NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = W.Kleinig

Found 24 matches.

Back to query form

2021NE04      Phys.Rev. C 103, 064313 (2021)

V.O.Nesterenko, P.I.Vishnevskiy, J.Kvasil, A.Repko, W.Kleinig

Microscopic analysis of low-energy spin and orbital magnetic dipole excitations in deformed nuclei

NUCLEAR STRUCTURE 160,162,164Dy, 232Th; calculated energies of the first 2+ states, proton and neutron pairing gaps, parameter β of the equilibrium axial quadrupole deformation, B(M1) and B(E2) strengths, orbital, spin, and total M1 strengths at spin-scissors resonance (SSR) and ordinary orbital scissors resonance (OSR) energy ranges, M1 spin-flip giant resonances; deduced that deformation not the principle origin of the low-energy spin M1 states but only a factor affecting their features. Fully self-consistent Skyrme quasiparticle random phase approximation (QRPA) method using SkM*, SVbas, and SG2 Skyrme forces, within the Wigner function moments (WFM) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.064313
Citations: PlumX Metrics

2020DO11      Phys.Rev. C 102, 064327 (2020)

L.M.Donaldson, J.Carter, P.von Neumann-Cosel, V.O.Nesterenko, R.Neveling, P.-G.Reinhard, I.T.Usman, P.Adsley, C.A.Bertulani, J.W.Brummer, E.Z.Buthelezi, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, M.Jingo, N.Y.Kheswa, W.Kleinig, C.O.Kureba, J.Kvasil, M.Latif, K.C.W.Li, J.P.Mira, F.Nemulodi, P.Papka, L.Pellegri, N.Pietralla, V.Yu.Ponomarev, B.Rebeiro, A.Richter, N.Yu.Shirikova, E.Sideras-Haddad, A.V.Sushkov, F.D.Smit, G.F.Steyn, J.A.Swartz, A.Tamii

Fine structure of the isovector giant dipole resonance in 142-150Nd and 152Sm

NUCLEAR REACTIONS 142,144,146,148,150Nd, 152Sm(p, p'), E=200 MeV from the Separated Sector Cyclotron (SSC) at iThemba LABS; measured reaction products, E(p), I(p), time-of-flight using the K600 magnetic spectrometer, two multiwire drift chambers (MWDCs) and two plastic scintillators; deduced double-differential σ(E*=10-22 MeV), equivalent photoabsorption spectra, excitation-energy spectra, wavelet power spectra, fine structure of the isovector giant-dipole resonance (IVGDR), fragmentation of the one-particle-one-hole (1p1h) strength into several dominant transitions serving as doorway states in the spherical and intermediate spherical/deformed nuclei. Comparison with predictions of quasiparticle phonon model (QPM), and Skyrme separable random phase approximation (SSRPA).

doi: 10.1103/PhysRevC.102.064327
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0860.

2018DO01      Phys.Lett. B 776, 133 (2018)

L.M.Donaldson, C.A.Bertulani, J.Carter, V.O.Nesterenko, P.von Neumann-Cosel, R.Neveling, V.Yu.Ponomarev, P.-G.Reinhard, I.T.Usman, P.Adsley, J.W.Brummer, E.Z.Buthelezi, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, M.Jingo, W.Kleinig, C.O.Kureba, J.Kvasil, M.Latif, K.C.W.Li, J.P.Mira, F.Nemulodi, P.Papka, L.Pellegri, N.Pietralla, A.Richter, E.Sideras-Haddad, F.D.Smit, G.F.Steyn, J.A.Swartz, A.Tamii

Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

NUCLEAR REACTIONS 144,146,148,150Nd, 152Sm(p, p'), E=200 MeV; measured reaction products, Eγ, Iγ; deduced σ, σ(θ, E), σ(θ). Comparison with DWBA calculations.

doi: 10.1016/j.physletb.2017.11.025
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0860. Data from this article have been entered in the XUNDL database. For more information, click here.

2016KV01      Phys.Rev. C 94, 064302 (2016)

J.Kvasil, V.O.Nesterenko, A.Repko, W.Kleinig, P.-G.Reinhard

Deformation-induced splitting of the isoscalar E0 giant resonance: Skyrme random-phase-approximation analysis

NUCLEAR STRUCTURE 142,146,150Nd, 154Sm, 106,108,110,112,114,116Cd, 164Dy, 168Er, 172Yb, 238U, 242,254,270No, 264,284,304Fl; calculated strengths and other features of isoscalar giant monopole resonance (ISGMR) in deformed nuclei using Skyrme quasiparticle random-phase approximation (QRPA). Systematics for medium, rare-earth, actinide and superheavy nuclides. Comparison with available experimental data.

doi: 10.1103/PhysRevC.94.064302
Citations: PlumX Metrics

2016NE06      Phys.Rev. C 93, 034301 (2016)

V.O.Nesterenko, V.G.Kartavenko, W.Kleinig, J.Kvasil, A.Repko, R.V.Jolos, P.-G.Reinhard

Skyrme random-phase-approximation description of lowest Kπ = 2+γ states in axially deformed nuclei

NUCLEAR STRUCTURE 150,152Nd, 152,154,156Sm, 154,156,158,160Gd, 158,160,162,164,166Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 168,170,172,174,176,178,180Hf, 178,180,182,184,186W, 232,234,236,238U; calculated energies and B(E2) of the lowest quadrupole γ-vibrational Kπ=2+ states in axially deformed rare-earth and uranium even-even nuclei. 152Nd, 164Dy, 172Yb, 238U; calculated isoscalar strength function for the ISGQR. Separable random-phase-approximation (SRPA) method based on the Skyrme functional with the Skyrme forces SV-bas and SkM*, and corrected by using pairing blocking effect. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034301
Citations: PlumX Metrics

2015KV01      Phys.Scr. 90, 114007 (2015)

J.Kvasil, D.Bozik, A.Repko, P.-G.Reinhard, V.O.Nesterenko, W.Kleinig

Monopole giant resonance in 100-132Sn, 144Sm and 208Pb

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 144Sm, 208Pb; calculated giant monopole resonance (GMR) strength functions. Comparison with available data.

doi: 10.1088/0031-8949/90/11/114007
Citations: PlumX Metrics

2014KV01      Phys.Scr. 89, 054023 (2014)

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard

Deformation effects in toroidal and compression dipole excitations of 170Yb: Skyrme RPA analysis

NUCLEAR REACTIONS 170Yb(γ, X), E<40 MeV; calculated photoabsorption σ, strength functions; deduced effects of nuclear axial quadrupole deformation on the isoscalar dipole compression and toroidal modes. Skyrme energy-density functional.

doi: 10.1088/0031-8949/89/5/054023
Citations: PlumX Metrics

2013KV01      Phys.Scr. T154, 014019 (2013)

J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, N.Lo Iudice

Toroidal, compression and vortical dipole strengths in 124Sn

NUCLEAR STRUCTURE 100,124,132Sn; calculated toroidal, vortical and compression dipole strength functions. Self-consistent separable Skyrme-RPA approach.

doi: 10.1088/0031-8949/2013/T154/014019
Citations: PlumX Metrics

2013KV02      Eur.Phys.J. A 49, 119 (2013)

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard, N.Lo Iudice

Toroidal, compression, and vortical dipole strengths in 144-154Sm: Skyrme-RPA exploration of the deformation effect

NUCLEAR STRUCTURE 144,148,150,152,154Sm; calculated dipole strength using RPA with different Skyrme forces and HF/BCS, binding energy, Q, photoabsorption σ vs energy. Compared with available data.

doi: 10.1140/epja/i2013-13119-3
Citations: PlumX Metrics

2012KV01      Int.J.Mod.Phys. E21, 1250041 (2012)

J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard

E1 strength in light nuclei: Skyrme RPA analysis

NUCLEAR REACTIONS 48Ca, 50Ti, 52Cr, 54Fe(γ, X), E<30 MeV; calculated photoabsorption σ, giant dipole resonance. SRPA approach based on the Skyrme functional, comparison with available data.

doi: 10.1142/S0218301312500413
Citations: PlumX Metrics

2011KV01      Int.J.Mod.Phys. E20, 281 (2011)

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard

Skyrme-Hartree-Fock description of the dipole strength in neutron-rich tin isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Sn; analyzed low-energy E1 strengths, neutron and proton quadrupole deformations.

doi: 10.1142/S0218301311017636
Citations: PlumX Metrics

2011KV02      Phys.Rev. C 84, 034303 (2011)

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, P.Vesely

General treatment of vortical, toroidal, and compression modes

NUCLEAR STRUCTURE 208Pb; calculated isoscalar and isovector vortical, toroidal, and compression 1- dipole resonances. Density functional theory with Skyrme force SLy6. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.034303
Citations: PlumX Metrics

2010NE04      Int.J.Mod.Phys. E19, 558 (2010)

V.O.Nesterenko, J.Kvasil, P.Vesely, W.Kleinig, P.-G.Reinhard

Skyrme-random-phase-approximation description of spin-flip and orbital M1 giant resonances

NUCLEAR STRUCTURE 142,144,146,148,150,152Nd; calculated spin-flip and orbital M1 strength functions; deduced appearance of scissors mode. Self-consistent separable random-phase-approximation model (SRPA).

doi: 10.1142/S0218301310014972
Citations: PlumX Metrics

2009KV01      Int.J.Mod.Phys. E18, 975 (2009)

J.Kvasil, P.Vesely, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, S.Frauendorf

Skyrme-random-phase-approximation description of E1 strength in 92-100Mo

NUCLEAR STRUCTURE 92,94,96,98,100Mo; calculated mass excess using Skyrme forces.

NUCLEAR REACTIONS 92,98,100Mo(γ, γ'), (γ, p), (γ, xn), E=5-30 MeV; calculated σ using self-consistent RPA with Skyrme forces. Compared to data.

doi: 10.1142/S0218301309013129
Citations: PlumX Metrics

2009VE07      Phys.Rev. C 80, 031302 (2009)

P.Vesely, J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomarev

Skyrme random-phase-approximation description of spin-flip M1 giant resonance

NUCLEAR STRUCTURE 48Ca, 158Gd, 208Pb, 238U; calculated spin-flip M1 giant resonance energies and strength distributions using random-phase approximation (RPA) calculations and Skyrme energy functionals with a set of eight Skyrme parametrizations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.031302
Citations: PlumX Metrics

2008KL03      Phys.Rev. C 78, 044313 (2008)

W.Kleinig, V.O.Nesterenko, J.Kvasil, P.-G.Reinhard, P.Vesely

Description of the dipole giant resonance in heavy and superheavy nuclei within Skyrme random-phase approximation

NUCLEAR STRUCTURE 156,160Gd, 166,168Er, 176,178,180Hf, 182,184,186W, 170,172,174,176Yb, 186,188,190,192Os, 232Th, 234,236,238U, 242,248,254,262,270No, 264,274,284,294,304Fl, 280,288,294,304,312120; calculated isovector giant dipole resonance strengths, energies and widths. Skyrme random-phase approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.044313
Citations: PlumX Metrics

2008NE05      Int.J.Mod.Phys. E17, 89 (2008)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard

TDDFT with Skyrme forces: effect of time-odd densities on electric giant resonances

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156,158Nd; calculated isovector E1, isoscalar E2 giant resonance strengths using the Skyrme forces. Comparisons with experimental data.

doi: 10.1142/S0218301308009586
Citations: PlumX Metrics

2007NE04      Int.J.Mod.Phys. E16, 624 (2007)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard

Giant dipole resonance in deformed nuclei: dependence on Skyrme forces

NUCLEAR STRUCTURE 150Nd, 238U; calculated GDR strength distributions. Separable RPA method, four Skyrme forces compared.

doi: 10.1142/S0218301307006071
Citations: PlumX Metrics

2006NE10      Phys.Rev.C 74, 064306 (2006)

V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard, D.S.Dolci

Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei

NUCLEAR STRUCTURE 154Sm, 238U, 254No; calculated GDR and GQR strength distributions, related features. Self-consistent separable RPA.

doi: 10.1103/PhysRevC.74.064306
Citations: PlumX Metrics

2004NE12      Phys.Rev. C 70, 057304 (2004)

V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, V.V.Pashkevich, W.Kleinig, J.Mesa

Momentum distribution in heavy deformed nuclei: Role of effective mass

NUCLEAR STRUCTURE 238U; calculated proton states momentum distributions, role of deformation and effective mass. Self-consistent Skyrme-Hartree-Fock and Woods-Saxon models.

doi: 10.1103/PhysRevC.70.057304
Citations: PlumX Metrics

2003NE06      J.Phys.(London) G29, L37 (2003)

V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, J.Mesa, W.Kleinig, J.D.T.Arruda-Neto, A.Deppman

Deformation effects in low-momentum distributions of heavy nuclei

NUCLEAR STRUCTURE 238U; calculated momentum distributions of deep hole proton states, ground-state quadrupole moments. Comparison of Woods-Saxon and Skyrme-Hartree-Fock approaches.

doi: 10.1088/0954-3899/29/4/101
Citations: PlumX Metrics

1996NE02      Phys.Rev. C53, 1632 (1996)

V.O.Nesterenko, W.Kleinig, V.V.Gudkov, J.Kvasil

Microscopic Description of E2 and E3 Giant Resonances in Deformed and Superdeformed Nuclei

NUCLEAR STRUCTURE 154Sm, 152Dy; calculated isoscalar E2, E3 giant resonances strength function in deformed, superdeformed nuclei. Vibrating potential model.

doi: 10.1103/PhysRevC.53.1632
Citations: PlumX Metrics

1995NE10      Phys.Scr. T56, 284 (1995)

V.O.Nesterenko, W.Kleinig

Generalized Vibrating Potential Model for Collective Excitations in Spherical, Deformed and Superdeformed Systems: (1) Atomic nuclei, (2) Metal clusters

NUCLEAR STRUCTURE 158Gd; calculated E2, E3 giant resonance strength functions. Self-consistent vibrating potential model also applied to atomic nuclei, metal clusters.

doi: 10.1088/0031-8949/1995/T56/050
Citations: PlumX Metrics

1994NE13      Bull.Rus.Acad.Sci.Phys. 58, 721 (1994)

V.O.Nesterenko, W.Kleinig, N.O.Shirikova

Giant Resonances in Atomic Nuclei and Metallic Clusters

Back to query form