NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = J.Hong

Found 23 matches.

Back to query form

2024HO02      Phys.Rev. C 109, 024913 (2024)


Heavy quark diffusion and radiation at intermediate momentum

doi: 10.1103/PhysRevC.109.024913
Citations: PlumX Metrics

2023KI07      Phys.Rev. C 107, 054905 (2023)

J.Kim, J.Seo, B.Hong, J.Hong, E.-J.Kim, Y.Kim, M.Kweon, S.H.Lee, S.Lim, J.Park

Model study on Υ(nS) modification in small collision systems

doi: 10.1103/PhysRevC.107.054905
Citations: PlumX Metrics

2023YU02      Phys.Rev. C 107, 014906 (2023)

H.Yun, D.Park, S.Noh, A.Park, W.Park, S.Cho, J.Hong, Y.Kim, S.Lim, S.H.Lee

X(3872) and Tcc: Structures and productions in heavy ion collisions

doi: 10.1103/PhysRevC.107.014906
Citations: PlumX Metrics

2022HO12      Phys.Rev. C 106, 014614 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Isthmus connecting mainland and island of stability of superheavy nuclei

NUCLEAR REACTIONS 245,248Cm, 242,244Pu, 238U, 232Th, 226Ra(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=10-70 MeV; calculated σ(E), excitation functions. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.014614
Citations: PlumX Metrics

2022HO13      Eur.Phys.J. A 58, 180 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Hot and cold fusion reactions leading to the same superheavy evaporation residue

NUCLEAR REACTIONS 233,235U(48Ca, X)277Cn, E not given; calculated σ; deduced the possibility of filling the gap between the isotopes of superheavy nuclei with Z=112 produced in cold and hot fusion reactions. Comparison with available data.

doi: 10.1140/epja/s10050-022-00826-3
Citations: PlumX Metrics

2021HO08      Phys.Rev. C 103, L041601 (2021)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Rate of decline of the production cross section of superheavy nuclei with Z = 114-117 at high excitation energies

NUCLEAR REACTIONS 242,244Pu(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=10-65 MeV; 242,244Pu, 243Am, 248Cm, 249Bk(48Ca, 5n), (48Ca, 6n), (48Ca, 7n), (48Ca, 8n), (48Ca, 9n), E*=40-120 MeV; calculated σ(E) using microscopic-macroscopic (MM) method, and compared with available experimental data for superheavy nuclei (SHN).

NUCLEAR STRUCTURE 290Ts; calculated potential energy surface (PES) in (β20, β22) plane. 286,287,288,289,290,291,292,293,294,295,296,297,298Fl, 287,288,289,290,291,292,293,294,295,296,297,298,299Mc, 288,289,290,291,292,293,294,295,296,297,298,299,300Lv, 289,290,291,292,293,294,295,296,297,298,299,300,301Ts; calculated fission barriers and S(n) using microscopic-macroscopic (MM) method, and standard BCS method with blocking for nuclei with odd numbers of protons, neutrons, or both.

doi: 10.1103/PhysRevC.103.L041601
Citations: PlumX Metrics

2021HO11      Phys.Rev. C 103, 054907 (2021)

J.Hong, S.H.Lee

Energy loss of heavy quarkonia in hot QCD plasmas

doi: 10.1103/PhysRevC.103.054907
Citations: PlumX Metrics

2020HO07      Phys.Lett. B 805, 135438 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko

Could new isotopes of superheavies with Z=112-118 be produced in 48Ca-induced cold fusion reactions?

NUCLEAR REACTIONS 238U, 237Np, 239,240,242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X), E not given; calculated σ forthe production of new heaviest isotopes of the SHN with charge numbers 112-118 1-n and 2-n evaporation channels. Comparison with experimental data.

doi: 10.1016/j.physletb.2020.135438
Citations: PlumX Metrics

2020HO13      Phys.Lett. B 809, 135760 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Possibilities of direct production of superheavy nuclei with Z=112-118 in different evaporation channels

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248Cm, 249Bk, 249,252Cf(48Ca, X), E not given; analyzed available data. 276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 286,287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299Og, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 285,286,287,288,289,290,291,292,293,294,295Mc, 291,292,293,294,295,296,297,298Ts; deduced theoretical barriers and energy thresholds n the evaporation channels with emission of proton and alpha-particle.

doi: 10.1016/j.physletb.2020.135760
Citations: PlumX Metrics

2020TA14      Phys.Rev. C 102, 021901 (2020)

H.Taya, A.Park, S.Cho, P.Gubler, K.Hattori, J.Hong, X.-G.Huang, S.H.Lee, A.Monnai, A.Ohnishi, M.Oka, D.-L.Yang, for the ExHIC-P Collaboration

Signatures of the vortical quark-gluon plasma in hadron yields

doi: 10.1103/PhysRevC.102.021901
Citations: PlumX Metrics

2019HO04      Phys.Rev. C 99, 034905 (2019)

J.Hong, S.H.Lee

Quarkonium dissociation in perturbative QCD

doi: 10.1103/PhysRevC.99.034905
Citations: PlumX Metrics

2018HO09      Phys.Rev. C 98, 014913 (2018)

J.Hong, S.Cho, T.Song, S.H.Lee

Hadronic effects on the ccq-barq-bar tetraquark state in relativistic heavy ion collisions

doi: 10.1103/PhysRevC.98.014913
Citations: PlumX Metrics

2017HO16      Phys.Rev. C 96, 014609 (2017)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of production of transfermium nuclei in complete fusion reactions with radioactive beams

NUCLEAR REACTIONS 248Cm(16C, xn)259No/260No/261No/262No/263No, E*=10-70 MeV; 248Cm(16C, xnα)256Fm/257Fm/258Fm, E*=30-85 MeV; 249Bk(16C, xn)260Lr/261Lr/262Lr/263Lr/264Lr, E*=10-70 MeV; 249Bk(16C, xnα)257Md/258Md/259Md, E*=30-85 MeV; 244Pu(20O, xn)259No/260No/261No/262No/263No, E*=10-70 MeV; 244Pu(20O, xnα)256Fm/257Fm/258Fm, E*=30-85 MeV; 244Pu(21O, xn)260No/261No/262No/263No, E*=10-70 MeV; 244Pu(21O, xnα)257Fm/258Fm/259Fm, E*=30-85 MeV; 248Cm(20O, xn)263Rf/264Rf/265Rf/266Rf/267Rf, E*=10-70 MeV; 248Cm(20O, xnα)260No/261No/262No, E*=10-70 MeV; 248Cm(21O, xn)264Rf/265Rf/266Rf/267Rf, E*=10-70 MeV; 248Cm(21O, xnα)261No/262No/263No, E*=10-70 MeV; 238U(28Mg, xn)261Rf/262Rf/263Rf, E*=25-65 MeV; 238U(28Mg, xnα)258No/259No/260No, E*=35-75 MeV; 244Pu(28Mg, xn)267Sg/268Sg/269Sg, E*=25-65 MeV; 244Pu(28Mg, xnα)264Rf/265Rf/266Rf, E*=35-75 MeV; 244Pu(30Mg, xn)269Sg/270Sg, E*=30-60 MeV; 244Pu(30Mg, xnα)266Rf/267Rf, E*=35-75 MeV; 249Bk(20O, xn)264Db/265Db/266Db/267Db/268Db, E*=10-70 MeV; 249Bk(20O, xnα)261Lr/262Lr/263Lr, E*=30-75 MeV; 249Bk(21O, xn)264Db/265Db/266Db/267Db/268Db/269Db, E*=10-70 MeV; 249Bk(21O, xnα)262Lr/263Lr/264Lr, E*=30-75 MeV; 248Cm(21F, xn)264Db/265Db/266Db/267Db, E*=10-70 MeV; 248Cm(21F, xnα)261Lr/262Lr/263Lr, E*=30-75 MeV; 248Cm(23F, xn)266Db/267Db/268Db/269Db/270Db, E*=10-70 MeV; 248Cm(23F, xnα)263Lr/264Lr/265Lr, E*=30-75 MeV; 244Pu(24Na, xn)263Db/264Db, E*=35-60 MeV; 244Pu(24Na, xnα)260Lr/261Lr, E*=40-75 MeV; 244Pu(25Na, xn)264Db/265Db/266Db/267Db, E*=15-65 MeV; 244Pu(25Na, xnα)261Lr/262Lr/263Lr, E*=35-75 MeV; 244Pu(27Na, xn)266Db/267Db/268Db/269Db, E*=15-65 MeV; 244Pu(27Na, xnα)263Lr/264Lr/265Lr, E*=30-75 MeV; 251Cf(20O, xn)266Sg/267Sg/268Sg/269Sg, E*=15-60 MeV; 251Cf(20O, xnα)263Rf/264Rf/265Rf, E*=30-75 MeV; 251Cf(21O, xn)267Sg/268Sg/269Sg/270Sg, E*=15-60 MeV; 251Cf(21O, xnα)264Rf/265Rf/266Rf, E*=30-75 MeV; 249Cf(21O, xn)265Sg/266Sg/267Sg/268Sg, E*=15-60 MeV; 249Cf(21O, xnα)262Rf/263Rf/264Rf, E*=30-75 MeV; 250Cf(21O, xn)266Sg/267Sg/268Sg/269Sg, E*=15-60 MeV; 250Cf(21O, xnα)263Rf/264Rf/265Rf, E*=30-75 MeV; 248Cm(24Ne, xn)267Sg/268Sg/269Sg/270Sg, E*=15-65 MeV; 248Cm(24Ne, xnα)264Rf/265Rf/266Rf, E*=30-75 MeV; 248Cm(25Ne, xn)268Sg/269Sg/270Sg/271Sg, E*=15-65 MeV; 248Cm(25Ne, xnα)265Rf/266Rf/267Rf, E*=30-75 MeV; 248Cm(26Ne, xn)269Sg/270Sg/271Sg/272Sg, E*=15-65 MeV; 248Cm(26Ne, xnα)266Rf/267Rf/268Rf, E*=30-75 MeV; calculated σ(E*) for xn and αxn reactions in various asymmetric hot fusion-evaporation reactions with radioactive beams, and compared with available experimental data. 248Cm(16C, 3n), E*=29.2 MeV; 248Cm(20O, 3nα), E*=48.3 MeV; 248Cm(21O, 4nα), E*=54.4 MeV; 248Cm(16C, n), E*=11.8 MeV; 244Pu(20O, n), E*=11.8 MeV; 244Pu(21O, 2n), E*=18.3 MeV; 244Pu(21O, n), E*=12.1 MeV; 249Bk(16C, 2n), E*=17.7 MeV; 249Bk(21O, 3nα), E*=44.8 MeV; 248Cm(23F, 4nα), E*=50.5 MeV; 244Pu(27Na, 4nα), E*=50.9 MeV; 249Bk(21O, 2nα), E*=40.8 MeV; 248Cm(23F, 3nα), E*=46.1 MeV; 244Pu(27Na, 3nα), E*=47.0 MeV; 248Cm(23F, 2nα), E*=40.8 MeV; 244Pu(27Na, 2nα), E*=42.1 MeV; 248Cm(20O, 5n), E*=46.4 MeV; 248Cm(20O, 4n), E*=38.7 MeV; 248Cm(21O, 5n), E*=43.6 MeV; 248Cm(20O, 2n), E*=17.7 MeV; 248Cm(21O, 3n), E*=24.6 MeV; 248Cm(25Ne, 3nα), E*=44.3 MeV; 248Cm(26Ne, 4nα), E*=50.5 MeV; 244Pu(30Mg, 4nα), E*=50.9 MeV; 248Cm(21O, n), E*=10.7 MeV; 248Cm(26Ne, 2nα), E*=40.4 MeV; 249Bk(20O, 5n), E*=45.9 MeV; 248Cm(21F, 5n), E*=48.2 MeV; 244Pu(25Na, 5n), E*=48.9 MeV; 249Bk(20O, 4n), E*=37.9 MeV; 249Bk(21O, 5n), E*=43.3 MeV; 248Cm(21F, 4n), E*=38.9 MeV; 248Cm(23F, 2n), E*=17.2 MeV; 251Cf(20O, 4n), E*=40.3 MeV; 249Cf(21O, 5n), E*=49.6 MeV; 250Cf(21O, 4n), E*=40.3 MeV; 251Cf(21O, 3n), E*=28.7 MeV; 248Cm(24Ne, 5n), E*=46.2 MeV; 249Cf(21O, 4n), E*=41.8 MeV; 248Cm(24Ne, 4n), E*=38.2 MeV; 248Cm(25Ne, 5n), E*=43.1 MeV; 248Cm(26Ne, 4n), E*=37.9 MeV; 244Pu(30Mg, 4n), E*=37.6 MeV; 248Cm(26Ne, 2n), E*=17.3 MeV; calculated evaporation residue cross sections. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.96.014609
Citations: PlumX Metrics

2017HO27      Phys.Rev. C 96, 064603 (2017)

J.Hong, C.A.Bertulani, A.T.Kruppa

Neutron removal from the deformed halo nucleus 31Ne

NUCLEAR REACTIONS 12C(31Ne, 30Ne), E=230 MeV/nucleon; calculated neutron knockout cross sections and longitudinal momentum distributions as function of deformation using a model to include deformed wave functions and a dynamical knockout formalism that includes the dependence on the nuclear orientation to study the neutron removal. Comparison with experimental data. 31Ne; deduced 3/2- for the deformed halo nucleus.

doi: 10.1103/PhysRevC.96.064603
Citations: PlumX Metrics

2017TS02      Phys.Rev. C 95, 044614 (2017)

M.B.Tsang, J.Estee, H.Setiawan, W.G.Lynch, J.Barney, M.B.Chen, G.Cerizza, P.Danielewicz, J.Hong, P.Morfouace, R.Shane, S.Tangwancharoen, K.Zhu, T.Isobe, M.Kurata-Nishimura, J.Lukasik, T.Murakami, Z.Chajecki, for the S|pRIT Collaboration

Pion production in rare-isotope collisions

NUCLEAR REACTIONS 132Sn(124Sn, X), 108Sn(112Sn, X), E=300, 200 MeV/nucleon; calculated center-of-mass energy spectra for neutrons, protons, tritons, 3He, π- and π+ particles emitted in central collisions, comparison of π-+ spectral and isoscaling ratios in the two reactions, pion energy spectra. Simulations used the Boltzmann-Uehling-Uhlenbeck transport model.

doi: 10.1103/PhysRevC.95.044614
Citations: PlumX Metrics

2016HO19      Phys.Rev. C 94, 044606 (2016)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of production of transfermium nuclei in charged-particle evaporation channels

NUCLEAR REACTIONS 238U(12C, 4n), E(cm)=64.3 MeV; 238U(12C, 5n), E(cm)=70.0 MeV; 238U(12C, 6n), E(cm)=79.5 MeV; 238U(12C, 7n), E(cm)=90.4 MeV; 238U(12C, 8n), E(cm)=109.5 MeV; 240Pu(12C, 4n), E(cm)=67.6 MeV; 233U(16O, 4n), E(cm)=87.0 MeV; 233U(16O, 5n), E(cm)=90.8 MeV; 232Th(20Ne, 5n), E(cm)=107.8 MeV; 232Th(20Ne, 6n), E(cm)=111.4 MeV; 232Th(22Ne, 7n), E(cm)=121.2 MeV; 232Th(22Ne, 8n), E(cm)=129.4 MeV; 248Cm(15N, 4n), E(cm)=76.4 MeV; 248Cm(15N, 5n), E(cm)=82.0 MeV; 232Th(27Al, 5n), (27Al, 6n), E(cm)=136.0 MeV; 249Bk(15N, 4n), E(cm)=75.5 MeV; 242Pu(22Ne, 4n), E(cm)=104.9 MeV; 244Pu(22Ne, 4n), (22Ne, 5n), E(cm)=104.9 MeV; 249Bk(18O, 4n), E(cm)=86.7 MeV; 249Bk(18O, 5n), E(cm)=92.3 MeV; 248Cm(19F, 5n), E(cm)=95.8 MeV; 241Am(22Ne, 4n), E(cm)=108.1 MeV; 243Am(22Ne, 4n), E(cm)=106.4 MeV; 236U(27Al, 5n), E(cm)=138.2 MeV; 236U(27Al, 6n), E(cm)=146.3 MeV; 232Th(31P, 5n), E(cm)=151.4 MeV; 249Cf(18O, 4n), E(cm)=88.6 MeV; 238U(30Si, 4n), E(cm)=133.0 MeV; 238U(30Si, 5n), E(cm)=144.0 MeV; 249Bk(22Ne, 4n), (22Ne, 5n), E(cm)=113.0 MeV; calculated evaporation residue σ, and compared with available experimental data. 242Pu(12C, 4n), (12C, 4nα), (12C, 5nα), (18O, 4n), (18O, 5n), (18O, 3np), (22Ne, 2np), (30Si, nα), (30Si, 2nα), (30Si, 2np), (30Si, 3np), (36S, 2nα), (36S, 3nα), (36S, 4nα), 238U(16O, 4n), (16O, 5n), (16O, 6n), (16O, 4nα), (16O, 5nα), (22Ne, 4n), (22Ne, 5n), (22Ne, 6n), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), (30Si, 2np), (30Si, 3np), (36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), (36S, 3np), 248Cm(18O, 4n), (18O, 5n), (18O, 6n), (18O, nα), (18O, 2nα), (18O, 3nα), (18O, np), (18O, 2np), (18O, 3np), (18O, 4np), (19F, nα), (19F, 2nα), (19F, 2np), (22Ne, 5n), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, 5np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), (15N, np), (15N, 2np), (26Mg, npα), (26Mg, 2npα), (26Mg, 3npα), (26Mg, 4npα), (26Mg, nα), (26Mg, 2nα), (26Mg, 3nα), (26Mg, 4nα), (26Mg, 2np), (26Mg, 3np), (26Mg, 4np), (27Al, 2nα), (27Al, 3nα), (27Al, 4nα), (27Al, 5nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), (30Si, 5nα), (31P, 2nα), (31P, 3nα), (31P, 4nα), 249Cf(15N, 4n), (15N, 2nα), (15N, 3nα), (18O, np), (18O, 2np), 208Pb(48Ca, np), (48Ca, 2np), (48Ca, 3np), (48Ca, 4np), (48Ca, nα), (48Ca, 2nα), (48Ca, 3nα), (48Ca, 4nα), 234U(22Ne, np), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), 238U(22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 4nα), 234U(22Ne, np), (30Si, 2np), (30Si, 3np), (36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), (36S, 3np), 244Pu(18P, np), (18P, 2np), (19F, 2np), (22Ne, nα), (22Ne, 2nα), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (23Na, 2nα), (26Mg, nα), (26Mg, 2nα), (26Mg, 2np), (26Mg, 3np), (26Mg, 4np), (26Mg, 5np), 249Bk(15N, np), (15N, 2np), (18O, nα), (18O, 2nα), (18O, np), (18O, 2np), (22Ne, nα), (22Ne, 2nα), (22Ne, 3nα), (22Ne, 2np), (22Ne, 3np), (22Ne, 4np), (26Mg, 2α), (26Mg, n2α), (26Mg, 2n2α), (26Mg, nα), (26Mg, 2nα), (26Mg, 3nα), (26Mg, 4nα), (26Mg, 5nα), (27Al, 2nα), (27Al, 3nα), (27Al, 4nα), (30Si, nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), (30Si, 5nα), 235U(36S, nα), (36S, 2np), 233U(36S, 2np), 245Cm(30Si, nα), (30Si, 2nα), (30Si, 3nα), (30Si, 4nα), 240Pu(36S, nα), (36S, 2nα), (36S, 3nα), (36S, 4nα), E*=20-90 MeV; calculated production σ(ECN) in xn, pxn, αxn channels using dinuclear system (DNS) model, and compared with available experimental data. 259,260Md, 260,261No, 261,262,263,264Lr, 264,265Rf, 264,265,266,267,268Db, 266,267,268,269Sg, 267,268,269,270,271Bh, 267,268,269,270,271,272,273,274Hs, 270,271,272,273,274Mt; calculated production σ in pxn and αxn evaporation channels of the asymmetric hot fusion reactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.94.044606
Citations: PlumX Metrics

2016HO22      Eur.Phys.J. A 52, 305 (2016)

J.Hong, G.G.Adamian, N.V.Antonenko

Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

NUCLEAR REACTIONS 232Th(27Al, xn), (31P, xn), E*≈25-70 MeV;233,235,238U(28Si, xn), (29Si, xn), (30Si, xn), E*≈25-70 MeV;235U(36S, 3n), E*=29-47 MeV;237Np(36S, 4n), E*=35-61 MeV;237Np(34S, 4n), E*=40-59 MeV;240Pu(36S, 3n), E*=26-51 MeV;240Pu(36S, 4n), E*=36-56 MeV;242Pu(30Si, 4n), E*=39-57 MeV;242Pu(36S, 3n), E*=28-49 MeV;242Pu(36S, 4n), E*=34-55 MeV;242Pu(36S, 5n), E*=44-60 MeV;244Pu(29Si, 5n), E*=50-61 MeV;241Am(34S, 4n), E*=41-53 MeV;241Am(36S, 3n), E*=28-45 MeV;241Am(36S, 4n), E*=36-53 MeV;245Cm(36S, 2nα), E*=36-54 MeV;245Cm(36S, 3nα), E*=42-64 MeV;248Cm(15N, xn), (19F, xn), E*≈25-65 MeV;(27Al, 3n), E*=28-39 MeV;248Cm(27Al, 4n), E*=36-58 MeV;249Bk(15N, xn), (18O, xn), (22Ne, xn);E*≈25-63 MeV;249Bk(26Mg, 3n), E=26-45 MeV;249Bk(26Mg, 4n), E*=34-54 MeV;249Cf(18O, xn), E*=25-62 MeV[x=3-5 for all nuclei];249Cf(30Si, 3n), E*=29-49 MeV;249Cf(30Si, 4n), E*=39-57 MeV;249Cf(36S, 2n), E*=20-36 MeV;249Cf(36S, 3n), E*=29-49 MeV;249Cf(36S, 4n), E*=40-53 MeV;249Cf(30Si, nα), E*=26-49 MeV;249Cf(30Si, 3nα), E*=42-68 MeV; calculated evaporation residue σ; deduced optimal conditions for superheavy nuclei synthesis. Few cross sections compared to available data.

doi: 10.1140/epja/i2016-16305-9
Citations: PlumX Metrics

2015HO08      Phys.Rev. C 92, 014617 (2015)

J.Hong, G.G.Adamian, N.V.Antonenko

Influence of entrance channel on the production of hassium isotopes

NUCLEAR REACTIONS 226Ra(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), 232Th(40Ar, 3n), (40Ar, 4n), (40Ar, 5n), 238U(36S, 3n), (36S, 4n), (36S, 5n), (34S, 3n), (34S, 4n), (34S, 5n), (26Mg, 3n), (26Mg, 4n), (26Mg, 5n), 248Cm(26Mg, 3n), (26Mg, 4n), (26Mg, 5n), (25Mg, 3n), (25Mg, 4n), (25Mg, 5n), 244Pu(30Si, 3n), (30Si, 4n), (30Si, 5n), 249Cf(22Ne, 3n), (22Ne, 4n), (22Ne, 5n), E near and sub-barrier energies; calculated effective capture cross section and fusion probability PCN, survival probabilities as function of the excitation energy of the compound nucleus, σ for 3n-, 4n- and 5n-channels leading to production of 266,267,268,269,270,271Hs isotopes. Dinuclear system (DNS) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.014617
Citations: PlumX Metrics

2014HO06      Phys.Rev. C 89, 034905 (2014)

J.Hong, P.H.Diamond

Anomalous viscosity of the quark-gluon plasma

doi: 10.1103/PhysRevC.89.034905
Citations: PlumX Metrics

2014HO13      Phys.Rev. C 90, 024605 (2014)

J.Hong, P.Danielewicz

Subthreshold pion production within a transport description of central Au + Au collisions

doi: 10.1103/PhysRevC.90.024605
Citations: PlumX Metrics

2012HO14      Phys.Rev. C 85, 064903 (2012)

J.Hong, D.Teaney, P.M.Chesler

Wake of a heavy quark in non-Abelian plasmas: Comparing kinetic theory and the anti-de Sitter space/conformal field theory correspondence

doi: 10.1103/PhysRevC.85.064903
Citations: PlumX Metrics

2011NU01      Phys.Rev. C 83, 034610 (2011)

F.M.Nunes, A.Deltuva, J.Hong

Improved description of 34, 36, 46Ar( p, d) transfer reactions

NUCLEAR REACTIONS 1H(34Ar, d), (36Ar, d), (46Ar, d), E=33 MeV/nucleon; analyzed σ(θ), spectroscopic factors using finite range adiabatic wave approximation (ADWA) and Full three-body Faddeev calculations. Neutron-proton asymmetry dependence from knockout measurements.

doi: 10.1103/PhysRevC.83.034610
Citations: PlumX Metrics

2010HO14      Phys.Rev. C 82, 044908 (2010)

J.Hong, D.Teaney

Spectral densities for hot QCD plasmas in a leading-log approximation

doi: 10.1103/PhysRevC.82.044908
Citations: PlumX Metrics

Back to query form