adamian, N.V.Antonenko

Possible production of neutron-rich No isotopes

NUCLEAR REACTIONS 248,249,250,251Cf, 254Es(36S, X), (40Ar, X), (48Ca, X), (50Ti, X), 258No/259No/260No/261No/262No/263No/264No/265No/266No, E(cm)=150-230 MeV; 249,250,251Cf, (48Ca, X), Q=48-70 MeV; 254Es(36S, X), (40Ar, X), (48Ca, X), (50Ti, X), Q=30-55 MeV; calculated production σ(E) in zero-neutron and one-neutron evaporation channels. Comparison of production yields of No and Md isotopes. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.101.044602
Citations: PlumX Metrics

2020PA22      Phys.Rev. C 101, 064604 (2020)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Examination of coexistence of symmetric mass and asymmetric charge distributions of fission fragments

NUCLEAR REACTIONS 144Sm(36Ar, F)180Hg*, E*=33.4, 48, 65.8 MeV; 142Nd(40Ca, F)182Hg*, E*=33, 58, 75 MeV; 154Sm(36Ar, F)190Hg*, E*=56, 62.4, 70.5 MeV; 194Pt(α, F)198Hg*, E*=49 MeV; 154Sm(48Ca, F)202Pb*, E*=49, 57, 95 MeV; calculated mass and charge distributions, potential energies and deformations of fission fragments from fission of compound nuclei in excited states using the improved scission-point model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.101.064604
Citations: PlumX Metrics

2020RA07      Phys.Rev. C 101, 054315 (2020)

A.Rahmatinejad, T.M.Shneidman, N.V.Antonenko, A.N.Bezbakh, G.G.Adamian, L.A.Malov

Collective enhancements in the level densities of Dy and Mo isotopes

NUCLEAR STRUCTURE 94,96,98Mo, 160,162,164Dy; calculated β2 and β4 deformation parameters, shell corrections, pairing energies, neutron-, and proton-pairing gaps in the ground states, intrinsic level densities, energy dependent level densities, critical temperatures and corresponding critical energies, spin cut-off parameters, number of collective levels, and collective enhancement factors using the superfluid model with single-particle energies from the quasiparticle-phonon model (QPM) and Woods-Saxon potential. Comparison with experimental densities.

doi: 10.1103/PhysRevC.101.054315
Citations: PlumX Metrics

2020RO11      Phys.Atomic Nuclei 83, 15 (2020)

I.S.Rogov, N.V.Antonenko, G.G.Adamian, T.M.Shneidman

Effect of the Nucleon-Density Distribution on the Description of Nuclear Decay

doi: 10.1134/S1063778820010123
Citations: PlumX Metrics

2020RO13      Nucl.Phys. A1002, 121995 (2020)

I.S.Rogov, G.G.Adamian, N.V.Antonenko, T.M.Shneidman, H.Lenske

Nucleon density distribution in description of nuclear decays

NUCLEAR STRUCTURE 44Ti; analyzed available data; calculated spectroscopic factors.

RADIOACTIVITY 236,238U(α), (SF); analyzed self-consistently calculated nucleon density distributions; deduced T1/2.

doi: 10.1016/j.nuclphysa.2020.121995
Citations: PlumX Metrics

2020SA05      Eur.Phys.J. A 56, 19 (2020)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, H.Lenske

Extended quantum diffusion approach to reactions of astrophysical interests

doi: 10.1140/epja/s10050-019-00009-7
Citations: PlumX Metrics

2019MU09      Phys.Rev. C 99, 054627 (2019)

M.-H.Mun, K.Kwak, G.G.Adamian, N.V.Antonenko

Possible production of neutron-rich Md isotopes in multinucleon transfer reactions with Cf and Es targets

NUCLEAR REACTIONS 254Es(14C, X)258Md/259Md/260Md/261Md/262Md, E(cm)=60-80 MeV; 254Es(18O, X)258Md/259Md/260Md/261Md/262Md, E(cm)=80-95 MeV; 254Es(22Ne, X)258Md/259Md/260Md/261Md/262Md, E(cm)=100-120 MeV; 254Es(26Mg, X)258Md/259Md/260Md/261Md/262Md, E(cm)=115-140 MeV; 254Es(30Si, X)258Md/259Md/260Md/261Md/262Md, E(cm)=130-160 MeV; 254Es(36S, X)258Md/259Md/260Md/261Md/262Md, E(cm)=155-165 MeV; 254Es(40Ar, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md, E(cm)=170-210 MeV; 254Es(40Ar, X)258Md/259Md/260Md/261Md/262Md/263Md, E(cm)=210-230 MeV; 249Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md, E(cm)=200-210 MeV; 250Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md, E(cm)=200-210 MeV; 251Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md, E(cm)=195-212.5 MeV; 252Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md, E(cm)=195-212.5 MeV; calculated total capture σ(E), maximal production σ(E) for zero- and one-neutron evaporation channels of multinucleon transfer reactions. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.99.054627
Citations: PlumX Metrics

2019PA36      Phys.Rev. C 99, 064611 (2019)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Change of the shape of mass and charge distributions in fission of Cf isotopes with excitation energy

RADIOACTIVITY 250,252,254,256Cf(SF); calculated fission fragment mass and charge distributions using the improved scission-point model. Comparison with experimental data.

NUCLEAR REACTIONS 249Cf(n, F), E=thermal; 248,250,252,254,256Cf; induced fission at excitation energies of 0, 15, 25, 35, 45, 46, 55, 65 MeV; calculated fission fragment mass and charge distributions, scission configurations, average light fragment mass and charge, and peak to valley ratio of fission fragment mass and charge distributions. Statistical scission-point fission model.

doi: 10.1103/PhysRevC.99.064611
Citations: PlumX Metrics

2019RO15      Phys.Rev. C 100, 024606 (2019)

I.S.Rogov, G.G.Adamian, N.V.Antonenko

Dynamics of a dinuclear system in charge-asymmetry coordinates: α decay, cluster radioactivity, and spontaneous fission

RADIOACTIVITY 232,234,236U, 236,238Pu, 242Cm, 248Cf, 242Cm, 248Cf(24Ne), (28Mg), (34Si), (40S), (46Ar); 248Cf(50Ca); 242Cm, 248Cf(α), (10Be), (11B), (14C), (15N), (20O), (23F), (24Ne), (27Na), (28Mg), (31Al), (34Si), (35P), (40S), (41Cl), (46Ar), (47K), (48Ca), (51Sc), (56Ti), (57V), (58Cr), (61Mn); 232U(24Ne); 234U(26Ne), (28Mg); 236U(30Mg); 232,234,236U(α), (SF); 236Pu(α), (SF), (28Mg); 242Cm(α), (SF), (34Si); 238Pu(α), (SF), (30Mg), (23Si); 248Cf(α), (SF), (40S); calculated half-lives using dinuclear system model, and compared with available experimental results.

doi: 10.1103/PhysRevC.100.024606
Citations: PlumX Metrics

2019SA65      Acta Phys.Pol. B50, 507 (2019)

V.V.Sargsyan, H.Lenske, G.G.Adamian, N.V.Antonenko

From Dinuclear Systems to Close Binary Stars: Application to Mass Transfer

doi: 10.5506/aphyspolb.50.507
Citations: PlumX Metrics

2018AD02      Nucl.Phys. A970, 22 (2018)

G.G.Adamian, N.V.Antonenko, H.Lenske

Estimates of production and structure of nuclei with Z = 119

NUCLEAR REACTIONS 246,247,248Cm(51V, γ), (51V, xn), E not given;247,248,249Bk(50Ti, γ), (50Ti, xn), E not given; calculated 295119 hot fusion Q, Qα, evaporation residue σ using TCSM (Two-Center Shell Model), α-decay chain.

doi: 10.1016/j.nuclphysa.2017.11.001
Citations: PlumX Metrics

2018AD05      Phys.Rev. C 97, 034308 (2018)

G.G.Adamian, L.A.Malov, N.V.Antonenko, R.V.Jolos

Nonrotational states in isotonic chains of heavy nuclei

NUCLEAR STRUCTURE 251Es; calculated energies of single-neutron and proton levels. 251No, 253Fm, 286Fl; calculated potential energy contour in (β2, β4) plane. 243,245,247,249,251Cm, 245,247,249,251,253,255Cf, 249,251,253,255,257,259Fm, 251,253,255,257,259No, 255,257,259,261Rf, 259,261,263,265Sg, 263,265,267,269Hs; calculated equilibrium deformation parameters β2 and β4, ground states, levels, J, π. Microscopic-macroscopic approach using the single-particle Woods-Saxon potential of the quasiparticle-phonon model. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.034308
Citations: PlumX Metrics

2018AD21      Eur.Phys.J. A 54, 170 (2018)

G.G.Adamian, L.A.Malov, N.V.Antonenko, H.Lenske, K.Wang, S.-G.Zhou

Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method

doi: 10.1140/epja/i2018-12603-6
Citations: PlumX Metrics

2018KA14      Eur.Phys.J. A 54, 6 (2018)

Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko, D.Lacroix, J.P.Wieleczko

Light charged particle multiplicities in fusion and quasifission reactions

NUCLEAR REACTIONS 100Mo(32S, x), E=200 MeV;27Al(121Sb, x), E=905, 1030 MeV;Ag(40Ar, x), E=247, 337 MeV;164Dy(40Ar, x), E=340 MeV; calculated evaporation residue σ, capture σ, fusion-fission σ, p- and α-multiplicity vs incident energy using dinuclear system model. Compared with data.

doi: 10.1140/epja/i2018-12452-3
Citations: PlumX Metrics

2018MA38      Bull.Rus.Acad.Sci.Phys. 82, 691 (2018)

M.L.Markova, T.M.Shneidman, N.V.Antonenko, T.Yu.Tretyakova

Effect of Coriolis Interaction on the Decay of Isotones with N = 149 and N = 153

NUCLEAR STRUCTURE 243,247Pu, 245,249Cm, 247,251Cf, 249,253Fm, 251,255No, 253,257Rf; calculated single-particle energy spectra, J, π, deformation of odd isotones with N=149, 153 using Two-Center Shell Model (TCSM) with K-mixing of the basis wave functions and inclusion of the Coriolis correction; deduced estimates for the B(E2) transitions to the gs, T1/2 of the isotones.

doi: 10.3103/S1062873818060187
Citations: PlumX Metrics

2018PA01      Nucl.Phys. A969, 226 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Transitions between symmetric and asymmetric modes in the region of heavy actinides

RADIOACTIVITY 242,244,246,248,250,250,252,254,256Cf, 250,252,254,256Fm, 250,252,254No(SF); calculated fragment mass distributions, fragment charge distribution. Compared with available data. Scission point fission model.

doi: 10.1016/j.nuclphysa.2017.10.001
Citations: PlumX Metrics

2018PA14      Phys.Rev. C 97, 034621 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

RADIOACTIVITY 254,256,258,260,264Fm, 258,260,262,264No, 262,264,266Rf(SF); calculated mass and charge distribution of fission fragments using statistical scission-point fission model. Comparison with available experimental data.

NUCLEAR REACTIONS 254,256,258,260,264Fm(n, F), E=thermal; calculated mass and charge distribution of fission fragments. 254,256,258,260,264Fm; induced fission at excitation energies of 15, 25, 35, 50 MeV; 258,260,262,264No; induced fission at excitation energies of 25, 50 MeV; 262,264,266Rf; induced fission at excitation energies of 20, 50 MeV; calculated mass and charge distribution of fission fragments. Statistical scission-point fission model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.034621
Citations: PlumX Metrics

2018PA25      Phys.Rev. C 98, 014624 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko, D.Lacroix

Toward an understanding of the anomaly in charge yield of Mo and Sn fragments in the fission reaction 238U (n, f)

NUCLEAR REACTIONS 238U(n, F), E=1.5, 1.97, 2.7 MeV; calculated yields of fission fragments with Z=30-62 using improved scission-point model. Comparison with experimental data, and with GEF theoretical predictions. Discussed possible explanation for anomaly in charge yields of Mo and Sn fragments.

doi: 10.1103/PhysRevC.98.014624
Citations: PlumX Metrics

2018PA32      Eur.Phys.J. A 54, 104 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Suggestion for examination of a role of multi-chance fission

NUCLEAR REACTIONS 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated fragment mass distribution without employing multi-chance fission assumption. Compared to data.

RADIOACTIVITY 218,220,222,224,226,228Th, 240U, 244Pu(SF); calculated (excited nuclei, E*=15-60 MeV) fission fragments charge, mass distribution without employing multi-chance fission assumption. Compared to data. 240U(SF); calculated (excited nucleus, E*=55 MeV) fission fragments charge, mass distribution considering multi-chance fission assumption. Compared to data.

doi: 10.1140/epja/i2018-12545-y
Citations: PlumX Metrics

2018PA35      Nucl.Phys. A977, 1 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Induced fission modes of Fermium and Nobelium isotopes

NUCLEAR REACTIONS 254,256,258,260Fm(n, f), E=thermal, E*=15 MeV;254,256,258,260Fm260(SF);262,264No(n, f), E=thermal, E*=25, 50 MeV;262,264No(SF); calculated mass distribution using spontaneous and thermal-neutron-induce fission model. Compared with available data.

doi: 10.1016/j.nuclphysa.2018.05.008
Citations: PlumX Metrics

2018PA50      Nucl.Phys. A980, 143 (2018)

H.Pasca, Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko

Influence of the entrance channel on spins of complex fragments in binary reactions

doi: 10.1016/j.nuclphysa.2018.10.060
Citations: PlumX Metrics

2017AD13      Acta Phys.Pol. B48, 441 (2017)

G.G.Adamian, N.V.Antonenko, A.N.Bezbakh, R.V.Jolos, L.A.Malov, K.Wang, S.-G.Zhou, H.Lenske

Influence of Properties of Superheavy Nuclei on Their α Decays

RADIOACTIVITY 288Mc, 291,293Ts(α); calculated α-decay chains, Qα, mass excess, levels, J, π, T1/2 using microscopic-macroscopic approach based on TCSM (Two-Center Shell Model).

NUCLEAR STRUCTURE 291Ts, 287Mc, 283Nh, 279Rg, 275Mt, 271Bh, 267Db, 253Lr, 259Md, 293Ts, 289Mc, 285Nh, 281Rg, 277Mt, 273Bh, 269Db, 265Lr, 261Md, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db; calculated low-lying one-quasiparticle levels, J, π, Qα, mass excess.284Nh, 288Mc(α); calculated α-decay scheme (288Mc to 284Nh, 284Nh to 280Rg) using TCSM (Two-Center Shell Model).

doi: 10.5506/APhysPolB.48.441
Citations: PlumX Metrics

2017AD29      Phys.Rev. C 96, 044310 (2017)

G.G.Adamian, N.V.Antonenko, L.A.Malov, H.Lenske

Examination of production and properties of 268-271Hs

NUCLEAR REACTIONS 249Cf(22Ne, 3n)268Hs, ECN=35.2 MeV; 249Cf(22Ne, 4n)267Hs, ECN=46 MeV; 248Cm(26Mg, 3n)271Hs, ECN=33.4 MeV; 248Cm(26Mg, 4n)270Hs, ECN=44.8 MeV; 248Cm(26Mg, 5n)269Hs, ECN=50.8 MeV; 244Pu(30Si, 3n)271Hs, ECN=33.4 MeV; 244Pu(30Si, 4n)270Hs, ECN=46 MeV; 244Pu(30Si, 5n)269Hs, ECN=51.4 MeV; 238U(36S, 3n)271Hs, ECN=34.6 MeV; 238U(36S, 4n), 270Hs, ECN=43.6 MeV; 238U(36S, 3n)269Hs, ECN=49.6 MeV; 226Ra(48Ca, 3n)271Hs, ECN=32.8 MeV; 226Ra(48Ca, 4n)270Hs, ECN=38.8 MeV; calculated production σ using dinuclear system model (DNS), and compared with available experimental data.

NUCLEAR STRUCTURE 245Pu, 249,252,253Fm, 256,257,259No, 260,261,262,263Rf, 264,265,266,267Sg, 268,269,270,271Hs, 272,273Ds, 277Cn; calculated levels, K- and shape isomers, J, π using microscopic-macroscopic model, and compared with experimental values. 248Fm; calculated quadrupole and hexadecapole deformation parameters as function of elongation parameter in the two-center shell model. 269,270,271Hs, 265,266,267Sg, 261,263Rf; calculated potential energy surfaces in the plane of elongation and deformation parameters.

RADIOACTIVITY 277Cn, 273Ds, 269,271Hs, 265,267Sg, 261,263Rf, 257No(α); calculated Q(α), T1/2. Comparison with available experimental values.

doi: 10.1103/PhysRevC.96.044310
Citations: PlumX Metrics

2017HO16      Phys.Rev. C 96, 014609 (2017)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of production of transfermium nuclei in complete fusion reactions with radioactive beams

NUCLEAR REACTIONS 248Cm(16C, xn)259No/260No/261No/262No/263No, E*=10-70 MeV; 248Cm(16C, xnα)256Fm/257Fm/258Fm, E*=30-85 MeV; 249Bk(16C, xn)260Lr/261Lr/262Lr/263Lr/264Lr, E*=10-70 MeV; 249Bk(16C, xnα)257Md/258Md/259Md, E*=30-85 MeV; 244Pu(20O, xn)259No/260No/261No/262No/263No, E*=10-70 MeV; 244Pu(20O, xnα)256Fm/257Fm/258Fm, E*=30-85 MeV; 244Pu(21O, xn)260No/261No/262No/263No, E*=10-70 MeV; 244Pu(21O, xnα)257Fm/258Fm/259Fm, E*=30-85 MeV; 248Cm(20O, xn)263Rf/264Rf/265Rf/266Rf/267Rf, E*=10-70 MeV; 248Cm(20O, xnα)260No/261No/262No, E*=10-70 MeV; 248Cm(21O, xn)264Rf/265Rf/266Rf/267Rf, E*=10-70 MeV; 248Cm(21O, xnα)261No/262No/263No, E*=10-70 MeV; 238U(28Mg, xn)261Rf/262Rf/263Rf, E*=25-65 MeV; 238U(28Mg, xnα)258No/259No/260No, E*=35-75 MeV; 244Pu(28Mg, xn)267Sg/268Sg/269Sg, E*=25-65 MeV; 244Pu(28Mg, xnα)264Rf/265Rf/266Rf, E*=35-75 MeV; 244Pu(30Mg, xn)269Sg/270Sg, E*=30-60 MeV; 244Pu(30Mg, xnα)266Rf/267Rf, E*=35-75 MeV; 249Bk(20O, xn)264Db/265Db/266Db/267Db/268Db, E*=10-70 MeV; 249Bk(20O, xnα)261Lr/262Lr/263Lr, E*=30-75 MeV; 249Bk(21O, xn)264Db/265Db/266Db/267Db/268Db/269Db, E*=10-70 MeV; 249Bk(21O, xnα)262Lr/263Lr/264Lr, E*=30-75 MeV; 248Cm(21F, xn)264Db/265Db/266Db/267Db, E*=10-70 MeV; 248Cm(21F, xnα)261Lr/262Lr/263Lr, E*=30-75 MeV; 248Cm(23F, xn)266Db/267Db/268Db/269Db/270Db, E*=10-70 MeV; 248Cm(23F, xnα)263Lr/264Lr/265Lr, E*=30-75 MeV; 244Pu(24Na, xn)263Db/264Db, E*=35-60 MeV; 244Pu(24Na, xnα)260Lr/261Lr, E*=40-75 MeV; 244Pu(25Na, xn)264Db/265Db/266Db/267Db, E*=15-65 MeV; 244Pu(25Na, xnα)261Lr/262Lr/263Lr, E*=35-75 MeV; 244Pu(27Na, xn)266Db/267Db/268Db/269Db, E*=15-65 MeV; 244Pu(27Na, xnα)263Lr/264Lr/265Lr, E*=30-75 MeV; 251Cf(20O, xn)266Sg/267Sg/268Sg/269Sg, E*=15-60 MeV; 251Cf(20O, xnα)263Rf/264Rf/265Rf, E*=30-75 MeV; 251Cf(21O, xn)267Sg/268Sg/269Sg/270Sg, E*=15-60 MeV; 251Cf(21O, xnα)264Rf/265Rf/266Rf, E*=30-75 MeV; 249Cf(21O, xn)265Sg/266Sg/267Sg/268Sg, E*=15-60 MeV; 249Cf(21O, xnα)262Rf/263Rf/264Rf, E*=30-75 MeV; 250Cf(21O, xn)266Sg/267Sg/268Sg/269Sg, E*=15-60 MeV; 250Cf(21O, xnα)263Rf/264Rf/265Rf, E*=30-75 MeV; 248Cm(24Ne, xn)267Sg/268Sg/269Sg/270Sg, E*=15-65 MeV; 248Cm(24Ne, xnα)264Rf/265Rf/266Rf, E*=30-75 MeV; 248Cm(25Ne, xn)268Sg/269Sg/270Sg/271Sg, E*=15-65 MeV; 248Cm(25Ne, xnα)265Rf/266Rf/267Rf, E*=30-75 MeV; 248Cm(26Ne, xn)269Sg/270Sg/271Sg/272Sg, E*=15-65 MeV; 248Cm(26Ne, xnα)266Rf/267Rf/268Rf, E*=30-75 MeV; calculated σ(E*) for xn and αxn reactions in various asymmetric hot fusion-evaporation reactions with radioactive beams, and compared with available experimental data. 248Cm(16C, 3n), E*=29.2 MeV; 248Cm(20O, 3nα), E*=48.3 MeV; 248Cm(21O, 4nα), E*=54.4 MeV; 248Cm(16C, n), E*=11.8 MeV; 244Pu(20O, n), E*=11.8 MeV; 244Pu(21O, 2n), E*=18.3 MeV; 244Pu(21O, n), E*=12.1 MeV; 249Bk(16C, 2n), E*=17.7 MeV; 249Bk(21O, 3nα), E*=44.8 MeV; 248Cm(23F, 4nα), E*=50.5 MeV; 244Pu(27Na, 4nα), E*=50.9 MeV; 249Bk(21O, 2nα), E*=40.8 MeV; 248Cm(23F, 3nα), E*=46.1 MeV; 244Pu(27Na, 3nα), E*=47.0 MeV; 248Cm(23F, 2nα), E*=40.8 MeV; 244Pu(27Na, 2nα), E*=42.1 MeV; 248Cm(20O, 5n), E*=46.4 MeV; 248Cm(20O, 4n), E*=38.7 MeV; 248Cm(21O, 5n), E*=43.6 MeV; 248Cm(20O, 2n), E*=17.7 MeV; 248Cm(21O, 3n), E*=24.6 MeV; 248Cm(25Ne, 3nα), E*=44.3 MeV; 248Cm(26Ne, 4nα), E*=50.5 MeV; 244Pu(30Mg, 4nα), E*=50.9 MeV; 248Cm(21O, n), E*=10.7 MeV; 248Cm(26Ne, 2nα), E*=40.4 MeV; 249Bk(20O, 5n), E*=45.9 MeV; 248Cm(21F, 5n), E*=48.2 MeV; 244Pu(25Na, 5n), E*=48.9 MeV; 249Bk(20O, 4n), E*=37.9 MeV; 249Bk(21O, 5n), E*=43.3 MeV; 248Cm(21F, 4n), E*=38.9 MeV; 248Cm(23F, 2n), E*=17.2 MeV; 251Cf(20O, 4n), E*=40.3 MeV; 249Cf(21O, 5n), E*=49.6 MeV; 250Cf(21O, 4n), E*=40.3 MeV; 251Cf(21O, 3n), E*=28.7 MeV; 248Cm(24Ne, 5n), E*=46.2 MeV; 249Cf(21O, 4n), E*=41.8 MeV; 248Cm(24Ne, 4n), E*=38.2 MeV; 248Cm(25Ne, 5n), E*=43.1 MeV; 248Cm(26Ne, 4n), E*=37.9 MeV; 244Pu(30Mg, 4n), E*=37.6 MeV; 248Cm(26Ne, 2n), E*=17.3 MeV; calculated evaporation residue cross sections. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.96.014609
Citations: PlumX Metrics

2017KA27      Chin.Phys.C 41, 074105 (2017)

V.G.Kartavenko, N.V.Antonenko, A.N.Bezbakh, L.A.Malov, N.Yu.Shirikova, A.V.Sushkov, R.V.Jolos

Quasiparticle structure of superheavy nuclei in α-decay chains of 285Fl and 291, 293Lv

RADIOACTIVITY 285Fl, 281Cn, 277Ds, 273Hs, 269Sg, 265Rf, 291,293Lv, 289Fl, 285Cn, 281Ds, 277Hs, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg(α); calculated the energies of low-lying one-quasiparticle states, J, π. Comparison with available data.

doi: 10.1088/1674-1137/41/7/074105
Citations: PlumX Metrics

2017PA05      Acta Phys.Pol. B48, 431 (2017)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Physical Origin of the Transition from Symmetric to Asymmetric Fission Fragment Charge Distribution

NUCLEAR REACTIONS 204,206,208Rn, 210,212,214,216,218Ra, 218,220,222,224,226,228Th, 230,232,234U(γ, f), E*≈11 MeV; calculated fission charge yields using improved scission-point model. Compared with available data.

doi: 10.5506/APhysPolB.48.431
Citations: PlumX Metrics

2017PA37      Phys.Rev. C 96, 044611 (2017)

H.Pasca, Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko

Spins of complex fragments in binary reactions within a dinuclear system model

NUCLEAR REACTIONS 58Ni(16O, X), E=100 MeV; calculated sum of average fragment spins vs the charge number of the light fragment. 58Ni(40Ar, X), E=280 MeV; calculated root mean square of the single fragment spin and of the sum of fragment spins as a function of the charge number of one of the fragments. Ag(20Ne, X), E=175 MeV; calculated sum of the average fragment spins with and without considering the fragment deformations. 89Y(40Ar, X), E=237 MeV; Ag(40Ar, X), E=288, 340 MeV; 63Cu(20Ne, X), E=166 MeV; calculated γ-ray multiplicity and average spin of heavy fragment as function of charge number of light fragment. 63Cu(20Ne, X), E=166 MeV; calculated square root of the sum of variances of fragment spin distributions versus charge number of light fragment, average orbital angular momentum of the DNS as a function of charge number of one DNS nuclei. 89Y(40Ar, X), E(cm)=80-220 MeV; calculated average total spins, total spin components and average temperatures of the DNS arising from pure excitation of the orbital with bending, twisting, and tilting modes of the fragments of different charge numbers. Dinuclear system (DNS) model calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044611
Citations: PlumX Metrics

2017SA28      Phys.Rev. C 95, 054619 (2017)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Comparative analysis of the fusion reactions 48Ti + 58Fe and 58Ni + 54Fe

NUCLEAR REACTIONS 48Ti(58Fe, X), E(cm)=65-90 MeV; 58Ni(54Fe, X), E(cm)=85-110 MeV; analyzed experimental reduced fusion excitation functions, capture probabilities, fusion (capture) σ(E), fusion barrier distributions by universal fusion function; deduced astrophysical S factor, enhancement of sub-barrier fusion cross section. Quantum diffusion approach and the universal fusion function representation.

doi: 10.1103/PhysRevC.95.054619
Citations: PlumX Metrics

2017SE19      Phys.Rev. C 96, 054328 (2017)

W.M.Seif, N.V.Antonenko, G.G.Adamian, H.Anwer

Correlation between observed α decays and changes in neutron or proton skins from parent to daughter nuclei

RADIOACTIVITY 105,106,107,108,109,110Te, 107,108,109,110,111,112,113I, 109,110,111,112,113,115Xe, 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,143,144,145,146,147,148,149Nd, 133,134,135,136,137,138,139,143,145,146,147,148,149,150,151,152Sm, 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155Gd, 148,149,150,151,152Yb, 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166Ho, 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177Yb, 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,211,222,223,224Po, 212,213,214,215,216,217,218,219,220,211,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241Pa, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Fm(α); calculated difference between the proton or neutron skin thicknesses, Q(α), partial α-decay half-lives for 140-155Gd, 232-241Pa and 258-260Fm. Comparison with available experimental half-lives. Hartree-Fock-Bogoliubov (HFB) method based on the Skyrme-like effective interactions.

doi: 10.1103/PhysRevC.96.054328
Citations: PlumX Metrics

2016AD18      Physics of Part.and Nuclei 47, 1 (2016)

G.G.Adamian, N.V.Antonenko, Sh.A.Kalandarov

Description of quasifission reactions in the dinuclear system model

NUCLEAR REACTIONS 244Pu(48Ca, X)292Fl, E not given; 248Cm(48Ca, X)296Lv, E not given; 249Cf(48Ca, X)297Og, E not given; 248Cm(64Ni, X)312124, E not given; 232Th(58Fe, X)290Lv, E not given; 244Pu(58Fe, X)302120, E not given; 248Cm(58Fe, X)306122, E not given; 249Cf(58Fe, X)307124, E not given; 208Pb(58Fe, X)266Hs, E not given; 208Pb(64Ni, X)272Ds, E not given; calculated yields, σ, dinuclear system potential energy as a function of the mass number of the light fragment, total kinetic energy. Comparison with available data.

doi: 10.1134/S1063779616010020
Citations: PlumX Metrics

2016AD37      Phys.Rev. C 94, 054309 (2016)

G.G.Adamian, N.V.Antonenko, H.Lenske, S.V.Tolokonnikov, E.E.Saperstein

Isotopic trends of nuclear surface properties of spherical nuclei

NUCLEAR STRUCTURE 48,50,52,54,56,58,60,64,68,72,76,78,80,82,84,86,88Ni; calculated binding energies per nucleon. 58,64Ni; calculated radial distributions of the proton density. 64Ni, 122Sn, 196Pb, 272Ds; calculated nucleon-density distributions. Z=28, N=20-50; Z=82, N=98-126; Z=12, N=11-32; Z=50, N=50-85; Z=110, N=154-190; calculated isotopic dependencies of proton and neutron radii and diffuseness. Partially ab initio method, and the Fayans energy density functional (EDF) method used in calculations. Comparison with available experimental data.

NUCLEAR REACTIONS 208Pb(64Ni, X), (32Si, X), (α, X); 58Ni(58Ni, X); calculated nucleus-nucleus potentials defined by the density-dependent NN interaction and nucleon density profiles.

doi: 10.1103/PhysRevC.94.054309
Citations: PlumX Metrics

2016AN05      Phys.Rev. C 93, 034620 (2016)

A.V.Andreev, G.G.Adamian, N.V.Antonenko

Asymmetry of fission fragment mass distribution for Po and Ir isotopes

RADIOACTIVITY 194,196At(β+F), (ECF); calculated mass distributions of fission fragments for β-delayed fission of 194,196Po nuclei; deduced symmetric and asymmetric fission modes. Improved scission-point model. Comparison with experimental data.

NUCLEAR STRUCTURE 185,187,189,191,193Ir; calculated mass distributions for the fission at excitation energy of 10 MeV at the saddle point. Improved scission-point model. Comparison with experimental data for 187,189Ir.

doi: 10.1103/PhysRevC.93.034620
Citations: PlumX Metrics

2016BE37      Eur.Phys.J. A 52, 353 (2016)

A.N.Bezbakh, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, S.-G.Zhou

Level densities of dinuclear systems

NUCLEAR STRUCTURE 266Hs, 272,280Ds[originated from 58Fe+208Pb, 64Ni+208Pb, 36S+244Pu]; calculated double nuclear system potential energy, quadrupole deformation, entropy, level density parameter using TCSM (Two-Center Shell Model).

doi: 10.1140/epja/i2016-16353-1
Citations: PlumX Metrics

2016HO19      Phys.Rev. C 94, 044606 (2016)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of production of transfermium nuclei in charged-particle evaporation channels

NUCLEAR REACTIONS 238U(12C, 4n), E(cm)=64.3 MeV; 238U(12C, 5n), E(cm)=70.0 MeV; 238U(12C, 6n), E(cm)=79.5 MeV; 238U(12C, 7n), E(cm)=90.4 MeV; 238U(12C, 8n), E(cm)=109.5 MeV; 240Pu(12C, 4n), E(cm)=67.6 MeV; 233U(16O, 4n), E(cm)=87.0 MeV; 233U(16O, 5n), E(cm)=90.8 MeV; 232Th(20Ne, 5n), E(cm)=107.8 MeV; 232Th(20Ne, 6n), E(cm)=111.4 MeV; 232Th(22Ne, 7n), E(cm)=121.2 MeV; 232Th(22Ne, 8n), E(cm)=129.4 MeV; 248Cm(15N, 4n), E(cm)=76.4 MeV; 248Cm(15N, 5n), E(cm)=82.0 MeV; 232Th(27Al, 5n), (27Al, 6n), E(cm)=136.0 MeV; 249Bk(15N, 4n), E(cm)=75.5 MeV; 242Pu(22Ne, 4n), E(cm)=104.9 MeV; 244Pu(22Ne, 4n), (22Ne, 5n), E(cm)=104.9 MeV; 249Bk(18O, 4n), E(cm)=86.7 MeV; 249Bk(18O, 5n), E(cm)=92.3 MeV; 248Cm(19F, 5n), E(cm)=95.8 MeV; 241Am(22Ne, 4n), E(cm)=108.1 MeV; 243Am(22Ne, 4n), E(cm)=106.4 MeV; 236U(27Al, 5n), E(cm)=138.2 MeV; 236U(27Al, 6n), E(cm)=146.3 MeV; 232Th(31P, 5n), E(cm)=151.4 MeV; 249Cf(18O, 4n), E(cm)=88.6 MeV; 238U(30Si, 4n), E(cm)=133.0 MeV; 238U(30Si, 5n), E(cm)=144.0 MeV; 249Bk(22Ne, 4n), (22Ne, 5n), E(cm)=113.0 MeV; calculated evaporation residue σ, and compared with available experimental data. 242Pu(12C, 4n), (12C, 4nα), (12C, 5nα), (18O, 4n), (18O, 5n), (18O, 3np), (22Ne, 2np), (30Si, nα), (30Si, 2nα), (30Si, 2np), (30Si, 3np), (36S, 2nα), (36S, 3nα), (36S, 4nα), 238U(16O, 4n), (16O, 5n), (16O, 6n), (16O, 4nα), (16O, 5nα), (22Ne, 4n), (22Ne, 5n), (22Ne, 6n), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), (30Si, 2np), (30Si, 3np), (36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), (36S, 3np), 248Cm(18O, 4n), (18O, 5n), (18O, 6n), (18O, nα), (18O, 2nα), (18O, 3nα), (18O, np), (18O, 2np), (18O, 3np), (18O, 4np), (19F, nα), (19F, 2nα), (19F, 2np), (22Ne, 5n), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, 5np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), (15N, np), (15N, 2np), (26Mg, npα), (26Mg, 2npα), (26Mg, 3npα), (26Mg, 4npα), (26Mg, nα), (26Mg, 2nα), (26Mg, 3nα), (26Mg, 4nα), (26Mg, 2np), (26Mg, 3np), (26Mg, 4np), (27Al, 2nα), (27Al, 3nα), (27Al, 4nα), (27Al, 5nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), (30Si, 5nα), (31P, 2nα), (31P, 3nα), (31P, 4nα), 249Cf(15N, 4n), (15N, 2nα), (15N, 3nα), (18O, np), (18O, 2np), 208Pb(48Ca, np), (48Ca, 2np), (48Ca, 3np), (48Ca, 4np), (48Ca, nα), (48Ca, 2nα), (48Ca, 3nα), (48Ca, 4nα), 234U(22Ne, np), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), 238U(22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), 234U(22Ne, np), (30Si, 2np), (30Si, 3np), (36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), (36S, 3np), 244Pu(18P, np), (18P, 2np), (19F, 2np), (22Ne, nα), (22Ne, 2nα), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (23Na, 2nα), (26Mg, nα), (26Mg, 2nα), (26Mg, 2np), (26Mg, 3np), (26Mg, 4np), (26Mg, 5np), 249Bk(15N, np), (15N, 2np), (18O, nα), (18O, 2nα), (18O, np), (18O, 2np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (26Mg, 2α), (26Mg, n2α), (26Mg, 2n2α), (26Mg, nα), (26Mg, 2nα), (26Mg, 3nα), (26Mg, 4nα), (26Mg, 5nα), (27Al, 2nα), (27Al, 3nα), (27Al, 4nα), (30Si, nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), (30Si, 5nα), 235U(36S, nα), (36S, 2np), 233U(36S, 2np), 245Cm(30Si, nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), 240Pu(36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), E*=20-90 MeV; calculated production σ(ECN) in xn, pxn, αxn channels using dinuclear system (DNS) model, and compared with available experimental data. 259,260Md, 260,261No, 261,262,263,264Lr, 264,265Rf, 264,265,266,267,268Db, 266,267,268,269Sg, 267,268,269,270,271Bh, 267,268,269,270,271,272,273,274Hs, 270,271,272,273,274Mt; calculated production σ in pxn and αxn evaporation channels of the asymmetric hot fusion reactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.94.044606
Citations: PlumX Metrics

2016HO22      Eur.Phys.J. A 52, 305 (2016)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

NUCLEAR REACTIONS 232Th(27Al, xn), (31P, xn), E*≈25-70 MeV;233,235,238U(28Si, xn), (29Si, xn), (30Si, xn), E*≈25-70 MeV;235U(36S, 3n), E*=29-47 MeV;237Np(36S, 4n), E*=35-61 MeV;237Np(34S, 4n), E*=40-59 MeV;240Pu(36S, 3n), E*=26-51 MeV;240Pu(36S, 4n), E*=36-56 MeV;242Pu(30Si, 4n), E*=39-57 MeV;242Pu(36S, 3n), E*=28-49 MeV;242Pu(36S, 4n), E*=34-55 MeV;242Pu(36S, 5n), E*=44-60 MeV;244Pu(29Si, 5n), E*=50-61 MeV;241Am(34S, 4n), E*=41-53 MeV;241Am(36S, 3n), E*=28-45 MeV;241Am(36S, 4n), E*=36-53 MeV;245Cm(36S, 2nα), E*=36-54 MeV;245Cm(36S, 3nα), E*=42-64 MeV;248Cm(15N, xn), (19F, xn), E*≈25-65 MeV;(27Al, 3n), E*=28-39 MeV;248Cm(27Al, 4n), E*=36-58 MeV;249Bk(15N, xn), (18O, xn), (22Ne, xn);E*≈25-63 MeV;249Bk(26Mg, 3n), E=26-45 MeV;249Bk(26Mg, 4n), E*=34-54 MeV;249Cf(18O, xn), E*=25-62 MeV[x=3-5 for all nuclei];249Cf(30Si, 3n), E*=29-49 MeV;249Cf(30Si, 4n), E*=39-57 MeV;249Cf(36S, 2n), E*=20-36 MeV;249Cf(36S, 3n), E*=29-49 MeV;249Cf(36S, 4n), E*=40-53 MeV;249Cf(30Si, nα), E*=26-49 MeV;249Cf(30Si, 3nα), E*=42-68 MeV; calculated evaporation residue σ; deduced optimal conditions for superheavy nuclei synthesis. Few cross sections compared to available data.

doi: 10.1140/epja/i2016-16305-9
Citations: PlumX Metrics

2016KA09      Phys.Rev. C 93, 024613 (2016)

Sh.A.Kalandarov, D.Lacroix, G.G.Adamian, N.V.Antonenko, J.P.Wieleczko, S.Pirrone, G.Politi

Quasifission and fusion-fission processes in the reactions 78Kr + 40Ca and 86Kr + 48Ca at 10 MeV/nucleon bombarding energy

NUCLEAR REACTIONS 40Ca(78Kr, X), 48Ca(86Kr, X), E=10 MeV/nucleon; calculated normalized probabilities of pre-equilibrium decay channels, charge, mass, and isotopic distributions of the products, integrated evaporation residues and fission-like fragments cross sections. Dinuclear system (DNS) model considering pre-equilibrium emission of light particles with the HIPSE code, and competition between complete fusion followed by the decay of compound nucleus and quasifission channels. Discussed odd-even staggering in the yield of the final reaction products.

doi: 10.1103/PhysRevC.93.024613
Citations: PlumX Metrics

2016KA20      Phys.Rev. C 93, 054607 (2016)

Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko, J.P.Wieleczko

Expected production of new exotic α emitters 108Xe and 112Ba in complete fusion reactions

NUCLEAR REACTIONS 54Fe(58Ni, xn)108Xe/109Xe/110Xe, E=3.2-5.0 MeV; 54Fe(56Ni, xn)108Xe/109Xe, E=3.2-4.8 MeV; 56Ni(58Ni, X)108Xe/109Xe/110Xe/112Ba/113Ba, E=3.5-5.2 MeV; 58Ni(58Ni, X)108Xe/109Xe/110Xe/112Ba/113Ba/114Ba, E=3.2-5.8 MeV; calculated production σ(E). Discussed production of exotic 108Xe and 112Ba ϵ emitters and superallowed α-decay chains 108Xe -> 104Te -> 100Sn and 112Ba -> 108Xe -> 104Te. Dinuclear system (DNS) model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.054607
Citations: PlumX Metrics

2016KU10      Physics of Part.and Nuclei 47, 206 (2016)

S.N.Kuklin, G.G.Adamian, N.V.Antonenko

Description of alpha decay and cluster radioactivity in the dinuclear system model

RADIOACTIVITY 184,186,188,190,192,194,196,198,200,202,204,206,208Po, 194,196,198,200,202,204,206,208,210Rn, 233U(α); calculated T1/2, spectroscopic factor as a function of the mass number A. Comparison with available data.

NUCLEAR STRUCTURE 224,226,228,230,232,234,236,238U, 224,226Th; calculated energy levels, J, π. Comparison with available data.

doi: 10.1134/S1063779616020039
Citations: PlumX Metrics

2016MU17      Eur.Phys.J. A 52, 363 (2016)

M.-Hw.Mun, G.G.Adamian, N.V.Antonenko, Y.-O.Lee

Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

NUCLEAR REACTIONS 238U(48Ca, x)259,260,261,262,263Md, E(cm)=191-197 MeV;242,244Pu(48Ca, x)259,260,261,262,263Md, E(cm)=191-201 MeV;245,246,248Cm(48Ca, x)259,260,261,262,263Md, E(cm)=197-205 MeV; calculated σ.

doi: 10.1140/epja/i2016-16363-y
Citations: PlumX Metrics

2016PA21      Phys.Rev. C 93, 054602 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko, Y.Kim

Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal, 10-55 MeV; calculated mass, charge, isotopic, and kinetic-energy distributions of fission fragments. 214,218Ra, 230,232,238U(γ, F); calculated charge distributions. 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated mass distributions. Improved scission-point statistical model with dinuclear system (DNS) model for the fission observables. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.054602
Citations: PlumX Metrics

2016PA46      Phys.Rev. C 94, 064614 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Unexpected asymmetry of the charge distribution in the fission of 222, 224Th at high excitation energies

NUCLEAR REACTIONS 218,220,222,224,226,228Th(E, F), E(*)=11 MeV; calculated charge distributions, driving potentials averaged over fragment mass number and deformations, components of the driving potentials, deformations of fragments. 222,224,226,228Th(E, F), E(*)=11, 35, 60 MeV; calculated charge distributions at different excitation energies of the initial compound nucleus, energy surfaces for 76,78,80,82,84,86,88,90,92,94Kr fragmentations. Improved scission-point model. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.064614
Citations: PlumX Metrics

2016PA47      Eur.Phys.J. A 52, 369 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Extraction of potential energy in charge asymmetry coordinate from experimental fission data

RADIOACTIVITY 212,214,216,218Ra, 218,220,222,224,226,228Th, 230,232,234U(SF); calculated fission fragment deformation vs charge using fit to the observed yields.

NUCLEAR REACTIONS 222,224,226,228Th(γ, F), E not given; calculated potential energy surfaces, yields using observed charge distribution.

doi: 10.1140/epja/i2016-16369-5
Citations: PlumX Metrics

2016SA23      Phys.Rev. C 93, 054613 (2016)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Experimental elastic and quasi-elastic angular distributions provide transfer probabilities

NUCLEAR REACTIONS 206Pb(18O, 16O), E=79 MeV; calculated two-neutron transfer probabilities using experimental data for elastic and quasielastic probabilities in 18O+206Pb and 16O+208Pb reactions. Comparison with experimental data for two-neutron transfer reaction.

doi: 10.1103/PhysRevC.93.054613
Citations: PlumX Metrics

2016SC24      Phys.Rev. C 94, 064606 (2016)

G.Scamps, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, D.Lacroix

Extraction of pure transfer probabilities from experimental transfer and capture data

NUCLEAR REACTIONS 96Zr(40Ca, X), E=84-111 MeV; calculated s-wave capture probability, one- and two-neutron transfer probabilities. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.064606
Citations: PlumX Metrics

2015AD11      Phys.Rev. C 91, 054602 (2015)

G.G.Adamian, N.V.Antonenko, H.Lenske

Role of the neck degree of freedom in cold fusion reactions

NUCLEAR REACTIONS 48Ca, 50Ti, 54Cr, 58Fe, 64,72,78Ni, 70Zn(208Pb, X), E not given; calculated mass parameter and potential energy surface contours, time-dependence of the neck parameter in cold fusion reactions. Two-center shell model. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.91.054602
Citations: PlumX Metrics

2015AD26      Phys.Rev. C 92, 054319 (2015)

G.G.Adamian, N.V.Antonenko, H.Lenske

Origin of termination of negative-parity bands

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar, 40,42Ca, 44Ti, 54Cr, 62Zn, 74Kr; calculated termination of negative-parity rotational bands built on ground states, lifetimes of E2 transitions and α-cluster decay using α-cluster interpretation. Predicted terminating states.

doi: 10.1103/PhysRevC.92.054319
Citations: PlumX Metrics

2015BE10      Acta Phys.Pol. B46, 563 (2015)

A.N.Bezbakh, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, S.-G.Zhou

Influence of Shell Structure on Level Densities of Superheavy Nuclei

RADIOACTIVITY 296,298,300120(α); calculated the intrinsic level density parameters; deduced dependences of the level density parameters on the mass and charge numbers as well as on the ground-state shell corrections. Comparison with phenomenological values.

doi: 10.5506/APhysPolB.46.563
Citations: PlumX Metrics

2015BE20      Phys.Rev. C 92, 014329 (2015)

A.N.Bezbakh, V.G.Kartavenko, G.G.Adamian, N.V.Antonenko, R.V.Jolos, V.O.Nesterenko

Quasiparticle structure of superheavy nuclei along the α-decay chain of 288115

NUCLEAR STRUCTURE 268Db, 272Bh, 276Mt, 280Rg, 284Nh, 288Mc; calculated one-quasiproton and one-quasineutron spectra, low-lying two-quasiparticle (neutron-proton) spectra using microscopic Skyrme Hartree-Fock (SHF) approach, and modified two-center shell model (TCSM), with pairing treated at BCS level.

RADIOACTIVITY 272Bh, 276Mt, 280Rg, 284Nh, 288Mc(α); calculated Q(α) for ground state and isomer decays. 268Db, 272Bh, 276Mt, 280Rg, 284Nh; calculated decay schemes following α decays, predicted transitions, multipolarities, isomers, two-quasiparticle configurations using microscopic Skyrme Hartree-Fock (SHF) approach, and modified two-center shell model (TCSM), with pairing treated at BCS level. Predicted strong E1, M1 and M2 transitions in 276Mt. Comparison with experimental Q(α) values and available α spectra.

doi: 10.1103/PhysRevC.92.014329
Citations: PlumX Metrics

2015HO08      Phys.Rev. C 92, 014617 (2015)

J.Hong, G.G.Adamian, N.V.Antonenko

Influence of entrance channel on the production of hassium isotopes

NUCLEAR REACTIONS 226Ra(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), 232Th(40Ar, 3n), (40Ar, 4n), (40Ar, 5n), 238U(36S, 3n), (36S, 4n), (36S, 5n), (34S, 3n), (34S, 4n), (34S, 5n), (26Mg, 3n), (26Mg, 4n), (26Mg, 5n), 248Cm(26Mg, 3n), (26Mg, 4n), (26Mg, 5n), (25Mg, 3n), (25Mg, 4n), (25Mg, 5n), 244Pu(30Si, 3n), (30Si, 4n), (30Si, 5n), 249Cf(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), E near and sub-barrier energies; calculated effective capture cross section and fusion probability PCN, survival probabilities as function of the excitation energy of the compound nucleus, σ for 3n-, 4n- and 5n-channels leading to production of 266,267,268,269,270,271Hs isotopes. Dinuclear system (DNS) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.014617
Citations: PlumX Metrics

2015KU19      Phys.Rev. C 92, 014603 (2015)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Entrance channel effects on sub-barrier capture

NUCLEAR REACTIONS 152Sm(16O, X), E(cm)=45-75 MeV; 184W(16O, X), E(cm)=58-88 MeV; 175Lu(19F, X), E(cm)=60-93 MeV; 100Mo(64Ni, X), E(cm)=118-162 MeV; 58Ni(60Ni, X), E(cm)=87-121 MeV; 90,94Zr(32S, X), E(cm)=73.2, 78.2, 83.2 MeV; 90,94Zr(40Ca, X), E(cm)=90.7, 95.7, 100.7 MeV; 144Sm(12C, X), 92Zr(64Ni, X), E(cm)-Vb=-12 to 35 MeV; 144Nd(16O, X), 123Sb(37Cl, X), 96Zr(64Ni, X), 80Se(80Se, X), E(cm)-Vb=-13 to 26 MeV; 142Ce(28Si, X), 138Ba(32S, X), 122Sn(48Ti, X), E(cm)-Vb=-12 to 38 MeV; 204Pb(12C, X), 186W(30Si, X), 168Er(48Ca, X), E(cm)-Vb=-20-40 MeV; 204Pb(16O, X), 186W(34S, X), 170Er(50Ti, X), 124Sn(96Zr, X), E(cm)-Vb=-17 to 26 MeV; 144Nd(16O, X), E(cm)-Vb=13 MeV; 96Zr(64Ni, X), E(cm)-Vb=11 MeV; calculated capture σ(E), partial capture cross sections and the mean angular momenta for compound nuclei of 156,160Er, 170Hf, 200Pb, 216Ra and 220Th; investigated deformation, neutron transfer, and entrance channel mass (charge) asymmetry effects. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.014603
Citations: PlumX Metrics

2015MU05      Phys.Rev. C 91, 054610 (2015)

M.-H.Mun, G.G.Adamian, N.V.Antonenko, Y.Oh, Y.Kim

Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams

NUCLEAR REACTIONS 160Gd, 164Dy, 170Er, 176Yb, 180Hf, 186W, 192Os, 204Hg, 208Pb, 232Th(48Ca, X)52Ca/54Ca/56Ca/58Ca, E(cm)=150-225 MeV; 64,66,68,70,72,74,76,78Ni, 86,88,90,92,94Kr(160Gd, X)166Gd/168Gd/170Gd/172Gd/174Gd, E(cm)=145-260 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(164Dy, X)170Dy/172Dy/174Dy/176Dy/178Dy, E(cm)=150-260 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(170Er, X)176Er/178Er/180Er/182Er/184Er, E(cm)=150-270 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(176Yb, X)182Yb/184Yb/186Yb/188Yb/190Yb, E(cm)=160-270 MeV; 64,66,68,70,72,74,76,78Ni(180Hf, X)186Hf/188Hf/190Hf/192Hf/194Hf, E(cm)=190-230 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se(186W, X)192W/194W/196W/198W/200W, E(cm)=170-270 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se(192Os, X)196Os/198Os/200Os/202Os/204Os, E(cm)=165-270 MeV; 48Ca, 66,68,70,72,74,76,78Ni(204Hg, X)210Hg/212Hg/214Hg/216Hg, E(cm)=192-255 MeV; 48Ca, 66,68,70,72,74,76,78Ni(208Pb, X)214Pb/216Pb/218Pb/220Pb, E(cm)=200-268 MeV; 48Ca, 66,68,70,72,74,76,78Ni(232Th, X)238Th/240Th/242Th/244Th, E(cm)=199-261 MeV; calculated σ(E) for production of neutron-rich nuclei close to the neutron drip line in multi-nucleon transfer reactions. Dinuclear system (DNS) approach with synthesis through nucleon transfers and decay into two fragments.

doi: 10.1103/PhysRevC.91.054610
Citations: PlumX Metrics

2015OG06      Phys.Atomic Nuclei 78, 985 (2015); Yad.Fiz. 78, 1047 (2015)

A.A.Ogloblin, H.Q.Zhang, C.J.Lin, H.M.Jia, S.V.Khlebnikov, E.A.Kuzmin, A.N.Danilov, A.S.Demyanova, W.H.Trzaska, X.X.Xu, F.Yang, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

NUCLEAR REACTIONS 208Pb(28Si, X), E=130-140 MeV; measured reaction products; deduced capture σ. Comparison with calculated values.

doi: 10.1134/S1063778815080116
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1280.

2015SA02      Phys.Rev. C 91, 014613 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S + 94, 96Zr and 40Ca + 94, 96Zr

NUCLEAR REACTIONS 90,94,96Zr(40Ca, X), E(cm)=84-108 MeV; 90,96Zr(48Ca, X), E(cm)=88-109 MeV; 90,94,96Zr(32S, X), E(cm)=70-86 MeV; 90,96Zr(36S, X), E(cm)=71-186 MeV; calculated capture cross sections and compared with experimental data, analyzed experimental reduced fusion excitation functions; deduced s-wave capture probabilities as function of incident energy. Quantum diffusion approach and the universal fusion function representation.

doi: 10.1103/PhysRevC.91.014613
Citations: PlumX Metrics

2015SA45      Phys.Rev. C 92, 054613 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, Z.Kohley

Isotopic trends in capture reactions with radioactive and stable potassium beams

NUCLEAR REACTIONS 208Pb, 124Sn(37K, X), (39K, X), (41K, X), (43K, X), (45K, X), (46K, X), (47K, X), E(cm)-Vb=-10 to 15 MeV; calculated capture σ((E(cm)-Vb), A); deduced isospin dependence of the capture cross sections. 208Pb(46K, X), (48Ca, X), E(cm)=157-190 MeV; 124Sn(46K, X), (48Ca, X), E(cm)-Vb=-6 to 15 MeV; calculated capture σ(E), and compared with experimental data. Quantum diffusion approach. Role of isospin and closed shell structures in the entrance channel for the production of new isotopes.

doi: 10.1103/PhysRevC.92.054613
Citations: PlumX Metrics

2015SA46      Phys.Rev. C 92, 054620 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Derivation of breakup probabilities of weakly bound nuclei from experimental elastic and quasi-elastic scattering angular distributions

NUCLEAR REACTIONS 206Pb(6He, 6He), (6He, 6He'), E=16 MeV; 210Pb(α, α), (α, α'), E=17.71 MeV; devised a simple method and a formula relating the breakup and elastic (quasi-elastic) scattering probabilities; calculated breakup probability for 6He+206Pb reaction, and compared with continuum-discretized coupled-channels (CDCC) calculations.

doi: 10.1103/PhysRevC.92.054620
Citations: PlumX Metrics

2015SC03      Phys.Rev. C 91, 024601 (2015)

G.Scamps, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, D.Lacroix

Analysis of the dependence of the few-neutron transfer probability on the Q-value magnitudes

NUCLEAR REACTIONS 116,124,130Sn(40Ca, xn), at Vb-E(cm)<25 MeV; analyzed dependence of one-, two-, three-, and four-neutron transfer probabilities on the magnitudes of Q values, and compared with calculations of nucleon transfer probabilities within the time-dependent Hartree-Fock plus BCS approach.

doi: 10.1103/PhysRevC.91.024601
Citations: PlumX Metrics

2015SH28      Phys.Rev. C 92, 034302 (2015)

T.M.Shneidman, G.G.Adamian, N.V.Antonenko, R.V.Jolos, S.-G.Zhou

Cluster approach to the structure of 240Pu

NUCLEAR STRUCTURE 240Pu; calculated levels, J, π, rotational bands, parity splitting, average mass asymmetry, B(E2), B(E1), transition dipole moment D0, D0/q0 ratio, B(E1)/B(E2) ratio. Positive parity 0+2 rotational band, alternating-parity rotational bands. Cluster approach, with shape deformation parameters and cluster degrees of freedom. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.034302
Citations: PlumX Metrics

2014AD23      Phys.Rev. C 90, 034322 (2014)

G.G.Adamian, N.V.Antonenko, L.A.Malov, G.Scamps, D.Lacroix

Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier

NUCLEAR STRUCTURE 152Sm, 220,238U; calculated neutron, proton density distributions. 220,222,224,226,228,230,232,234Ra, 220,222,224,226,228,230,232,234,236,238Th, 240,242,244,246,248,250,252Cm; calculated isotopic dependency of average surface diffuseness. 226,228,230,232,234,236,238,240U; calculated isotopic dependencies of nucleon density distribution diffuseness. self-consistent calculations. Comparison with phenomenological mean-field potential calculations.

NUCLEAR REACTIONS 238U(36S, 36S), (16O, 16O), E not given; calculated dependencies of the Coulomb-barrier heights on the orientation angle. Self-consistent and mean-field potential calculations.

doi: 10.1103/PhysRevC.90.034322
Citations: PlumX Metrics

2014AN15      Bull.Rus.Acad.Sci.Phys. 78, 1137 (2014); Izv.Akad.Nauk RAS, Ser.Fiz 78, 1402 (2014)

N.V.Antonenko, L.A.Malov

Excited states of deformed nuclei in the quasiparticle-phonon nuclear model

NUCLEAR STRUCTURE 251,252,253,254,255Es, 253,252,251,250,249,248,247Cf, 250,251Bk; calculated deformation parameters, energy levels of the ground and lowest nonrotational states.

doi: 10.3103/S1062873814110045
Citations: PlumX Metrics

2014BE21      Eur.Phys.J. A 50, 97 (2014)

A.N.Bezbakh, T.M.Shneidman, G.G.Adamian, N.V.Antonenko

Level densities of heaviest nuclei

NUCLEAR STRUCTURE 162Dy, 166Er, 190Os, 196Pt, 200Hg, 228,230Th, 228Ra, 256,258,260Fm, 260,262,264No, 264,266,268Rf, 268,270,272Sg, 272,274,276Sg, 276,278,280Ds, 280,282,284Cn, 284,286,288Fl, 288,290,292Lv, 292,294,296Og, 296,298,300120, 300,302,304122, 304,306,308124, 308,310,312126, 312,314,316128, 316,318,320130; calculated level density, level-density parameters, ground-state shell corrections using two-center shell model single-particle spectra.

doi: 10.1140/epja/i2014-14097-6
Citations: PlumX Metrics

2014KA40      Phys.Rev. C 90, 024609 (2014)

Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko, J.P.Wieleczko

Production of the doubly magic nucleus 100Sn in fusion and quasifission reactions via light particle and cluster emission channels

NUCLEAR REACTIONS 50Cr(58Ni, 3npα)100In, E=319 MeV; 58Ni(58Ni, 3np3α)100In, E=325 MeV; 58Ni(58Ni, 3np12C)100In, E=348, 371, 394 MeV; 50Cr(58Ni, 3nα)101Sn, E=249 MeV; 58Ni(58Ni, 3n3α)101Sn, E=325, 348, 371, 394 MeV; 54Fe(58Ni, 2n)110Xe, E=200 MeV; 54Fe(58Ni, 3n)109Xe, E=215 MeV; 58Ni(50Cr, 3npα)100In, E=255 MeV; 58Ni(50Cr, 4nα)100Sn, E=255 MeV; 54Fe(58Ni, X)108Te/109Te/108I/109I/110I, E=3.3-4.6 MeV/nucleon; 46Ti(58Ni, xn)100Sn/101Sn/102Sn/103Sn, E=3.4-5.6 MeV/nucleon; 28Si(75Rb, xnp)100Sn/101Sn, E=3.4-5.2 MeV/nucleon; 50Cr(58Ni, xnα)100Sn/101Sn/102Sn/103Sn, E=4.2-5.6 MeV/nucleon; 50Cr(56Ni, xnα)100Sn/101Sn/102Sn/103Sn, E=3.4-5.0 MeV/nucleon; 58Ni(58Ni, X)100Sn/101Sn/102Sn/103Sn, E=4.2-6.4 MeV/nucleon; 58Ni(56Ni, X)100Sn/101Sn/102Sn/103Sn, E=4.0-5.1 MeV/nucleon; 40Ca(72Kr, X)100Sn/101Sn/102Sn/103Sn, E=3.6-5.6 MeV/nucleon; calculated σ(E) as function of atomic number and mass number for particle and cluster decay channels using dinuclear system (DNS) mode, and compared with experimental data. Fusion and quasifission reactions. Predictions for future production of exotic nuclei.

doi: 10.1103/PhysRevC.90.024609
Citations: PlumX Metrics

2014MU02      Phys.Rev. C 89, 034622 (2014)

M.-H.Mun, G.G.Adamian, N.V.Antonenko, Y.Oh, Y.Kim

Production cross section of neutron-rich isotopes with radioactive and stable beams

NUCLEAR REACTIONS 48Ca, 70Zn, 86Kr, 88Sr(144Xe, X)148Xe/150Xe/152Xe, E(cm)=130-240 MeV; 48Ca(134Te, X), (136Te, X)136Te/138Te/140Te/142Te, E(cm)=120-170 MeV; 68,70Zn(142Xe, X), (144Xe, X)82Zn/84Zn/86Zn, E(cm)=160-195 MeV; 48Ca(134Te, X), (136Te, X)52Ca/54Ca/56Ca/58Ca/60Ca, E(cm)=125-165 MeV; 198Pt(48Ca, X), (50Ti, X), (54Cr, X), (58Fe, X), (64Ni, X), (70Zn, X), (76Ge, X)202Pt/204Pt/206Pt, E(cm)=170-270 MeV; 198Pt(48Ca, X)202Pt/203Pt/204Pt/205Pt/206Pt, E(cm)=170-220 MeV; 198Pt(64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X)202Pt/204Pt/206Pt/208Pt/210Pt, E(cm)=215-260 MeV; calculated production σ for neutron-rich isotopes close to the neutron drip line using stable and radioactive beams. Diffusive multinucleon transfer reaction model.

doi: 10.1103/PhysRevC.89.034622
Citations: PlumX Metrics

2014OG01      Eur.Phys.J. A 50, 157 (2014)

A.A.Ogloblin, H.Q.Zhang, C.J.Lin, H.M.Jia, S.V.Khlebnikov, E.A.Kuzmin, W.H.Trzaska, X.X.Xu, F.Yan, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

NUCLEAR REACTIONS 208Pb(28Si, x), (30Si, x), E(cm)≈115-150 MeV; measured reaction products using SSTD array; deduced fusion σ. 208Pb(20Ne, x), E(cm)=85-109 MeV;208Pb(28Si, x), (30Si, x), E(cm)≈115-150 MeV; calculated fusion σ using quantum diffusion approach. Compared with other available data. 7

doi: 10.1140/epja/i2014-14157-y
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1280.

2014SA24      Eur.Phys.J. A 50, 71 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Derivation of breakup probabilities from experimental elastic backscattering data

NUCLEAR STRUCTURE 6,8He, 8Li, 7,9,11Be, 8,9B, 15C, 17F; calculated breakup probability near and above Coulomb barrier.

doi: 10.1140/epja/i2014-14071-4
Citations: PlumX Metrics

2014SA70      Phys.Rev. C 90, 064601 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Deriving capture and reaction cross sections from observed quasi-elastic and elastic backscattering

NUCLEAR REACTIONS 58Ni(58Ni, 58Ni), (58Ni, 58Ni'), E=86-118 MeV; 74Ge(64Ni, 64Ni), (64Ni, 64Ni'), E=96-120 MeV; 92Mo(α, α), (α, α'), E=13.20, 18.70 MeV; 106,110Cd(α, α), (α, α'), E=15.55, 18.8 MeV; 112Sn(α, α), (α, α'), E=13.90, 18.84 MeV; 120Sn(16O, 16O), (16O, 16O'), E=Vb, Vb+5 MeV, Vb+10 MeV; 144,154Sm(16O, 16O), (16O, 16O'), E=55-80 MeV; 152Sm(16O, 16O), (16O, 16O'), E=58.8, 63.3, 72.4 MeV; 208Pb(6Li, 6Li), (6Li, 6Li'), (7Li, 7Li), (7Li, 7Li'), E=Vb+5 MeV, Vb+10 MeV; 208Pb(16O, 16O), (16O, 16O'), E=65-95 MeV; 208Pb(20Ne, 20Ne), (20Ne, 20Ne'), E=Vb, Vb+5 MeV, Vb+10 MeV; analyzed and proposed methods for extracting differential and integral reaction and capture σ(E, J) from the experimental elastic and quasi-elastic backscattering measurements. Coupled-channels approach.

doi: 10.1103/PhysRevC.90.064601
Citations: PlumX Metrics

Back to query form    [Next]