NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = V.O.Nesterenko

Found 71 matches.

Back to query form

2024NE01      Eur.Phys.J. A 60, 28 (2024)

V.O.Nesterenko, P.I.Vishnevskiy, P.-G.Reinhard, A.Repko, J.Kvasil

Microscopic analysis of dipole electric and magnetic strengths in 156Gd

NUCLEAR STRUCTURE 156Gd; calculated deformation parameters, proton and neutron pairing gaps, QRPA E1 photoabsorption and M1 SFGR strengths within a fully self-consistent Quasiparticle Random Phase Approximation (QRPA) with Skyrme forces SVbas, SLy6 and SG2; deduced the effect of the central exchange term from the Skyrme functional. Comparison with available data.

doi: 10.1140/epja/s10050-024-01251-4
Citations: PlumX Metrics

2023KN03      Phys.Rev. C 107, 044313 (2023)

I.Knapova, A.Couture, C.Fry, J.Kvasil, M.Krticka, V.O.Nesterenko, J.M.O'Donnell, C.J.Prokop, G.Rusev, J.L.Ullmann, S.Valenta

Photon strength functions, level densities, and isomeric ratio in 168Er from the radiative neutron capture measured at the DANCE facility

NUCLEAR REACTIONS 168Er(n, γ), E=15-350 eV; measured neutron Time-of-Flight, Eγ, Iγ, γγ-coin, total γ-sum energy, multistep γ-cascade spectra; deduced γ- multiplicity, isomeric ratios, resonances, total radiative width of s-wave resonances. 168Er; deduced isomer levels, T1/2, nuclear level density (NLD), photon strength functions (PSFs), total B(M1) strength. Comparison to experimental data obtained by Oslo method and in NRF experiments. Confirmed scissor mode resonance-like structure in the M1 PSF with its centroid between 3.1 and 3.3 MeV and a width of about 1 MeV. Analysis of multistep cascade fluctuations indicate possible invalidity of the assumed Porter-Thomas distribution of the primary transition intensities. Comparison to TALYS and DICEBOX simulations. Highly segmented γ-ray calorimeter Detector for Advanced Neutron Capture Experiments DANCE (160 BaF2 scintillation crystals) at at the moderated spallation neutron source LANSCE (Los Alamos Neutron Science Center).

doi: 10.1103/PhysRevC.107.044313
Citations: PlumX Metrics

2022BA04      Phys.Rev. C 105, 024311 (2022)

A.Bahini, V.O.Nesterenko, I.T.Usman, P.von Neumann-Cosel, R.Neveling, J.Carter, J.Kvasil, A.Repko, P.Adsley, N.Botha, J.W.Brummer, L.M.Donaldson, S.Jongile, T.C.Khumalo, M.B.Latif, K.C.W.Li, P.Z.Mabika, P.T.Molema, C.S.Moodley, S.D.Olorunfunmi, P.Papka, L.Pellegri, B.Rebeiro, E.Sideras-Haddad, F.D.Smit, S.Triambak, J.J.van Zyl

Isoscalar giant monopole resonance in 24Mg and 28Si: Effect of coupling between the isoscalar monopole and quadrupole strength

NUCLEAR REACTIONS 24Mg, 28Si(α, α'), E=196 MeV; measured Eα, Iα, angular distributions; deduced σ(θ). 24Mg, 28Si; deduced isoscalar monopole (IS0) strength distribution, coupling between IS0 and isoscalar quadrupole (IS2) strength. Multipole decomposition and DWBA analysis. Comparison with QRPA calculations and with previous experimental data. K600 magnetic spectrometer at iThemba LABS.

doi: 10.1103/PhysRevC.105.024311
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD1019. Data from this article have been entered in the XUNDL database. For more information, click here.

2022NE13      Phys.Atomic Nuclei 85, 858 (2022)

V.O.Nesterenko, P.I.Vishnevskiy, A.Repko, J.Kvasil

Low-Energy M1 States in Deformed Nuclei: Spin Scissors or Spin-Flip?

NUCLEAR STRUCTURE 164Dy, 58Ni; calculated low-energy M1 states in the framework of fully self-consistent Quasiparticle Random-Phase Approximation (QRPA) with various Skyrme forces; deduced the low-energy spin-scissors M1 resonance suggested within Wigner Function Moments (WFM) approach, possible relation of this resonance

doi: 10.1134/S1063778823010404
Citations: PlumX Metrics

2021AD09      Phys.Rev. C 103, 044315 (2021)

P.Adsley, V.O.Nesterenko, M.Kimura, L.M.Donaldson, R.Neveling, J.W.Brummer, D.G.Jenkins, N.Y.Kheswa, J.Kvasil, K.C.W.Li, D.J.Marin-Lambarri, Z.Mabika, P.Papka, L.Pellegri, V.Pesudo, B.Rebeiro, P.-G.Reinhard, F.D.Smit, W.Yahia-Cherif

Isoscalar monopole and dipole transitions in 24Mg, 26Mg, and 28Si

NUCLEAR REACTIONS 24,26Mg, 28Si(α, α'), E=200 MeV; measured E(α), I(α), differential σ(θ) using K600 magnetic spectrometer for momentum analysis of α particles, and two multiwire drift chambers and two plastic scintillators at the iThemba LABS accelerator facility. 24,26Mg, 28Si; deduced levels, J, π, deformation parameters, percentage of the energy weighted sum rule (EWSR) for a level, B(E1), strength distributions for isoscalar dipole (IS1) and isoscalar monopole transitions (IS0), configurations. Comparison with Skyrme quasiparticle random-phase approximation (QRPA) and antisymmetrized molecular dynamics+generator coordinate method (AMD+GCM) calculations, and with experimental data in the ENSDF database.

doi: 10.1103/PhysRevC.103.044315
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD1003. Data from this article have been entered in the XUNDL database. For more information, click here.

2021NE04      Phys.Rev. C 103, 064313 (2021)

V.O.Nesterenko, P.I.Vishnevskiy, J.Kvasil, A.Repko, W.Kleinig

Microscopic analysis of low-energy spin and orbital magnetic dipole excitations in deformed nuclei

NUCLEAR STRUCTURE 160,162,164Dy, 232Th; calculated energies of the first 2+ states, proton and neutron pairing gaps, parameter β of the equilibrium axial quadrupole deformation, B(M1) and B(E2) strengths, orbital, spin, and total M1 strengths at spin-scissors resonance (SSR) and ordinary orbital scissors resonance (OSR) energy ranges, M1 spin-flip giant resonances; deduced that deformation not the principle origin of the low-energy spin M1 states but only a factor affecting their features. Fully self-consistent Skyrme quasiparticle random phase approximation (QRPA) method using SkM*, SVbas, and SG2 Skyrme forces, within the Wigner function moments (WFM) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.064313
Citations: PlumX Metrics

2020DO11      Phys.Rev. C 102, 064327 (2020)

L.M.Donaldson, J.Carter, P.von Neumann-Cosel, V.O.Nesterenko, R.Neveling, P.-G.Reinhard, I.T.Usman, P.Adsley, C.A.Bertulani, J.W.Brummer, E.Z.Buthelezi, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, M.Jingo, N.Y.Kheswa, W.Kleinig, C.O.Kureba, J.Kvasil, M.Latif, K.C.W.Li, J.P.Mira, F.Nemulodi, P.Papka, L.Pellegri, N.Pietralla, V.Yu.Ponomarev, B.Rebeiro, A.Richter, N.Yu.Shirikova, E.Sideras-Haddad, A.V.Sushkov, F.D.Smit, G.F.Steyn, J.A.Swartz, A.Tamii

Fine structure of the isovector giant dipole resonance in 142-150Nd and 152Sm

NUCLEAR REACTIONS 142,144,146,148,150Nd, 152Sm(p, p'), E=200 MeV from the Separated Sector Cyclotron (SSC) at iThemba LABS; measured reaction products, E(p), I(p), time-of-flight using the K600 magnetic spectrometer, two multiwire drift chambers (MWDCs) and two plastic scintillators; deduced double-differential σ(E*=10-22 MeV), equivalent photoabsorption spectra, excitation-energy spectra, wavelet power spectra, fine structure of the isovector giant-dipole resonance (IVGDR), fragmentation of the one-particle-one-hole (1p1h) strength into several dominant transitions serving as doorway states in the spherical and intermediate spherical/deformed nuclei. Comparison with predictions of quasiparticle phonon model (QPM), and Skyrme separable random phase approximation (SSRPA).

doi: 10.1103/PhysRevC.102.064327
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0860.

2019KV01      Eur.Phys.J. A 55, 213 (2019)

J.Kvasil, A.Repko, V.O.Nesterenko

NUCLEAR STRUCTURE 154Sm; calculated QRPA strength function for E10(T=0) transitions with poluted strength and using Spuriosity Elimination Before RPA (SEBRPA) procedure, also strength functions for E1μ transitions, isoscalar and icovector QRPA strength functions for compression E1μ transitions and for toroidal E1μ transitions.

doi: 10.1140/epja/i2019-12898-7
Citations: PlumX Metrics

2019NE07      Phys.Rev. C 100, 064302 (2019)

V.O.Nesterenko, A.Repko, J.Kvasil, P.-G.Reinhard

Individual dipole toroidal states: Main features and search in the (e, e') reaction

NUCLEAR REACTIONS 24Mg(e, e'), qeffective<3 fm-1; calculated B(E1), B(M2), B(E3), transversal form factors, cross sections for toroidal and compressional states (TS and CS) and the giant-dipole resonance (GDR) using quasiparticle random-phase approximation (QRPA) with Skyrme forces. Comparison with available experimental data.

doi: 10.1103/PhysRevC.100.064302
Citations: PlumX Metrics

2019RE02      Phys.Rev. C 99, 044307 (2019)

A.Repko, J.Kvasil, V.O.Nesterenko

Elimination of spurious modes within quasiparticle random-phase approximation

NUCLEAR STRUCTURE 154Sm; calculated isoscalar and isovector E0, E1, E2, and M1 strength functions with and without elimination of spurious admixtures (SA) using the quasiparticle random-phase approximation (QRPA) with SLy6 parametrization. Comparison with experimental values and other theoretical predictions. Proposed a general method for elimination of spurious admixture (SA) from RPA/QRPA intrinsic nuclear excitations.

NUCLEAR REACTIONS 154Sm(γ, X), E=0-40 MeV; calculated photoabsorption σ(E) using QRPA approach with Skyrme forces, and compared with experimental data.

doi: 10.1103/PhysRevC.99.044307
Citations: PlumX Metrics

2019RE10      Eur.Phys.J. A 55, 242 (2019)

A.Repko, V.O.Nesterenko, J.Kvasil, P.-G.Reinhard

Systematics of toroidal dipole modes in Ca, Ni, Zr, and Sn isotopes

doi: 10.1140/epja/i2019-12770-x
Citations: PlumX Metrics

2018DO01      Phys.Lett. B 776, 133 (2018)

L.M.Donaldson, C.A.Bertulani, J.Carter, V.O.Nesterenko, P.von Neumann-Cosel, R.Neveling, V.Yu.Ponomarev, P.-G.Reinhard, I.T.Usman, P.Adsley, J.W.Brummer, E.Z.Buthelezi, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, M.Jingo, W.Kleinig, C.O.Kureba, J.Kvasil, M.Latif, K.C.W.Li, J.P.Mira, F.Nemulodi, P.Papka, L.Pellegri, N.Pietralla, A.Richter, E.Sideras-Haddad, F.D.Smit, G.F.Steyn, J.A.Swartz, A.Tamii

Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

NUCLEAR REACTIONS 144,146,148,150Nd, 152Sm(p, p'), E=200 MeV; measured reaction products, Eγ, Iγ; deduced σ, σ(θ, E), σ(θ). Comparison with DWBA calculations.

doi: 10.1016/j.physletb.2017.11.025
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0860. Data from this article have been entered in the XUNDL database. For more information, click here.

2018NE05      Phys.Rev.Lett. 120, 182501 (2018)

V.O.Nesterenko, A.Repko, J.Kvasil, P.-G.Reinhard

Individual Low-Energy Toroidal Dipole State in 24Mg

NUCLEAR STRUCTURE 24Mg; calculated toroidal and compression B(E1), QRPA densities, low-energy dipole excitations within the Skyrme quasiparticle random phase approximation for axial nuclei. Comparison with available data.

doi: 10.1103/PhysRevLett.120.182501
Citations: PlumX Metrics

2017RE11      Eur.Phys.J. A 53, 221 (2017)

A.Repko, J.Kvasil, V.O.Nesterenko, P.-G.Reinhard

Pairing and deformation effects in nuclear excitation spectra

NUCLEAR STRUCTURE 152,154,156Sm; calculated γ-vibrational states energy, J, π, B(E2), QRPA transitional densities, deformation, photoabsorption σ vs E, compression isoscalar γ E1 strength (ISGDR) using QRPA with mean field treated within HF+BCS. Compared with available data.

doi: 10.1140/epja/i2017-12406-3
Citations: PlumX Metrics

2016KV01      Phys.Rev. C 94, 064302 (2016)

J.Kvasil, V.O.Nesterenko, A.Repko, W.Kleinig, P.-G.Reinhard

Deformation-induced splitting of the isoscalar E0 giant resonance: Skyrme random-phase-approximation analysis

NUCLEAR STRUCTURE 142,146,150Nd, 154Sm, 106,108,110,112,114,116Cd, 164Dy, 168Er, 172Yb, 238U, 242,254,270No, 264,284,304Fl; calculated strengths and other features of isoscalar giant monopole resonance (ISGMR) in deformed nuclei using Skyrme quasiparticle random-phase approximation (QRPA). Systematics for medium, rare-earth, actinide and superheavy nuclides. Comparison with available experimental data.

doi: 10.1103/PhysRevC.94.064302
Citations: PlumX Metrics

2016NE06      Phys.Rev. C 93, 034301 (2016)

V.O.Nesterenko, V.G.Kartavenko, W.Kleinig, J.Kvasil, A.Repko, R.V.Jolos, P.-G.Reinhard

Skyrme random-phase-approximation description of lowest Kπ = 2+γ states in axially deformed nuclei

NUCLEAR STRUCTURE 150,152Nd, 152,154,156Sm, 154,156,158,160Gd, 158,160,162,164,166Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 168,170,172,174,176,178,180Hf, 178,180,182,184,186W, 232,234,236,238U; calculated energies and B(E2) of the lowest quadrupole γ-vibrational Kπ=2+ states in axially deformed rare-earth and uranium even-even nuclei. 152Nd, 164Dy, 172Yb, 238U; calculated isoscalar strength function for the ISGQR. Separable random-phase-approximation (SRPA) method based on the Skyrme functional with the Skyrme forces SV-bas and SkM*, and corrected by using pairing blocking effect. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034301
Citations: PlumX Metrics

2016PA04      Phys.Rev. C 93, 014318 (2016)

H.Pai, T.Beck, J.Beller, R.Beyer, M.Bhike, V.Derya, U.Gayer, J.Isaak, Krishichayan, J.Kvasil, B.Loher, V.O.Nesterenko, N.Pietralla, G.Martinez-Pinedo, L.Mertes, V.Yu.Ponomarev, P.-G.Reinhard, A.Repko, P.C.Ries, C.Romig, D.Savran, R.Schwengner, W.Tornow, V.Werner, J.Wilhelmy, A.Zilges, M.Zweidinger

Magnetic dipole excitations of 50Cr

NUCLEAR REACTIONS 50Cr(γ, γ'), (polarized γ, γ'), E<9.7 MeV bremsstrahlung; measured Eγ, Iγ, γ(θ), γ-polarization asymmetry, integrated σ, γ-branching ratios. Experiments performed at Darmstadt S-DALINAC and TUNL High Intensity γ-ray Source (HIγS) facilities. 50Cr; deduced levels, J, π, B(M1), reduced widths, configurations, M1 spin-flip transition. Discussed isovector rotation-like oscillations of 1+ states versus scissors-type mode. Comparison with Skyrme quasiparticle random-phase-approximation (QRPA) and the large-scale shell model (LSSM) calculations.

doi: 10.1103/PhysRevC.93.014318
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2015BE20      Phys.Rev. C 92, 014329 (2015)

A.N.Bezbakh, V.G.Kartavenko, G.G.Adamian, N.V.Antonenko, R.V.Jolos, V.O.Nesterenko

Quasiparticle structure of superheavy nuclei along the α-decay chain of 288115

NUCLEAR STRUCTURE 268Db, 272Bh, 276Mt, 280Rg, 284Nh, 288Mc; calculated one-quasiproton and one-quasineutron spectra, low-lying two-quasiparticle (neutron-proton) spectra using microscopic Skyrme Hartree-Fock (SHF) approach, and modified two-center shell model (TCSM), with pairing treated at BCS level.

RADIOACTIVITY 272Bh, 276Mt, 280Rg, 284Nh, 288Mc(α); calculated Q(α) for ground state and isomer decays. 268Db, 272Bh, 276Mt, 280Rg, 284Nh; calculated decay schemes following α decays, predicted transitions, multipolarities, isomers, two-quasiparticle configurations using microscopic Skyrme Hartree-Fock (SHF) approach, and modified two-center shell model (TCSM), with pairing treated at BCS level. Predicted strong E1, M1 and M2 transitions in 276Mt. Comparison with experimental Q(α) values and available α spectra.

doi: 10.1103/PhysRevC.92.014329
Citations: PlumX Metrics

2015KV01      Phys.Scr. 90, 114007 (2015)

J.Kvasil, D.Bozik, A.Repko, P.-G.Reinhard, V.O.Nesterenko, W.Kleinig

Monopole giant resonance in 100-132Sn, 144Sm and 208Pb

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 144Sm, 208Pb; calculated giant monopole resonance (GMR) strength functions. Comparison with available data.

doi: 10.1088/0031-8949/90/11/114007
Citations: PlumX Metrics

2014KV01      Phys.Scr. 89, 054023 (2014)

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard

Deformation effects in toroidal and compression dipole excitations of 170Yb: Skyrme RPA analysis

NUCLEAR REACTIONS 170Yb(γ, X), E<40 MeV; calculated photoabsorption σ, strength functions; deduced effects of nuclear axial quadrupole deformation on the isoscalar dipole compression and toroidal modes. Skyrme energy-density functional.

doi: 10.1088/0031-8949/89/5/054023
Citations: PlumX Metrics

2014RE02      Phys.Rev. C 89, 024321 (2014)

P.-G.Reinhard, V.O.Nesterenko, A.Repko, J.Kvasil

Nuclear vorticity in isoscalar E1 modes: Skyrme-random-phase approximation analysis

NUCLEAR STRUCTURE 208Pb; calculated E1 strength functions, transition densities, E1 current and velocity fields, form factors for isoscalar 1- states in toroidal and compression modes using Skyrme SLy6 random phase approximation (RPA) model; analyzed nuclear vorticity (hydrodynamical and Rawenthall-Wambach).

doi: 10.1103/PhysRevC.89.024321
Citations: PlumX Metrics

2013KV01      Phys.Scr. T154, 014019 (2013)

J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, N.Lo Iudice

Toroidal, compression and vortical dipole strengths in 124Sn

NUCLEAR STRUCTURE 100,124,132Sn; calculated toroidal, vortical and compression dipole strength functions. Self-consistent separable Skyrme-RPA approach.

doi: 10.1088/0031-8949/2013/T154/014019
Citations: PlumX Metrics

2013KV02      Eur.Phys.J. A 49, 119 (2013)

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard, N.Lo Iudice

Toroidal, compression, and vortical dipole strengths in 144-154Sm: Skyrme-RPA exploration of the deformation effect

NUCLEAR STRUCTURE 144,148,150,152,154Sm; calculated dipole strength using RPA with different Skyrme forces and HF/BCS, binding energy, Q, photoabsorption σ vs energy. Compared with available data.

doi: 10.1140/epja/i2013-13119-3
Citations: PlumX Metrics

2013RE03      Phys.Rev. C 87, 024305 (2013)

A.Repko, P.-G.Reinhard, V.O.Nesterenko, J.Kvasil

Toroidal nature of the low-energy E1 mode

NUCLEAR STRUCTURE 208Pb; calculated isoscalar and isovector low-energy E1 strength function S(E), summed current transition densities (CTD), proton and neutron transition densities (TD) for pygmy dipole resonance (PDR). Toroidal T=0 resonance. Fully self-consistent Skyrme-random-phase approximation (RPA) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.024305
Citations: PlumX Metrics

2012KV01      Int.J.Mod.Phys. E21, 1250041 (2012)

J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard

E1 strength in light nuclei: Skyrme RPA analysis

NUCLEAR REACTIONS 48Ca, 50Ti, 52Cr, 54Fe(γ, X), E<30 MeV; calculated photoabsorption σ, giant dipole resonance. SRPA approach based on the Skyrme functional, comparison with available data.

doi: 10.1142/S0218301312500413
Citations: PlumX Metrics

2011KV01      Int.J.Mod.Phys. E20, 281 (2011)

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard

Skyrme-Hartree-Fock description of the dipole strength in neutron-rich tin isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Sn; analyzed low-energy E1 strengths, neutron and proton quadrupole deformations.

doi: 10.1142/S0218301311017636
Citations: PlumX Metrics

2011KV02      Phys.Rev. C 84, 034303 (2011)

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, P.Vesely

General treatment of vortical, toroidal, and compression modes

NUCLEAR STRUCTURE 208Pb; calculated isoscalar and isovector vortical, toroidal, and compression 1- dipole resonances. Density functional theory with Skyrme force SLy6. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.034303
Citations: PlumX Metrics

2010NE04      Int.J.Mod.Phys. E19, 558 (2010)

V.O.Nesterenko, J.Kvasil, P.Vesely, W.Kleinig, P.-G.Reinhard

Skyrme-random-phase-approximation description of spin-flip and orbital M1 giant resonances

NUCLEAR STRUCTURE 142,144,146,148,150,152Nd; calculated spin-flip and orbital M1 strength functions; deduced appearance of scissors mode. Self-consistent separable random-phase-approximation model (SRPA).

doi: 10.1142/S0218301310014972
Citations: PlumX Metrics

2010PO12      Eur.Phys.J. A 46, 299 (2010)

K.J.Pototzky, J.Erler, P.-G.Reinhard, V.O.Nesterenko

Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

NUCLEAR STRUCTURE Z=16-92; calculated binding energies, neutron pairing gaps and separation energies for odd nuclei, 207Pb, 132,133Sn excitation neutron spectra. Skyrme-Hartree-Fock (SHF) method with BCS pairing.

doi: 10.1140/epja/i2010-11045-6
Citations: PlumX Metrics

2009KV01      Int.J.Mod.Phys. E18, 975 (2009)

J.Kvasil, P.Vesely, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, S.Frauendorf

Skyrme-random-phase-approximation description of E1 strength in 92-100Mo

NUCLEAR STRUCTURE 92,94,96,98,100Mo; calculated mass excess using Skyrme forces.

NUCLEAR REACTIONS 92,98,100Mo(γ, γ'), (γ, p), (γ, xn), E=5-30 MeV; calculated σ using self-consistent RPA with Skyrme forces. Compared to data.

doi: 10.1142/S0218301309013129
Citations: PlumX Metrics

2009VE07      Phys.Rev. C 80, 031302 (2009)

P.Vesely, J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomarev

Skyrme random-phase-approximation description of spin-flip M1 giant resonance

NUCLEAR STRUCTURE 48Ca, 158Gd, 208Pb, 238U; calculated spin-flip M1 giant resonance energies and strength distributions using random-phase approximation (RPA) calculations and Skyrme energy functionals with a set of eight Skyrme parametrizations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.031302
Citations: PlumX Metrics

2008KL03      Phys.Rev. C 78, 044313 (2008)

W.Kleinig, V.O.Nesterenko, J.Kvasil, P.-G.Reinhard, P.Vesely

Description of the dipole giant resonance in heavy and superheavy nuclei within Skyrme random-phase approximation

NUCLEAR STRUCTURE 156,160Gd, 166,168Er, 176,178,180Hf, 182,184,186W, 170,172,174,176Yb, 186,188,190,192Os, 232Th, 234,236,238U, 242,248,254,262,270No, 264,274,284,294,304Fl, 280,288,294,304,312120; calculated isovector giant dipole resonance strengths, energies and widths. Skyrme random-phase approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.044313
Citations: PlumX Metrics

2008NE05      Int.J.Mod.Phys. E17, 89 (2008)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard

TDDFT with Skyrme forces: effect of time-odd densities on electric giant resonances

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156,158Nd; calculated isovector E1, isoscalar E2 giant resonance strengths using the Skyrme forces. Comparisons with experimental data.

doi: 10.1142/S0218301308009586
Citations: PlumX Metrics

2007NE04      Int.J.Mod.Phys. E16, 624 (2007)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard

Giant dipole resonance in deformed nuclei: dependence on Skyrme forces

NUCLEAR STRUCTURE 150Nd, 238U; calculated GDR strength distributions. Separable RPA method, four Skyrme forces compared.

doi: 10.1142/S0218301307006071
Citations: PlumX Metrics

2006NE10      Phys.Rev.C 74, 064306 (2006)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard, D.S.Dolci

Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei

NUCLEAR STRUCTURE 154Sm, 238U, 254No; calculated GDR and GQR strength distributions, related features. Self-consistent separable RPA.

doi: 10.1103/PhysRevC.74.064306
Citations: PlumX Metrics

2004NE12      Phys.Rev. C 70, 057304 (2004)

V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, V.V.Pashkevich, W.Kleinig, J.Mesa

Momentum distribution in heavy deformed nuclei: Role of effective mass

NUCLEAR STRUCTURE 238U; calculated proton states momentum distributions, role of deformation and effective mass. Self-consistent Skyrme-Hartree-Fock and Woods-Saxon models.

doi: 10.1103/PhysRevC.70.057304
Citations: PlumX Metrics

2003LI25      Phys.Rev. C 68, 014615 (2003)

V.P.Likhachev, J.D.T.Arruda-Neto, W.R.Carvalho, Jr., A.Deppman, I.G.Evseev, F.Garcia, M.S.Hussein, L.F.R.Macedo, A.Margaryan, J.Mesa, V.O.Nesterenko, O.Rodriguez, S.A.Pashchuk, H.R.Schelin, M.S.Vaudeluci

Inclusive quasifree electrofission cross section for 238U

NUCLEAR STRUCTURE 237,238U, 237Pa; calculated fissility vs excitation energy.

NUCLEAR REACTIONS 238U(e, e'p), (e, e'), E=300 MeV; calculated σ(E, θ). 238U(e, F), E=100-250 MeV; measured fission σ; deduced reaction mechanism features.

doi: 10.1103/PhysRevC.68.014615
Citations: PlumX Metrics

2003NE06      J.Phys.(London) G29, L37 (2003)

V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, J.Mesa, W.Kleinig, J.D.T.Arruda-Neto, A.Deppman

Deformation effects in low-momentum distributions of heavy nuclei

NUCLEAR STRUCTURE 238U; calculated momentum distributions of deep hole proton states, ground-state quadrupole moments. Comparison of Woods-Saxon and Skyrme-Hartree-Fock approaches.

doi: 10.1088/0954-3899/29/4/101
Citations: PlumX Metrics

2002LI23      Phys.Rev. C65, 044611 (2002)

V.P.Likhachev, J.Mesa, J.D.T.Arruda-Neto, B.V.Carlson, A.Deppman, M.S.Hussein, V.O.Nesterenko, F.Garcia, O.Rodriguez

Quasifree Electrofission of 238U

NUCLEAR REACTIONS 238U(e, e'p), E=2 GeV; calculated σ(E, θ), residual nucleus fissility.

doi: 10.1103/PhysRevC.65.044611
Citations: PlumX Metrics

2002NE14      Phys.Rev. C66, 044307 (2002)

V.O.Nesterenko, J.Kvasil, P.-G.Reinhard

Separable random phase approximation for self-consistent nuclear models

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated giant resonance strength distributions. Self-consistent, separable RPA.

doi: 10.1103/PhysRevC.66.044307
Citations: PlumX Metrics

2001KV01      Phys.Rev. C63, 054305 (2001)

J.Kvasil, N.Lo Iudice, V.O.Nesterenko, A.Mackova, P.Alexa

Orbital and Spin Magnetic Quadrupole Response in Heavy Nuclei

NUCLEAR STRUCTURE 90Zr, 144,154Sm; calculated magnetic quadrupole strength functions, orbital and spin components. Proton-neutron RPA, comparisons with data.

doi: 10.1103/PhysRevC.63.054305
Citations: PlumX Metrics

2001KV03      Yad.Fiz. 64, No 6, 1105 (2001); Phys.Atomic Nuclei 64, 1030 (2001)

J.Kvasil, N.Lo Iudice, V.O.Nesterenko, A.Mackova

Coupling of Giant Resonances via Residual Interactions

NUCLEAR STRUCTURE 154Sm; calculated E2, M1 strength functions, coupling of giant resonances. 144Sm calculated M1 strength function. Averaging RPA approach with factorized residual interaction.

doi: 10.1134/1.1383611
Citations: PlumX Metrics

1998KV02      Phys.Rev. C58, 209 (1998)

J.Kvasil, N.Lo Iudice, V.O.Nesterenko, M.Kopal

Strength Functions for Collective Excitations in Deformed Nuclei

NUCLEAR STRUCTURE 154Sm; calculated M2 strength function; deduced spin-dipole role. Symmetrized RPA.

doi: 10.1103/PhysRevC.58.209
Citations: PlumX Metrics

1997PR02      Nucl.Phys. A614, 183 (1997)

P.Prokofjevs, L.Simonova, J.Berzins, V.Bondarenko, M.Balodis, A.V.Afanasjev, M.Beitins, M.Kessler, T.von Egidy, T.Koerbitz, R.Georgii, J.Ott, W.Schauer, V.O.Nesterenko, N.A.Bonch-Osmolovskaya

Nuclear Structure of 183W Studied in (n, γ), (n, n'γ) and (d, p) Reactions

NUCLEAR REACTIONS 182W(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin, neutron binding energy. 183W(n, n'γ), E=fast; measured Eγ, Iγ. 182W(d, p), E=26 MeV; measured proton spectra, intensities. 183W deduced levels, J, π, rotation, vibrational bands. 183W nuclear structure calculations. Quasiparticle-phonon, quasiparticle-rotation-vibration model.

doi: 10.1016/S0375-9474(96)00429-0
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41479. Data from this article have been entered in the XUNDL database. For more information, click here.

1996NE02      Phys.Rev. C53, 1632 (1996)

V.O.Nesterenko, W.Kleinig, V.V.Gudkov, J.Kvasil

Microscopic Description of E2 and E3 Giant Resonances in Deformed and Superdeformed Nuclei

NUCLEAR STRUCTURE 154Sm, 152Dy; calculated isoscalar E2, E3 giant resonances strength function in deformed, superdeformed nuclei. Vibrating potential model.

doi: 10.1103/PhysRevC.53.1632
Citations: PlumX Metrics

1995BO22      Bull.Rus.Acad.Sci.Phys. 59, 39 (1995)

N.A.Bonch-Osmolovskaya, V.O.Nesterenko

Microscopic Description of Low-Energy States in 159Tm

NUCLEAR STRUCTURE 159Tm; calculated levels, B(λ), Coriolis mixing amplitudes. Quasiparticle-phonon model.

1995NE10      Phys.Scr. T56, 284 (1995)

V.O.Nesterenko, W.Kleinig

Generalized Vibrating Potential Model for Collective Excitations in Spherical, Deformed and Superdeformed Systems: (1) Atomic nuclei, (2) Metal clusters

NUCLEAR STRUCTURE 158Gd; calculated E2, E3 giant resonance strength functions. Self-consistent vibrating potential model also applied to atomic nuclei, metal clusters.

doi: 10.1088/0031-8949/1995/T56/050
Citations: PlumX Metrics

1994NE13      Bull.Rus.Acad.Sci.Phys. 58, 721 (1994)

V.O.Nesterenko, W.Kleinig, N.O.Shirikova

Giant Resonances in Atomic Nuclei and Metallic Clusters

1993NE07      J.Phys.(London) G19, 1339 (1993)

V.O.Nesterenko, F.N.Usmanov, A.A.Okhunov, C.Fahlander

Non-Adiabatic Behaviour of E2 Transitions in 166Er

NUCLEAR STRUCTURE 166Er; calculated levels, B(λ); deduced nonadiabatic behavior related features. RPA, Coriolis coupling between bands.

doi: 10.1088/0954-3899/19/9/012
Citations: PlumX Metrics

1993NE10      Fiz.Elem.Chastits At.Yadra 24, 1517 (1993); Sov.J.Part.Nucl 24, 640 (1993)


Microscopic Description of Low-Lying States in Deformed Nuclei with Rotation-Vibration Coupling

NUCLEAR STRUCTURE 166Er; calculated levels, B(λ), reduced E2 matrix elements. 153,155Eu, 155,157Tb; calculated Coriolis matrix elements, levels, reduced matrix elements. 166,168Ho; calculated β- transition log ft. 166Ho; calculated levels. Extended quasiparticle-phonon model.

1992AL24      Bull.Rus.Acad.Sci.Phys. 56, 1684 (1992)

B.A.Alikov, N.A.Bonch-Osmolovskaya, V.O.Nesterenko

Microscopic Description of E1-Transitions in 177Hf

NUCLEAR STRUCTURE 177Hf; calculated levels, B(λ); deduced octupole vibrations admixture role. Nonadiabatic rotational, quasiparticle-phonon model.

1992BO45      Bull.Rus.Acad.Sci.Phys. 56, 1694 (1992)

N.A.Bonch-Osmolovskaya, V.O.Nesterenko

Microscopic Description of Irrotational States in Deformed Odd Ho Nuclei with A = 157-165

NUCLEAR STRUCTURE 157,159,161,163Ho; calculated levels. 165Ho; calculated levels, B(λ). Quasiparticle-phonon model.

1992KV01      Z.Phys. A343, 145 (1992)

J.Kvasil, R.K.Sheline, V.O.Nesterenko, I.Hrivnacova, D.Nosek

Microscopic Description of Vibrational Degrees of Freedom in Odd-Odd Isotopes of Ho

NUCLEAR STRUCTURE 160,162,164,166,168Ho; calculated levels; deduced small vibrational components. Generalized quasiparticle-phonon model.

doi: 10.1007/BF01291819
Citations: PlumX Metrics

1991KA07      J.Phys.(London) G17, 705 (1991)

F.F.Karpeshin, V.O.Nesterenko

The Microscopic Description of the Collective E1, E2 and E3 Nuclear Excitation through Radiationless Transitions in Actinoid Muonic Atoms

NUCLEAR REACTIONS 238U(μ-, γ), E at rest; calculated muonic atom transition γ-multipolarity, Γγ, radiationless transition probabilities.

ATOMIC PHYSICS, Mesic-Atoms 238U(μ-, γ), E at rest; calculated muonic atom transition γ-multipolarity, Γγ, radiationless transition probabilities.

doi: 10.1088/0954-3899/17/5/016
Citations: PlumX Metrics

1990NE04      J.Phys.(London) G16, L111 (1990)

V.O.Nesterenko, A.V.Sushkov

The Interior of Charge Transition Density and the Structure of Low-Lying States in Deformed Nuclei

NUCLEAR STRUCTURE 164Dy; calculated levels, charge transition densities, B(E2). RPA.

doi: 10.1088/0954-3899/16/7/003
Citations: PlumX Metrics

1988AL32      Z.Phys. A331, 265 (1988)

B.A.Alikov, Kh.N.Badalov, V.O.Nesterenko, A.V.Sushkov, J.Wawryszczuk

On the Role of the Coriolis and Quasiparticle-Phonon Interactions in Describing E1 Transition Probabilities in Odd Eu and Tb Isotopes

NUCLEAR STRUCTURE 155,157Tb, 153,155Eu; calculated levels, B(λ). Quasiparticle-phonon, nonadiabatic rotational models.

1988NE02      J.Phys.(London) G14, 725 (1988)

V.O.Nesterenko, I.N.Kukhtina, A.V.Sushkov, Dao Tien Khoa

On the Role of Hexadecapole Forces in Describing γ-Band States in the Rare-Earth Region

NUCLEAR REACTIONS 168Er(polarized p, p'), E=65 MeV; calculated σ(θ), analyzing power vs θ; deduced hexadecapole force role. RPA isoscalar transition rates, coupled-channels model.

doi: 10.1088/0305-4616/14/6/012
Citations: PlumX Metrics

1986KU17      Izv.Akad.Nauk SSSR, Ser.Fiz. 50, 1914 (1986); Bull.Acad.Sci.USSR, Phys.Ser. 50, No.10, 41 (1986)

N.K.Kuzmenko, V.M.Mikhailov, V.O.Nesterenko

Coupling of Many Quasiparticle States

NUCLEAR STRUCTURE 164Dy, 165Ho, 168Er, 172,174,176Yb, 175,177Lu, 176,177,178,179Hf, 177Ta; calculated levels, energy correlation, Nilsson configurations. Many quasiparticle state coupling model.

1986NE06      Yad.Fiz. 44, 1443 (1986)

V.O.Nesterenko, V.G.Soloviev, A.V.Sushkov, N.Yu.Shirikova

Hexadecapole States in Deformed Nuclei

NUCLEAR STRUCTURE 158,160Gd, 158,160,162,164Dy, 166,168,170Er, 168,170,172,174Yb, 174,176,178Hf, 184W, 186,188Os; calculated hexadecapole states, B(E4), wave functions. 168Er; calculated B(E2).

1985BO42      Izv.Akad.Nauk SSSR, Ser.Fiz. 49, 843 (1985); Bull.Acad.Sci.USSR, Phys.Ser. 49, No.5, 10 (1985)

N.A.Bonch-Osmolovskaya, V.A.Morozov, V.O.Nesterenko

Nonrotational States in 165Er

NUCLEAR STRUCTURE 165Er; calculated levels, B(E2).

1984BA37      ATOMKI Kozlem. 26, 90 (1984)

S.I.Bastrukov, V.O.Nesterenko

Description of the Low-Lying States in Deformed Nuclei within the Quasiparticle-Phonon Nuclear Model

NUCLEAR STRUCTURE 163Dy, 165Ho; A=155-175; calculated B(E2). Quasiparticle-phonon model.

1983SO01      Z.Phys. A309, 353 (1983)

V.G.Soloviev, V.O.Nesterenko, S.I.Bastrukov

On Vibrational States in Deformed Odd-A Nuclei

NUCLEAR STRUCTURE 155Sm, 161Tb, 159,165Ho, 167Er, 169Yb, 179Hf, 233Th, 233,235,237,239U, 237Np, 239Pu; calculated levels, Pauli effect significance. 155,159,161Gd, 169Er, 179Hf, 233,237,239U, 239Pu; calculated Pauli principle violation in levels. Quasiparticle-phonon model.

1982BA74      Izv.Akad.Nauk SSSR, Ser.Fiz. 46, 2144 (1982); Bull.Acad.Sci.USSR, Phys.Ser. 46, No.11, 80 (1982)

S.I.Bastrukov, V.O.Nesterenko, V.G.Soloviev

The Role of the Pauli Principle in Describing the Nonrotational States of Odd Deformed Nuclei

NUCLEAR STRUCTURE 166,168Er; analyzed one-phonon state characteristics. 167,169Er; analyzed quasiparticle plus phonon state characteristics; deduced Pauli principle violation, vibrational state existence correlation.

1981SO11      Izv.Akad.Nauk SSSR, Ser.Fiz. 45, 1834 (1981)

V.G.Soloviev, N.Yu.Shirikova, S.I.Serdyukova, F.Meliev, V.O.Nesterenko

Role of Pauli Principle in the Description of Nonrotational Collective States in Deformed Nuclei

NUCLEAR STRUCTURE 145Gd, 160,164Dy, 168Er, 230,232Th, 238U, 240Pu; calculated levels, B(λ). RPA with, without Pauli effect.

1980NE09      Yad.Fiz. 32, 1209 (1980)

V.O.Nesterenko, V.G.Soloviev, A.V.Khalkin

Study of Correlations in Ground States of Deformed Nuclei

NUCLEAR STRUCTURE 152,154Sm, 238U, 166Er; calculated average ground state quasiparticle number, B(λ). 228Th; calculated average ground state quasiparticle number. RPA.

1978KI15      Izv.Akad.Nauk SSSR, Ser.Fiz. 42, 1842 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.9, 42 (1978)

N.A.Kiselev, L.A.Malov, V.O.Nesterenko, V.G.Solovev

Calculations of Giant Eλ-Resonances of High Multipolarity in Deformed Nuclei

NUCLEAR STRUCTURE 166Er, 238U; calculated force function for excitation of multipoles, λ=4, 5, 6, 7. RPA, semimicroscopic approach.

1978KY01      Nukleonika 23, 133 (1978)

G.Kyrchev, L.A.Malov, V.O.Nesterenko, V.G.Soloviev

The Description of the Giant Quadrupole Resonance in Deformed Nuclei

NUCLEAR STRUCTURE 154Sm, 238U; calculated energies, fragmentation of T=0, 1, GQR resonances. Semimicroscopic method.

1977KY01      Yad.Fiz. 25, 951 (1977); Sov.J.Nucl.Phys. 25, 506 (1977)

G.Kyrchev, L.A.Malov, V.O.Nesterenko, V.G.Solovev

Semi-Microscopic Description of Giant Quadrupole Resonances in Deformed Nuclei

NUCLEAR STRUCTURE 150Nd, 152,154Sm, 154,156,158,160Gd, 156,158,160,162,164Dy, 162,164,166,168,170Er, 170,172,174,176Yb, 172,174,176Hf, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 242,244,246Cm; calculated E2 strength functions.

1977MA21      J.Phys.(London) G3, L-219 (1977)

L.A.Malov, V.O.Nesterenko, V.G.Soloviev

Low-Energy Octupole Resonances in Deformed Nuclei

NUCLEAR STRUCTURE 154Sm, 238U; calculated B(E3).

doi: 10.1088/0305-4616/3/2/012
Citations: PlumX Metrics

1976MA42      Phys.Lett. 64B, 247 (1976)

L.A.Malov, V.O.Nesterenko, V.G.Soloviev

Semimicroscopic Description of Giant Octupole Resonances in Deformed Nuclei

NUCLEAR STRUCTURE 150Nd, 154Sm, 154Gd, 162Dy, 166Er, 172Yb, 176Hf, 230,232Th, 234,238U, 244,246Cm; calculated giant octupole resonances, Γ, strength.

doi: 10.1016/0370-2693(76)90191-X
Citations: PlumX Metrics

1975MA48      Izv.Akad.Nauk SSSR, Ser.Fiz. 39, 1605 (1975); Bull.Acad.Sci.USSR, Phys.Ser. 39, No.8, 31 (1975)

L.A.Malov, V.O.Nesterenko, V.G.Solovev

Contribution of Quasiparticle Plus Two Photon Components to the Wave Functions for Low-Lying Nonrotational States of Deformed Nuclei

NUCLEAR STRUCTURE 239U, 161Gd; calculated levels, structure parameters.

Back to query form