NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = E.E.Saperstein

Found 104 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2019BO19      Eur.Phys.J. A 55, 246 (2019)

P.F.Bortignon, E.E.Saperstein, M.Baldo

The effective single particle potential and the tadpole

doi: 10.1140/epja/i2019-12792-4
Citations: PlumX Metrics


2018KA45      JETP Lett. 108, 155 (2018)

S.P.Kamerdzhiev, D.A.Voitenkov, E.E.Saperstein, S.V.Tolokonnikov

Self-Consistent Calculations of the Quadrupole Moments of the Lowest 3- States in Sn and Pb Isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 190,192,194,196,198,200,202,204,206,208,210,212Pb; calculated energies and B(E3). Comparison with available data.

doi: 10.1134/S0021364018150079
Citations: PlumX Metrics


2018SA17      Phys.Rev. C 97, 054324 (2018)

E.E.Saperstein, M.Baldo, S.S.Pankratov, S.V.Tolokonnikov

Inclusion of particle-vibration coupling in the Fayans functional: Odd-even mass differences of semimagic nuclei

NUCLEAR STRUCTURE 204Pb, 118Sn; calculated phonon creation amplitudes for two low-lying phonons for 204Pb, particle-phonon coupling (PC) corrected single-particle energies and S factors. 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energies of first 2+ and 3- phonon states in Pb nuclei, and first 2+ phonon states in Sn nuclei, proton odd-even mass differences. Direct solution of Dyson equation with Fayans energy density functional DF3-a, and (PC) corrected mass operator. Comparison with experimental values and other theoretical predictions.

doi: 10.1103/PhysRevC.97.054324
Citations: PlumX Metrics


2018TO03      JETP Lett. 107, 86 (2018)

S.V.Tolokonnikov, I.N.Borzov, Yu.S.Lyutostansky, E.E.Saperstein

Influence of Effective Tensor Forces on the Fission Barriers of Nuclei in the Uranium Region

NUCLEAR STRUCTURE 232,234,236,238,262,264,268U; calculated fission barriers, quadrupole deformation parameters and energy.

doi: 10.1134/S0021364018020121
Citations: PlumX Metrics


2017DY01      Eur.Phys.J. A 53, 13 (2017)

A.B.D'yachkov, V.A.Firsov, A.A.Gorkunov, A.V.Labozin, S.M.Mironov, E.E.Saperstein, S.V.Tolokonnikov, G.O.Tsvetkov, V.Y.Panchenko

Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

ATOMIC PHYSICS 61,63Ni; measured laser resonance photoionization spectroscopy using vacuum chamber with thermal evaporator and quadrupole mass spectrometer MS-7302; deduced hyperfine splitting of the 3F4 to 3G03, level parameters.

NUCLEAR STRUCTURE 49,51,53,55,57,59,61,63,65,67,69,71,73,75,77Ni; calculated nuclear magnetic dipole moment μ using TFFS (Theory of Finite Fermi Systems). Compared with Schmidt values and available data.

doi: 10.1140/epja/i2017-12197-5
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017KA54      JETP Lett. 106, 139 (2017)

S.P.Kamerdzhiev, D.A.Voitenkov, E.E.Saperstein, S.V.Tolokonnikov, M.I.Shitov

Self-consistent description of EL transitions between one-phonon states in magic nuclei

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated energy levels, J, π, B(E2) using quantum theory of many-body systems.

doi: 10.1134/S0021364017150085
Citations: PlumX Metrics


2017SA24      J.Phys.(London) G44, 065104 (2017)

E.E.Saperstein, S.Kamerdzhiev, D.S.Krepish, S.V.Tolokonnikov, D.Voitenkov

The first self-consistent calculation of quadrupole moments of odd semi-magic nuclei accounting for phonon-induced corrections

NUCLEAR MOMENTS 111,113,115,117,119,121,123,125,127In, 115,117,119,121,123Sb; calculated quadrupole moments. Comparison with experimental data.

doi: 10.1088/1361-6471/aa65f5
Citations: PlumX Metrics


2017TO03      Eur.Phys.J. A 53, 33 (2017)

S.V.Tolokonnikov, I.N.Borzov, M.Kortelainen, Yu.S.Lutostansky, E.E.Saperstein

Alpha-decay energies of superheavy nuclei for the Fayans functional

NUCLEAR STRUCTURE 287,288Mc, 291Lv, 293,294Ts, 294Og; calculated Qα values for α-decay chains starting from given nuclei using self-consistent mean-field approach with Fayans FaNDF0 functional and two Skyrme functionals and also using MMM (Macro-Micro Method), T1/2 using semi-phenomenological formulas. Compared with available data and systematics.

doi: 10.1140/epja/i2017-12220-y
Citations: PlumX Metrics


2017TO13      Phys.Atomic Nuclei 80, 631 (2017); Yad.Fiz. 80, 319 (2017)

S.V.Tolokonnikov, I.N.Borzov, Yu.S.Lutostansky, I.V.Panov, E.E.Saperstein

Fission barriers and other characteristics of nuclei from the uranium region

NUCLEAR STRUCTURE Z=92, 93, 82, 94; calculated one-, two-neutron separation energies, β-decay energies, charge radii, deformation energy, fission barrier height, neutron single-particle energies. FaNDF0 Fayans energy density functional.

doi: 10.1134/S1063778817040275
Citations: PlumX Metrics


2016AD37      Phys.Rev. C 94, 054309 (2016)

G.G.Adamian, N.V.Antonenko, H.Lenske, S.V.Tolokonnikov, E.E.Saperstein

Isotopic trends of nuclear surface properties of spherical nuclei

NUCLEAR STRUCTURE 48,50,52,54,56,58,60,64,68,72,76,78,80,82,84,86,88Ni; calculated binding energies per nucleon. 58,64Ni; calculated radial distributions of the proton density. 64Ni, 122Sn, 196Pb, 272Ds; calculated nucleon-density distributions. Z=28, N=20-50; Z=82, N=98-126; Z=12, N=11-32; Z=50, N=50-85; Z=110, N=154-190; calculated isotopic dependencies of proton and neutron radii and diffuseness. Partially ab initio method, and the Fayans energy density functional (EDF) method used in calculations. Comparison with available experimental data.

NUCLEAR REACTIONS 208Pb(64Ni, X), (32Si, X), (α, X); 58Ni(58Ni, X); calculated nucleus-nucleus potentials defined by the density-dependent NN interaction and nucleon density profiles.

doi: 10.1103/PhysRevC.94.054309
Citations: PlumX Metrics


2016MI27      Phys.Rev.Lett. 117, 252501 (2016)

K.Minamisono, D.M.Rossi, R.Beerwerth, S.Fritzsche, D.Garand, A.Klose, Y.Liu, B.Maass, P.F.Mantica, A.J.Miller, P.Muller, W.Nazarewicz, W.Nortershauser, E.Olsen, M.R.Pearson, P.-G.Reinhard, E.E.Saperstein, C.Sumithrarachchi, S.V.Tolokonnikov

Charge Radii of Neutron Deficient 52, 53Fe Produced by Projectile Fragmentation

NUCLEAR MOMENTS 52,53,56Fe; measured hyperfine spectra; deduced differential mean-square charge radii. Bunched-beam collinear laser spectroscopy, comparison with the nuclear density functional theory with Fayans and Skyrme energy density functionals calculations.

doi: 10.1103/PhysRevLett.117.252501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016SA10      Phys.Rev. C 93, 034302 (2016)

E.E.Saperstein, M.Baldo, N.V.Gnezdilov, S.V.Tolokonnikov

Phonon effects on the double mass differences in magic nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated excitation energies and BE(λ) values for low-lying phonons, and double odd-even double mass differences of magic nuclei. Particle-phonon coupling and semi-microscopic model of effective pairing interaction (EPI). Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034302
Citations: PlumX Metrics


2016SA51      JETP Lett. 104, 218 (2016)

E.E.Saperstein, I.N.Borzov, S.V.Tolokonnikov

On the anomalous A dependence of the charge radii of heavy calcium isotopes

NUCLEAR STRUCTURE 38,40,42,44,46,48,50,52,54Ca; calculated charge radii. Finite Fermi systems based on the Fayans energy density functional.

doi: 10.1134/s0021364016160128
Citations: PlumX Metrics


2016TO07      Phys.Atomic Nuclei 79, 21 (2016)

S.V.Tolokonnikov, I.N.Borzov, Yu.S.Lutostansky, E.E.Saperstein

Deformation properties of lead isotopes

NUCLEAR STRUCTURE 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,261,262,263,264,265,266,267,268,269,270,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Pb; calculated charge radii, magnetic moments, mass excess, 2n separation energy, quadrupole moment, deformation, deformation energy on the basis of energy density functional in the FaNDI Fayans form. Compared with available data.

doi: 10.1134/S1063778816010208
Citations: PlumX Metrics


2015GN01      Phys.Atomic Nuclei 78, 24 (2015); Yad.Fiz. 78, 27 (2015)

N.V.Gnezdilov, E.E.Saperstein, S.V.Tolokonnikov

Single-particle spectroscopic factors for spherical nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,132Sn, 188,190,192,194,196,198,200,202,204,206,208,210,212Pb; calculated the total single-particle spectroscopic factors. The self-consistent theory of finite Fermi systems.

doi: 10.1134/S1063778815010093
Citations: PlumX Metrics


2015PA05      Phys.Rev. C 91, 015802 (2015)

S.S.Pankratov, M.Baldo, E.E.Saperstein

1S0 pairing for neutrons in dense neutron matter induced by a soft pion

doi: 10.1103/PhysRevC.91.015802
Citations: PlumX Metrics


2015TO07      J.Phys.(London) G42, 075102 (2015)

S.V.Tolokonnikov, I.N.Borzov, M.Kortelainen, Y.S.Lutostansky, E.E.Saperstein

First applications of the Fayans functional to deformed nuclei

NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234,236,238,240,242,244U, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb ; calculated two-neutron separation and deformation energies, quadrupole deformation parameter. Comparison with available data.

doi: 10.1088/0954-3899/42/7/075102
Citations: PlumX Metrics


2014AC01      Eur.Phys.J. A 50, 6 (2014)

O.I.Achakovskiy, S.P.Kamerdzhiev, E.E.Saperstein, S.V.Tolokonnikov

Magnetic moments of odd-odd spherical nuclei

NUCLEAR STRUCTURE 14,15,16N, 15,17O, 16,17,18,19F, 38,39,40K, 39,41Ca, 40,42Sc, 40,41,42Sc, 54,55,56,57,58,59,60,61Co, 55,56,57,58,59,61Ni, 56,57,58Cu, 87Kr, 89,91Zr, 89Y, 87,90,91Nb, 91,93Mo, 93,94Tc, 95Ru, 105,107,109,111,131,132In, 107,111,113,115,123,125,127,132,133Sn, 113,115,117,123,125,126,127,128,129,132,133,134Sb, 135,137Xe, 136,137,138Cs, 137,139Ba, 138,139,140La, 139,141Ce, 143Nd, 141,142Pr, 143,145,147Sm, 144,145,146Eu, 147Gd, 191,193,195,197,199,201,203,205,206,208Tl, 193,195,197,199,201,203,205,207,209,211Pb, 201,202,203,204,205,206,207,208,209,210,211,212Bi, 211Rn, 213Ra, 212,213Fr; calculated ground state and excited state μ. Compared with other calculations and available data. 58Co, 106,110In, 124Sb, 194,196,198,200,202,204Tl; calculated ground state μ obtained by mixing of two configurations. Compared to data. 55,56,57,59,60Co, 57,61Ni; calculated μ. Compared with published shell model calculations. Self-consistent TFFS (Theory of Finite Fermi Systems).

doi: 10.1140/epja/i2014-14006-1
Citations: PlumX Metrics


2014GN01      Phys.Rev. C 89, 034304 (2014)

N.V.Gnezdilov, I.N.Borzov, E.E.Saperstein, S.V.Tolokonnikov

Self-consistent description of single-particle levels of magic nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated spin-orbit differences, proton and neutron single-particle energies, B(EΛ) for low-lying phonon excitations, phonon-coupling (PC) corrections to single-particle energies, pole and tadpole contributions to PC corrections. Energy density functional (EDF) method using DF3, DF3-a and DF3-b interactions. Comparison with Skyrme-Hartree-Fock method with HFB-17 functional, and with experimental data.

doi: 10.1103/PhysRevC.89.034304
Citations: PlumX Metrics


2014GN02      Europhys.Lett. 107, 62001 (2014)

N.V.Gnezdilov, E.E.Saperstein, S.V.Tolokonnikov

Spectroscopic factors of magic and semimagic nuclei within the self-consistent theory of finite Fermi systems

NUCLEAR STRUCTURE 40,48Ca, 204,206,208Pb; calculated spectroscopic factors. Comparison with available data.

doi: 10.1209/0295-5075/107/62001
Citations: PlumX Metrics


2014SA54      Phys.Atomic Nuclei 77, 1033 (2014)

E.E.Saperstein, O.I.Achakovskiy, S.P.Kamerdzhiev, S.Krewald, J.Speth, S.V.Tolokonnikov

Phonon coupling effects in magnetic moments of magic and semimagic nuclei

NUCLEAR STRUCTURE 188,190,192,194,196,198,200,202,204,206,207,208,209Pb, 187,189,191,193,195,197,199,201,203,205,207Tl, 209Bi, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 105,107,109,111,113,115,117,119,121,123,125,127In, 115,117,119,121,123,125,127,129,131,133Sb; calculated energy levels, J, π, magnetic moments, B(E2). Comparison with experimental data.

doi: 10.1134/S1063778814080122
Citations: PlumX Metrics


2013KU17      Bull.Rus.Acad.Sci.Phys. 77, 803 (2013); Izv.Akad.Nauk RAS, Ser.Fiz 77, 886 (2013)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, E.E.Saperstein, S.V.Tolokonnikov

Study of isotopic chain capture

NUCLEAR REACTIONS 196,200,204,208Pb(16O, X), E(cm)<100 MeV; 196,200,204,208Pb(48Ca, X), E(cm)<190 MeV; 152,154Sm(16O, X), E(cm)<75 MeV; calculated σ, mean-square angular momenta. Double-folding formalism with the effective Migdal nucleon-nucleon interaction, comparison with experimental data.

doi: 10.3103/S1062873813070150
Citations: PlumX Metrics


2013SA42      Europhys.Lett. 103, 42001 (2013)

E.E.Saperstein, S.Kamerdzhiev, S.Krewald, J.Speth, S.V.Tolokonnikov

A model for phonon coupling contributions to electromagnetic moments of odd spherical nuclei

NUCLEAR STRUCTURE 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211Tl, 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131In, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133Sb; calculated magnetic moments. Theory of Finite Fermi Systems (TFFS), comparison with experimental data.

doi: 10.1209/0295-5075/103/42001
Citations: PlumX Metrics


2013TO12      Phys.Atomic Nuclei 76, 708 (2013); Yad.Fiz. 76, 758 (2013)

S.V.Tolokonnikov, Yu.S.Lutostansky, E.E.Saperstein

Self-consistent calculations of alpha-decay energies

NUCLEAR STRUCTURE 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236Th, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244U, 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248Pu, 294Og, 293,294Ts, 291Lv; calculated α-decay energies, mass excess. Self-consistent theory of finite Fermi systems, comparison with available data.

doi: 10.1134/S1063778813060136
Citations: PlumX Metrics


2012GN01      JETP Lett. 95, 603 (2012)

N.V.Gnezdilov, E.E.Saperstein

Calculation of Double Mass Differences for Near-Magic Nuclei on the Basis of a Semimicroscopic Model

NUCLEAR STRUCTURE 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er; calculated double mass differences. Argonne nucleon-nucleon potential, comparison with available data.

doi: 10.1134/S0021364012120053
Citations: PlumX Metrics


2012KU12      Phys.Rev. C 85, 034612 (2012)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, E.E.Saperstein, S.V.Tolokonnikov

Isotopic trends of capture cross section and mean-square angular momentum of the captured system

NUCLEAR REACTIONS 196,200,204,208Pb(α, X), E(cm)=13-40 MeV; 196,200,204,208Pb(16O, X), E=60-105 MeV; 196,200,204,208Pb(36S, X), E(cm)=130-175 MeV; 196,200,204,208Pb(48Ca, X), E(cm)=165-195 MeV; 70,72,74,76Ge(16O, X), E(cm)=25-50 MeV; calculated nucleus-nucleus interaction potentials, diffuseness parameter as function of mass number, Coulomb barriers, capture cross sections, mean-square angular momenta, astrophysical S factor. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034612
Citations: PlumX Metrics


2012TO07      Eur.Phys.J. A 48, 70 (2012)

S.V.Tolokonnikov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, D.Voitenkov

Quadrupole moments of spherical semi-magic nuclei within the self-consistent Theory of Finite Fermi Systems

NUCLEAR MOMENTS 39,41Ca, 85,87Kr, 87,89Sr, 89,91Zr, 101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131Sn, 135,137Xe, 137,139Ba, 141,143Nd, 143,145Sm, 147Gd, 197,199,201,205,211Pb, 39K, 41Sc, 87Rb, 105,107,109,111,113,115,117,119,121,123,125,127In, 115,119,121,123Sb, 137Cs, 139La, 141Pr, 145Eu, 205Tl, 203,205,207,209,213Bi; calculated quadrupole moments using self-consistent Finite Fermi Systems with two different functionals. Compared with data.

doi: 10.1140/epja/i2012-12070-1
Citations: PlumX Metrics


2012VO03      Phys.Rev. C 85, 054319 (2012)

D.Voitenkov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, S.V.Tolokonnikov

Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes

NUCLEAR MOMENTS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208Pb; calculated static quadrupole moments of first 2+ states. Ground state correlations. Dependence of quadrupole moment on neutron access. Self-consistent calculations based on quasiparticle random-phase approximation (QRPA) and energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054319
Citations: PlumX Metrics


2011PA21      Phys.Rev. C 84, 014321 (2011)

S.S.Pankratov, M.V.Zverev, M.Baldo, U.Lombardo, E.E.Saperstein

Semi-microscopic model of pairing in nuclei

NUCLEAR STRUCTURE 44Ca, 106,108,110,112,114,116,118,120,122,124,126,128Sn, 182,184,186,188,190,192,194,196,198,200,202,204Pb; calculated neutron pairing gap, mass difference versus the average gap. 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated proton pairing gap. 114,116Sn; calculated spectra. 110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated position of h11/2 orbital. Comparison with experimental data. Semi-microscopic model with ab initio BCS gap equation, the Argonne v18 force and the self-consistent energy density functional method.

doi: 10.1103/PhysRevC.84.014321
Citations: PlumX Metrics


2011SA58      Phys.Atomic Nuclei 74, 1644 (2011)

E.E.Saperstein, M.Baldo, U.Lombardo, S.S.Pankratov, M.V.Zverev

On limits of ab initio calculations of pairing gap in nuclei

NUCLEAR STRUCTURE 182,184,186,188,190,192,194,196,198,200,202,204Pb, 106,108,110,112,114,116,118,120,122,124,126,128Sn, 44Ca, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated neutron and proton gaps. Semi-microscopic model.

doi: 10.1134/S1063778811110172
Citations: PlumX Metrics


2011TO13      Phys.Rev. C 84, 064324 (2011)

S.V.Tolokonnikov, S.Kamerdzhiev, D.Voitenkov, S.Krewald, E.E.Saperstein

Effects of density dependence of the effective pairing interaction on the first 2+ excitations and quadrupole moments of odd nuclei

NUCLEAR STRUCTURE 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated level energies, B(E2) of first 2+ states, diagonal matrix elements of effective proton quadrupole field. 200Pb, 118Sn; calculated proton and neutron transition densities. 204Pb, 116Sn; calculated static proton and neutron effective fields. 105,107,109,111,113,115,117,119,121,123,125,127In, 109,111,113,115,117,119,121, 123,125Sn, 115,117,119,121,123Sb, 205Tl, 191,193,195,197,199,201,203,205,209Pb, 203,205,209Bi; calculated quadrupole moments. Self-consistent theory of finite Fermi systems based on energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064324
Citations: PlumX Metrics


2010BO22      Eur.Phys.J. A 45, 159 (2010)

I.N.Borzov, E.E.Saperstein, S.V.Tolokonnikov, G.Neyens, N.Severijns

Description of magnetic moments of long isotopic chains within the FFS theory

NUCLEAR STRUCTURE 57,59,61,63,65,67,69,71,73,75Cu, 111,113,115,117,119,121,123,125,127,129,131Sn, 133Sb, 135I, 137Cs, 139La, 141Pr, 143Pm, 145Eu, 147Tb, 183,185,187,189,191,193,195,199,201,203,207,209,211Pb; calculated μ for ground and excited states using self-consistent finite Fermi system theory with pairing and quasiparticle continuum. Comparison with data and other calculations.

doi: 10.1140/epja/i2010-10985-y
Citations: PlumX Metrics


2010PA22      JETP Lett. 92, 75 (2010); Pisma Zh.Eksp.Teor.Fiz. 92, 79 (2010)

S.S.Pankratov, M.Baldo, M.V.Zverev, U.Lombardo, E.E.Saperstein

Semi-microscopic model for the effective pairing interaction in atomic nuclei

NUCLEAR STRUCTURE 44Ca, 106,108,110,112,114,116,118,120,122,124,126Sn, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 182,184,186,188,190,192,194,196,198,200,202,204Pb; calculated neutron and proton gaps; deduced semi-microscopic model.

doi: 10.1134/S0021364010140018
Citations: PlumX Metrics


2010TO07      Phys.Atomic Nuclei 73, 1684 (2010); Yad.Fiz. 73, 1731 (2010)

S.V.Tolokonnikov, E.E.Saperstein

Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional

NUCLEAR STRUCTURE 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57Ca, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb, 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282U, 298Fl; calculated proton and neutron single-particle spectrum, neutron separation energies, rms charge radii. DF-3, HFB-17 functionals.

doi: 10.1134/S1063778810100054
Citations: PlumX Metrics


2009PA06      Phys.Rev. C 79, 024309 (2009)

S.S.Pankratov, E.E.Saperstein, M.V.Zverev, M.Baldo, U.Lombardo

Spatial correlation properties of the anomalous density matrix in a slab of nuclear matter with realistic NN forces

doi: 10.1103/PhysRevC.79.024309
Citations: PlumX Metrics


2009PA45      JETP Lett. 90, 560 (2009); Pisma Zh.Eksp.Teor.Fiz. 90, 612 (2009)

S.S.Pankratov, M.Baldo, M.V.Zverev, U.Lombardo, E.E.Saperstein, S.V.Tolokonnikov

On the ab initio calculation of a pairing gap in atomic nuclei

doi: 10.1134/S0021364009200028
Citations: PlumX Metrics


2008BO12      Phys.Atomic Nuclei 71, 469 (2008); Yad.Fiz. 71, 493 (2008)

I.N.Borzov, E.E.Saperstein, S.V.Tolokonnikov

Magnetic moments of spherical nuclei: Status of the problem and unsolved issues

NUCLEAR STRUCTURE Z=19-87, A=39-213; compiled magnetic moments. Calculated magnetic moments for odd spherical nuclei within theory of finite Fermi systems.

doi: 10.1134/S1063778808030095
Citations: PlumX Metrics


2008KA40      Eur.Phys.J. A 37, 333 (2008)

S.Kamerdzhiev, E.E.Saperstein

Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: The role of phonon tadpole terms

doi: 10.1140/epja/i2008-10628-0
Citations: PlumX Metrics


2008PA25      Nucl.Phys. A811, 127 (2008)

S.S.Pankratov, M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

The microscopic pairing gap in a slab of nuclear matter for the Argonne v18 NN-potential

doi: 10.1016/j.nuclphysa.2007.07.002
Citations: PlumX Metrics


2007BA53      Phys.Rev. C 76, 025803 (2007)

M.Baldo, E.E.Saperstein, S.V.Tolokonnikov

Upper edge of the neutron star inner crust: The drip point and its vicinity

doi: 10.1103/PhysRevC.76.025803
Citations: PlumX Metrics


2007BA64      Eur.Phys.J. A 32, 97 (2007)

M.Baldo, E.E.Saperstein, S.V.Tolokonnikov

A realistic model of superfluidity in the neutron star inner crust

doi: 10.1140/epja/i2006-10356-5
Citations: PlumX Metrics


2007PA23      Phys.Atomic Nuclei 70, 658 (2007); Yad.Fiz. 70, 688 (2007)

S.S.Pankratov, M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Effective Pairing Interaction for the Argonne Nucleon-Nucleon Potential v18

doi: 10.1134/S1063778807040060
Citations: PlumX Metrics


2006BA46      Nucl.Phys. A775, 235 (2006)

M.Baldo, E.E.Saperstein, S.V.Tolokonnikov

The role of the boundary conditions in the Wigner-Seitz approximation applied to the neutron star inner crust

doi: 10.1016/j.nuclphysa.2006.07.003
Citations: PlumX Metrics


2006PA02      Nucl.Phys. A765, 61 (2006)

S.S.Pankratov, M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Solution of the microscopic gap equation for a slab of nuclear matter with the Paris N N-potential

doi: 10.1016/j.nuclphysa.2005.10.010
Citations: PlumX Metrics


2006PA41      Phys.Atomic Nuclei 69, 2009 (2006); Yad.Fiz. 69, 2052 (2006)

S.S.Pankratov, E.E.Saperstein, M.V.Zverev

Chemical-Potential Dependence of the Pairing Gap in a Nuclear-Matter Slab

doi: 10.1134/S1063778806120040
Citations: PlumX Metrics


2005BA20      Nucl.Phys. A749, 42c (2005)

M.Baldo, E.E.Saperstein, S.V.Tolokonnikov

Superfluidity in nuclear and neutron matter

doi: 10.1016/j.nuclphysa.2004.12.007
Citations: PlumX Metrics


2005BA22      Nucl.Phys. A750, 409 (2005)

M.Baldo, U.Lombardo, E.E.Saperstein, S.V.Tolokonnikov

The role of superfluidity in the structure of the neutron star inner crust

doi: 10.1016/j.nuclphysa.2005.01.004
Citations: PlumX Metrics


2005BB07      Yad.Fiz. 68, 1874 (2005); Phys.Atomic Nuclei 68, 1812 (2005)

M.Baldo, U.Lombardo, E.E.Saperstein, S.V.Tolokonnikov

Self-Consistent Description of the Inner Crust of a Neutron Star with Allowance for Superfluidity Effects

doi: 10.1134/1.2131112
Citations: PlumX Metrics


2004BA06      Phys.Rep. 391, 261 (2004)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

On the surface nature of the nuclear pairing

doi: 10.1016/j.physrep.2003.10.007
Citations: PlumX Metrics


2003BA16      Yad.Fiz. 66, 257 (2003); Phys.Atomic Nuclei 66, 233 (2003)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Energy Dependence of Effective Nucleon-Nucleon Interaction and Position of the Nucleon Drip Line

NUCLEAR STRUCTURE Sn; calculated two-neutron separation energy for even-mass isotopes. Semimicroscopic calculation.

doi: 10.1134/1.1553494
Citations: PlumX Metrics


2003BA88      Eur.Phys.J. A 18, 17 (2003)

M.Baldo, M.Farine, U.Lombardo, E.E.Saperstein, P.Schuck, M.V.Zverev

Surface behaviour of the pairing gap in slab of nuclear matter

doi: 10.1140/epja/i2003-10064-8
Citations: PlumX Metrics


2003SA48      Pisma Zh.Eksp.Teor.Fiz. 78, 795 (2003); JETP Lett. 78, 343 (2003)

E.E.Saperstein, S.V.Tolokonnikov

Modification of the Energy Functional for Nuclei Near the Nucleon Stability Boundary

NUCLEAR STRUCTURE Ca, Sn, Pb; calculated chemical potential parameters vs mass.

doi: 10.1134/1.1630123
Citations: PlumX Metrics


2002BA36      Eur.Phys.J. A 13, 307 (2002)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

The Local Potential Approximation for the Brueckner G-Matrix and a Simple Model of the Scalar-Isoscalar Landau-Migdal Amplitude

doi: 10.1007/s10050-002-8760-y
Citations: PlumX Metrics


2002BA40      Phys.Lett. 533B, 17 (2002)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Existence of Nuclei with Unusual Neutron Excess ?

NUCLEAR STRUCTURE 124Sn; calculated single-particle levels. A=100-200; calculated two-neutron separation energies. Self-consistent finite Fermi systems theory, possibility of nuclei with large neutron excess discussed.

doi: 10.1016/S0370-2693(02)01558-7
Citations: PlumX Metrics


2002BA78      Yad.Fiz. 65, 1276 (2002); Phys.Atomic Nuclei 65, 1243 (2002)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Local-Potential Approximation for the Brueckner G Matrix and Problem of Optimally Choosing Model Subspace

doi: 10.1134/1.1495024
Citations: PlumX Metrics


2002KA72      Bull.Rus.Acad.Sci.Phys. 66, 27 (2002)

S.V.Karyagin, S.V.Khristenko, S.O.Adamson, A.I.Dementiev, R.U.Khafizov, N.K.Kuzmenko, E.E.Sapershtein, M.V.Zverev

Solid Gamma-Laser: Isomeric Differences in Optical Hyperfine Structure for Three Main Groups of Candidate Nuclei

NUCLEAR STRUCTURE 58Co, 154Eu, 181Ta; analyzed levels J, π, μ, quadrupole moments, radii, isomer shifts, hfs. Application to γ laser discussed.


2001BA34      Yad.Fiz. 64, No 2, 247 (2001); Phys.Atomic Nuclei 64, 203 (2001)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Brueckner G Matrix for a Planar Slab of Nuclear Matter

doi: 10.1134/1.1349442
Citations: PlumX Metrics


2001BA37      Yad.Fiz. 64, No 3, 509 (2001); Phys.Atomic Nuclei 64, 454 (2001)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Simple Microscopic Model for the Scalar-Isoscalar Component of the Landau-Migdal Amplitude

doi: 10.1134/1.1358469
Citations: PlumX Metrics


2001ZV01      Pisma Zh.Eksp.Teor.Fiz. 73, 425 (2001); JRTP Lett. 73, 381 (2001)

M.V.Zverev, E.E.Saperstein

Dependence of Nuclear Z Factor on the Chemical Potential

doi: 10.1134/1.1381631
Citations: PlumX Metrics


2000BA13      Yad.Fiz. 63, No 1, 50 (2000); Phys.Atomic Nuclei 63, 43 (2000)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Microscopic Calculation of a Pairing Gap in Semi-Infinite Nuclear Matter

doi: 10.1134/1.855605
Citations: PlumX Metrics


2000BA74      Yad.Fiz. 63, No 8, 1454 (2000); Phys.Atomic Nuclei 63, 1377 (2000)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Approximation of the Microscopic Effective Pairing Interaction by the Off-Shell T Matrix for Free Nucleon-Nucleon Scattering

doi: 10.1134/1.1307460
Citations: PlumX Metrics


1999BA14      Yad.Fiz. 62, No 1, 71 (1999); Phys.Atomic Nuclei 62, 66 (1999)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Solving the Bogolyubov Equations for Semi-Infinite Nuclear Matter in the Case of a Nonlocal Gap


1999SA47      Yad.Fiz. 62, No 8, 1383 (1999); Phys.Atomic Nuclei 62, 1302 (1999)

E.E.Saperstein, S.V.Tolokonnikov

Evaluation of the Migdal Jump in the Momentum Distribution of Nucleons in Nuclear Matter in Terms of a Nuclear Response Function


1998BA06      Yad.Fiz. 61, No 1, 21 (1998); Phys.Atomic Nuclei 61, 17 (1998)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Surface Nature of Pairing in Nuclei


1998BA26      Phys.Lett. 421B, 8 (1998)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

On the Surface Parameters of the Landau-Migdal Amplitude

doi: 10.1016/S0370-2693(97)01603-1
Citations: PlumX Metrics


1998SA51      Pisma Zh.Eksp.Teor.Fiz. 68, 529 (1998); JETP Lett. 68, 553 (1998)

E.E.Sapershtein, S.V.Tolokonnikov

The Migdal Jump in the Nucleon Momentum Distribution in Nuclear Matter is Determined by the Spin-Isospin Response Function

doi: 10.1134/1.567905
Citations: PlumX Metrics


1997BA44      Yad.Fiz. 60, No 7, 1206 (1997); Phys.Atomic Nuclei 60, 1081 (1997)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Effective Pairing Interaction in Semi-Infinite Nuclear Matter within the Brueckner Approach: Realistic NN interaction


1997BB01      Yad.Fiz. 60, No 12, 2170 (1997); Phys.Atomic Nuclei 60, 1988 (1997)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Simple Estimate of the Parameters of Effective Nucleon-Nucleon Interaction Near the Nuclear Surface

NUCLEAR STRUCTURE 208Pb; calculated isoscalar central potential; deduced G matrix energy dependence related features.


1995BA62      Phys.Lett. 350B, 135 (1995)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

On the Brueckner Theory of Pairing in Semi-Infinite Nuclear Matter Beyond the Local Density Approximation

doi: 10.1016/0370-2693(95)00340-Q
Citations: PlumX Metrics


1995BB04      Yad.Fiz. 58, No 9, 1572 (1995); Phys.Atomic Nuclei 58, 1483 (1995)

M.Baldo, U.Lombardo, E.E.Saperstein, M.V.Zverev

Effective Pairing Interaction in Semi-Infinite Nuclear Matter in the Brueckner Approach: Model δ-shaped NN Interaction


1995PL02      Yad.Fiz. 58, No 4, 612 (1995); Phys.Atomic Nuclei 58, 556 (1995)

A.P.Platonov, E.E.Saperstein, S.V.Tolokonnikov, S.A.Fayans

Effective Spin-Isospin NN Interaction at High Momentum Transfer and the Elastic Magnetic Scattering of Electrons by Nuclei

NUCLEAR REACTIONS 117Sn, 89Y, 41Ca, 17O(e, e), E not given; analyzed magnetic form factor data; deduced spin-isospin channel effective interaction suppression, Landau-Migdal constant momentum transfer dependence. Finite Fermi systems theory.


1994ZV02      Yad.Fiz. 57, No 12, 2196 (1994); Phys.Atomic Nuclei 57, 2113 (1994)

M.V.Zverev, E.E.Saperstein

Self-Consistent Theory of Temperature Effects in Superfluid Nuclei

NUCLEAR STRUCTURE 112,118Sn; calculated neutron, proton radii, density distributions, gap operator matrix element vs temperature. Self-consistent finite Fermi systems theory. Other Sn isotopes discussed.


1993KI16      Yad.Fiz. 56, No 9, 109 (1993); Phys.Atomic Nuclei 56, 1213 (1993)

W.Kim, A.P.Platonov, E.E.Sapershtein

Elastic Magnetic Electron Scattering by 41Ca and the Momentum-Transfer Dependence of the Effective Spin-Isospin Interaction in Nuclei

NUCLEAR REACTIONS 41Ca(e, e), E not given; analyzed elastic magnetic form factor data; deduced effective spin-isospin interaction momentum transfer dependence.


1993WI08      Phys.Rev. C47, 2539 (1993)

J.E.Wise, J.R.Calarco, J.P.Connelly, S.A.Fayans, F.W.Hersman, J.H.Heisenberg, R.S.Hicks, W.Kim, T.E.Milliman, R.A.Miskimen, G.A.Peterson, A.P.Platonov, E.E.Saperstein, R.P.Singhal

Ground-State Magnetization Density of 89Y

NUCLEAR REACTIONS 89Y(e, e), E=71-262 MeV; measured σ(θ), θ=180°. 89Y deduced ground state M1 form factor. Fourier-Bessel analysis.

doi: 10.1103/PhysRevC.47.2539
Citations: PlumX Metrics


1992WI06      Phys.Rev. C45, 2701 (1992)

J.E.Wise, J.P.Connelly, F.W.Hersman, J.H.Heisenberg, W.Kim, M.Leuschner, S.A.Fayans, A.P.Platonov, E.E.Saperstein, V.Yu.Ponomarev

Transition Densities of Collective Excitations in 118Sn

NUCLEAR REACTIONS 118Sn(e, e), (e, e'), E=252, 376 MeV; measured σ(θ, E(e')). 118Sn levels deduced transition charge densities, B(λ). Finite Fermi system, quasiparticle-phonon approach.

doi: 10.1103/PhysRevC.45.2701
Citations: PlumX Metrics


1991KA21      Yad.Fiz. 53, 1273 (1991); Sov.J.Nucl.Phys. 53, 784 (1991)

R.N.Kasymbalinov, E.E.Sapershtein

Elastic Magnetic Scattering of Electrons by Nuclei - A Test of Single-Particle Wave Functions of the Valence Nucleons

NUCLEAR REACTIONS 207Pb, 87Sr, 209Bi, 51V(e, e), E not given; calculated magnetic form factor. Core polarization, relativistic corrections, meson exchange currents.


1991KI13      Phys.Rev. C44, 2400 (1991)

W.Kim, J.R.Calarco, J.P.Connelly, J.H.Heisenberg, F.W.Hersman, T.E.Milliman, J.E.WIse, B.L.Miller, C.N.Papanicolas, V.Yu.Ponomarev, E.E.Saperstein, A.P.Platonov

Properties of Low-Lying States in 142Ce via High Resolution Electron Scattering

NUCLEAR REACTIONS 142Ce(e, e'), E=100-370 MeV; measured reaction products, Eβ, Iβ; deduced σ(E(e'), θ=45°), form factors, B(E2). 142Ce levels deduced charge densities. Quasiparticle-phonon approach, finite Fermi system.

doi: 10.1103/PhysRevC.44.2400
Citations: PlumX Metrics


1989SA42      Fiz.Elem.Chastits At.Yadra 20, 293 (1989); Sov.J.Part.Nucl 20, 123 (1989)

E.E.Sapershtein, V.E.Starodubsky

Traditional Nuclear Physics as a Test of Nuclear Exotics

NUCLEAR REACTIONS 40,42,44,48Ca, 48Ti(p, p), E=1.04 GeV; 208Pb(p, p), E=1 GeV; 58Ni, 90Zr, 116,124Sn(p, p), E=0.8 GeV; 208Pb(e, e), E=502 MeV; 40Ca(e, e), E=400 MeV; 116,124Sn(e, e), E=500 MeV; analyzed σ(θ); deduced nucleon swelling restrictions.


1989ZV01      Yad.Fiz. 49, 952 (1989)

M.V.Zverev, A.P.Platonov, E.E.Saperstein

Surface Density Fluctuations in Spherical Nuclei

NUCLEAR STRUCTURE 50,52,54Cr, 58,60,62,64Ni, 74,76,78,80,82Se, 92,94,96,98,100Mo; calculated B(E2), transition charge density, radii, diffuseness parameter. Collective model.


1988PL03      Nucl.Phys. A486, 63 (1988)

A.P.Platonov, E.E.Saperstein

Response Function of Superfluid Nuclei and Low-Lying Quadrupole Vibrations

NUCLEAR STRUCTURE 112,116,120,124,128,132Sn, 138,140,142,144Ce, 142,144Nd, 204,206Pb; calculated levels, B(E2), nucleon, charge transition densities.

doi: 10.1016/0375-9474(88)90039-5
Citations: PlumX Metrics


1987KH02      Nucl.Phys. A465, 397 (1987)

V.A.Khodel, E.E.Saperstein, M.V.Zverev

Effects of Mass Operator Energy Dependence in Atomic Nuclei: Quasiparticle lagrangian versus quasiparticle hamiltonian

NUCLEAR STRUCTURE 206Pb, 205Tl; calculated charge density differences. Quasiparticle Lagrange method.

NUCLEAR REACTIONS 208Pb(e, e), E=502 MeV; calculated σ(θ). Quasiparticle Lagrange method.

doi: 10.1016/0375-9474(87)90355-1
Citations: PlumX Metrics


1987PL04      Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 111 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.1, 103 (1987)

A.P.Platonov, E.E.Sapershtein

Character of 2+ State in Nonmagnetic Nuclei

NUCLEAR STRUCTURE 120Sn, 142,144,146Nd; calculated B(E2), neutron, proton density distributions.


1987PL06      Yad.Fiz. 46, 437 (1987)

A.P.Platonov, E.E.Saperstein

On the Nature of the Low-Lying Quadrupole Vibrations of the Superfluid Atomic Nuclei

NUCLEAR STRUCTURE 112,116,120,124,128,132Sn, 138,140,142,144Ce, 142,144Nd; calculated B(E2), transition charge densities.


1987PL07      Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 907 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.5, 68 (1987)

A.P.Platonov, E.E.Sapershtein

Describing Collective Nuclear Excitations in the Lagrange Quasiparticle Approach

NUCLEAR STRUCTURE 40Ca; calculated proton, neutron transition densities. Lagrange quasiparticle approach.


1987SA45      Yad.Fiz. 46, 69 (1987)

E.E.Saperstein, V.E.Starodubsky

Glauber Theory for Elastic Scattering of Fast Protons from Nuclei and the Nucleon Swelling Hypothesis

NUCLEAR REACTIONS 40,42,44,48Ca, 48Ti, 208Pb(p, p), E=0.4-1.04 GeV; calculated σ(θ); deduced nucleon size constraint in nuclear medium. Glauber approach, quasiparticle Lagrange method.


1987ZV01      Yad.Fiz. 46, 466 (1987)

M.V.Zverev, V.I.Kuprikov, E.E.Saperstein, N.G.Shevchenko, A.A.Khomich

Electron Elastic Scattering from Nuclei as a Probe of Self-Consistent Methods in Nuclear Theory

NUCLEAR REACTIONS 40,48Ca, 58Ni, 116,124Sn, 208Pb(e, e), E=250, 400, 450, 500 MeV; analyzed σ(θ). Quasiparticle Lagrangian, Hartree-Fock methods.


1986ZV01      Yad.Fiz. 43, 304 (1986)

M.V.Zverev, E.E.Saperstein

On Momentum Distribution of Nucleons Inside Nucleus

NUCLEAR STRUCTURE 208Pb; calculated nucleon momentum distribution. Quasiparticle Lagrange method.


1985ZV01      Yad.Fiz. 42, 1082 (1985)

M.V.Zverev, E.E.Sapershtein

Some Questions of the Self-Consistent Theory of Pairing in Atomic Nuclei. The Lead Region and the ' Magic ± 2 Particles ' Nuclei

NUCLEAR STRUCTURE 208,204,207Pb, 209Bi; calculated charge radii differences. 201,197,193,211,205Pb; calculated single particle level energies. 188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated neutron separation energies; deduced nucleon stability boundaries. Self-consistent theory of pairing.


1984KA30      Yad.Fiz. 40, 397 (1984)

R.N.Kasymbalinov, A.P.Platonov, E.E.Saperstein

Self-Consistent Calculations of Energy Levels of Heavy Mesoatoms

ATOMIC PHYSICS, Mesic-Atoms 207Pb, 209Bi; calculated muonic atom isomer shifts, mesic atom levels; deduced relativistic effect contributions, structure effects. Quasiparticle Lagrangian method.


1984ZV01      Yad.Fiz. 39, 1390 (1984)

M.V.Zverev, E.E.Sapershtein

Description of Superfluid Atomic Nuclei in Quasiparticle Lagrange Approach

NUCLEAR STRUCTURE 116,118,120,122,124,126,128,132Sn; calculated levels, binding energy, charge radius. 100,102,104,106,108,110,112,114Sn; calculated binding energy, charge radius. 116,124Sn; calculated transition charge density distribution. Quasiparticle Lagrange approach.


1983SA25      Izv.Akad.Nauk SSSR, Ser.Fiz. 47, 907 (1983)

E.E.Sapershtein, V.A.Khodel

Ground State Characteristics of Atomic Nuclei and the Self-Consistent Theory of Finite Fermi-System

NUCLEAR STRUCTURE 208Pb, 40Ca; calculated ground state charge density distributions. Self-consistent theory, finite Fermi system.


1983SA35      Yad.Fiz. 38, 848 (1983)

E.E.Saperstein, V.A.Khodel

Description of Properties of Magic Nuclei in the Quasi-Particle Lagrangian Approach

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 208Pb; calculated neutron, proton rms radii, binding energy per nucleon, levels, charge density distributions, charge, magnetic radii; deduced effective interaction energy dependence importance. Quasiparticle Lagrangian method.


1982KA20      Yad.Fiz. 35, 1489 (1982)

R.N.Kasymbalinov, E.E.Sapershtein

Spin-Orbit Contribution to Isotopic and Isomeric Shifts of Atomic and Mesoatomic Levels

ATOMIC PHYSICS, Mesic-Atoms 208Pb, 209Bi; calculated isotopic, isomer shifts; deduced spin orbit effects.


1982KH02      J.Phys.(London) G8, 967 (1982)

V.A.Khodel, A.P.Platonov, E.E.Saperstein

On the 40Ca - 48Ca Isotope Shift

NUCLEAR STRUCTURE 40,48Ca; calculated proton rms radii, surface deformation parameters, B(λ); deduced collective excitation role in isotope shift. Anharmonic effects, self-consistent finite Fermi systems.

doi: 10.1088/0305-4616/8/7/013
Citations: PlumX Metrics


1980FA10      Phys.Lett. 92B, 33 (1980)

S.A.Fayans, E.E.Saperstein, S.V.Tolokonnikov

Effects of Proximity to the Pion Condensation Threshold in Inelastic Nucleon-Nucleus Scattering with Excitation of Unnatural-Parity States

NUCLEAR REACTIONS 208Pb(p, p'), E=35, 61.4, 100 MeV; calculated σ(θ); deduced pion condensation threshold effects. DWBA, renormalized one-pion exchange, full-basis form factors.

doi: 10.1016/0370-2693(80)90297-X
Citations: PlumX Metrics


1980KH02      J.Phys.(London) G6, 1199 (1980)

V.A.Khodel, A.P.Platonov, E.E.Saperstein

On the Particle-Vibration Multiplets

NUCLEAR STRUCTURE 209Bi, 207,209Pb, 207Tl; calculated levels. Particle-vibration coupling, self-consistent finite Fermi systems.

doi: 10.1088/0305-4616/6/10/007
Citations: PlumX Metrics


1980KH07      Nucl.Phys. A348, 261 (1980)

V.A.Khodel, E.E.Saperstein

Self-Consistent Theory of Finite Fermi Systems and Low-Lying Collective States in Spherical Nucleii (II)

NUCLEAR STRUCTURE 40,48Ca, 208Pb; calculated single-particle spectra, quasiparticle, particle, charge density distributions, B(λ), giant resonances. Self-consistent theory, finite Fermi systems.

doi: 10.1016/0375-9474(80)90337-1
Citations: PlumX Metrics


1979FA05      Nucl.Phys. A317, 424 (1979)

S.A.Fayans, V.A.Khodel, E.E.Saperstein

Self-Consistent Theory of Finite Fermi Systems and Low-Lying Collective States in Spherical Nuclei (I)

NUCLEAR STRUCTURE 40Ca, 88Sr, 132Sn, 208Pb, 298,342Fl; analyzed nature of low-lying collective states. Finite Fermi system with self-consistency, classical liquid-drop surface vibration interpretation.

doi: 10.1016/0375-9474(79)90490-1
Citations: PlumX Metrics


1979FA09      Nucl.Phys. A326, 463 (1979)

S.A.Fayans, E.E.Saperstein, S.V.Tolokonnikov

Excitation of Unnatural Parity States and Proximity of Atomic Nuclei to the Point of the π-Condensate Instability

NUCLEAR STRUCTURE 208Pb; calculated transition densities for low-lying unnatural parity states. Theory of finite Fermi systems, one-pion exchange amplitude.

doi: 10.1016/0375-9474(79)90404-4
Citations: PlumX Metrics


1979SA25      Yad.Fiz. 30, 70 (1979); Sov.J.Nucl.Phys. 30, 36 (1979)

E.E.Sapershtein, V.E.Starodubskii

Elastic and Inelastic Scattering of Fast Protons and Electrons by Nuclei and Self-Consistent Calculations of Nuclear Densities

NUCLEAR REACTIONS 40,48Ca, 90Zr, 208Pb(p, p'), E=1-1.04 GeV; 40,48Ca, 90Zr, 208Pb(e, e'), E=183-248 MeV; calculated σ(θ). Self-consistent nucleon densities.


Back to query form    [Next]


Note: The following list of authors and aliases matches the search parameter E.E.Saperstein: E.E.SAPERSHTEIN, E.E.SAPERSTEIN