NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = S.Kamerdzhiev

Found 81 matches.

Back to query form



2022KA54      Phys.Atomic Nuclei 85, 425 (2022)

S.P.Kamerdzhiev, M.I.Shitov

Characteristics of Pygmy and Giant Resonances within a Microscopic Model for Taking into Account Complex Configurations: Formalism

doi: 10.1134/S1063778822050052
Citations: PlumX Metrics


2022SH13      Phys.Atomic Nuclei 85, 42 (2022)

M.I.Shitov, D.A.Voitenkov, S.P.Kamerdzhiev, S.V.Tolokonnikov

Self-Consistent Calculations of Probabilities for Transitions between 3-1 and 2+1 One-Phonon States in Tin Isotopes

NUCLEAR STRUCTURE 118,120,122,124Sn; calculated probabilities for transitions between low-lying one-phonon states in nuclei where there is pairing, B(E1). Self-consistent approach based on the DF3-a Fayans energy density functional.

doi: 10.1134/S1063778822010124
Citations: PlumX Metrics


2021KA49      Phys.Atomic Nuclei 84, 649 (2021)

S.P.Kamerdzhiev, M.I.Shitov

Microscopic Model to Take into Account Complex Configurations for Pygmy and Giant Resonances

doi: 10.1134/S1063778821050082
Citations: PlumX Metrics


2020KA57      Eur.Phys.J. A 56, 265 (2020)

S.P.Kamerdzhiev, M.I.Shitov

Microscopic theory of pygmy- and giant resonances: accounting for complex 1p1h(X)phonon configurations

doi: 10.1140/epja/s10050-020-00224-7
Citations: PlumX Metrics


2018KA45      JETP Lett. 108, 155 (2018)

S.P.Kamerdzhiev, D.A.Voitenkov, E.E.Saperstein, S.V.Tolokonnikov

Self-Consistent Calculations of the Quadrupole Moments of the Lowest 3- States in Sn and Pb Isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 190,192,194,196,198,200,202,204,206,208,210,212Pb; calculated energies and B(E3). Comparison with available data.

doi: 10.1134/S0021364018150079
Citations: PlumX Metrics


2018LA07      Phys.Rev. C 97, 054329 (2018)

A.C.Larsen, J.E.Midtbo, M.Guttormsen, T.Renstrom, S.N.Liddick, A.Spyrou, S.Karampagia, B.A.Brown, O.Achakovskiy, S.Kamerdzhiev, D.L.Bleuel, A.Couture, L.Crespo Campo, B.P.Crider, A.C.Dombos, R.Lewis, S.Mosby, F.Naqvi, G.Perdikakis, C.J.Prokop, S.J.Quinn, S.Siem

Enhanced low-energy γ-decay strength of 70Ni and its robustness within the shell model

RADIOACTIVITY 70Co(β-)[from 9Be(86Kr, X), E=140 MeV/nucleon followed by fragment separation using A1900 fragment separator at NSCL-MSU]; measured Eγ, Iγ, summed γ energies, β-γ-coin using double-sided silicon strip detector (DSSD) for electrons placed in the center of the Summing NaI (SuN) total absorption spectrometer for γ radiation. 70Ni; deduced nuclear level density (NLD) and γ-strength function (γSF) using β-Oslo method. Comparison with previous experimental results, and with HFB+c calculations.

NUCLEAR STRUCTURE 70Ni; calculated levels, J, π, B(E2), level densities, γSF, summed γSF, and M1 γ strengths for A=56-76 Ni isotopes. Quasiparticle time-blocking approximation and large-scale shell-model calculations with CA48MH1G and JUN45 interactions. Comparison with experimental results.

doi: 10.1103/PhysRevC.97.054329
Citations: PlumX Metrics


2017KA54      JETP Lett. 106, 139 (2017)

S.P.Kamerdzhiev, D.A.Voitenkov, E.E.Saperstein, S.V.Tolokonnikov, M.I.Shitov

Self-consistent description of EL transitions between one-phonon states in magic nuclei

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated energy levels, J, π, B(E2) using quantum theory of many-body systems.

doi: 10.1134/S0021364017150085
Citations: PlumX Metrics


2017SA24      J.Phys.(London) G44, 065104 (2017)

E.E.Saperstein, S.Kamerdzhiev, D.S.Krepish, S.V.Tolokonnikov, D.Voitenkov

The first self-consistent calculation of quadrupole moments of odd semi-magic nuclei accounting for phonon-induced corrections

NUCLEAR MOMENTS 111,113,115,117,119,121,123,125,127In, 115,117,119,121,123Sb; calculated quadrupole moments. Comparison with experimental data.

doi: 10.1088/1361-6471/aa65f5
Citations: PlumX Metrics


2016AC03      JETP Lett. 104, 374 (2016)

O.I.Achakovskiy, S.P.Kamerdzhiev, V.I.Tselyaev

Radiative strength function and the pygmy dipole resonance in 208Pb and 70Ni

NUCLEAR REACTIONS 208Pb, 70Ni(γ, X), (3He, 3He'), E<10 MeV; analyzed available data; 208Pb, 70Ni. deduced the pygmy-resonance parameters and the E1 strength function.

doi: 10.1134/S0021364016180053
Citations: PlumX Metrics


2016KA64      Phys.Atomic Nuclei 79, 567 (2016)

S.P.Kamerdzhiev, O.I.Achakovskiy, A.V.Avdeenkov, S.Goriely

On microscopic theory of radiative nuclear reaction characteristics

NUCLEAR REACTIONS 72Ni(γ, x), E=5-14 MeV; calculated photoabsorption σ. 115,119Sn(n, γ)(n, γ), E=0.007-10 MeV;121Sn, 208Pb(n, γ), E=0.001-10 MeV; calculated σ. 67Ni, 117,119Sn(n, γ), E≈50, 560 keV; calculated γ multiplicity, σ(Εγ). Different approaches and data and some results taken from publications.

NUCLEAR STRUCTURE 58,68,72Ni; calculated pygmy dipole resonance energy, fraction of EWSR. 132Sn, 208Pb; calculated E1 photon strength function. 58,60,62,68,72Ni;110,112,116,118,120,122,124,132,136Sn, 208Pb; calculated γ radiative width Γγ for s-wave neutrons. Different approaches and data and some results taken from publications.

doi: 10.1134/S106377881604013X
Citations: PlumX Metrics


2015AC01      Phys.Rev. C 91, 034620 (2015)

O.Achakovskiy, A.Avdeenkov, S.Goriely, S.Kamerdzhiev, S.Krewald

Impact of phonon coupling on the photon strength function

NUCLEAR STRUCTURE 110,112,116,118,120,122,124,132,136Sn, 58,62,68,72Ni; calculated E1 strength function, average radiative width. QRPA, quasiparticle time blocking approximation. Comparison with experimental data.

NUCLEAR REACTIONS 115,119Sn(n, γ), E=0.007-10 MeV; calculated σ(E).QRPA, Quasiparticle time blocking approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.034620
Citations: PlumX Metrics


2014AC01      Eur.Phys.J. A 50, 6 (2014)

O.I.Achakovskiy, S.P.Kamerdzhiev, E.E.Saperstein, S.V.Tolokonnikov

Magnetic moments of odd-odd spherical nuclei

NUCLEAR STRUCTURE 14,15,16N, 15,17O, 16,17,18,19F, 38,39,40K, 39,41Ca, 40,42Sc, 40,41,42Sc, 54,55,56,57,58,59,60,61Co, 55,56,57,58,59,61Ni, 56,57,58Cu, 87Kr, 89,91Zr, 89Y, 87,90,91Nb, 91,93Mo, 93,94Tc, 95Ru, 105,107,109,111,131,132In, 107,111,113,115,123,125,127,132,133Sn, 113,115,117,123,125,126,127,128,129,132,133,134Sb, 135,137Xe, 136,137,138Cs, 137,139Ba, 138,139,140La, 139,141Ce, 143Nd, 141,142Pr, 143,145,147Sm, 144,145,146Eu, 147Gd, 191,193,195,197,199,201,203,205,206,208Tl, 193,195,197,199,201,203,205,207,209,211Pb, 201,202,203,204,205,206,207,208,209,210,211,212Bi, 211Rn, 213Ra, 212,213Fr; calculated ground state and excited state μ. Compared with other calculations and available data. 58Co, 106,110In, 124Sb, 194,196,198,200,202,204Tl; calculated ground state μ obtained by mixing of two configurations. Compared to data. 55,56,57,59,60Co, 57,61Ni; calculated μ. Compared with published shell model calculations. Self-consistent TFFS (Theory of Finite Fermi Systems).

doi: 10.1140/epja/i2014-14006-1
Citations: PlumX Metrics


2014SA54      Phys.Atomic Nuclei 77, 1033 (2014)

E.E.Saperstein, O.I.Achakovskiy, S.P.Kamerdzhiev, S.Krewald, J.Speth, S.V.Tolokonnikov

Phonon coupling effects in magnetic moments of magic and semimagic nuclei

NUCLEAR STRUCTURE 188,190,192,194,196,198,200,202,204,206,207,208,209Pb, 187,189,191,193,195,197,199,201,203,205,207Tl, 209Bi, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 105,107,109,111,113,115,117,119,121,123,125,127In, 115,117,119,121,123,125,127,129,131,133Sb; calculated energy levels, J, π, magnetic moments, B(E2). Comparison with experimental data.

doi: 10.1134/S1063778814080122
Citations: PlumX Metrics


2013SA42      Europhys.Lett. 103, 42001 (2013)

E.E.Saperstein, S.Kamerdzhiev, S.Krewald, J.Speth, S.V.Tolokonnikov

A model for phonon coupling contributions to electromagnetic moments of odd spherical nuclei

NUCLEAR STRUCTURE 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211Tl, 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131In, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133Sb; calculated magnetic moments. Theory of Finite Fermi Systems (TFFS), comparison with experimental data.

doi: 10.1209/0295-5075/103/42001
Citations: PlumX Metrics


2012TO07      Eur.Phys.J. A 48, 70 (2012)

S.V.Tolokonnikov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, D.Voitenkov

Quadrupole moments of spherical semi-magic nuclei within the self-consistent Theory of Finite Fermi Systems

NUCLEAR MOMENTS 39,41Ca, 85,87Kr, 87,89Sr, 89,91Zr, 101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131Sn, 135,137Xe, 137,139Ba, 141,143Nd, 143,145Sm, 147Gd, 197,199,201,205,211Pb, 39K, 41Sc, 87Rb, 105,107,109,111,113,115,117,119,121,123,125,127In, 115,119,121,123Sb, 137Cs, 139La, 141Pr, 145Eu, 205Tl, 203,205,207,209,213Bi; calculated quadrupole moments using self-consistent Finite Fermi Systems with two different functionals. Compared with data.

doi: 10.1140/epja/i2012-12070-1
Citations: PlumX Metrics


2012VO03      Phys.Rev. C 85, 054319 (2012)

D.Voitenkov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, S.V.Tolokonnikov

Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes

NUCLEAR MOMENTS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208Pb; calculated static quadrupole moments of first 2+ states. Ground state correlations. Dependence of quadrupole moment on neutron access. Self-consistent calculations based on quasiparticle random-phase approximation (QRPA) and energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054319
Citations: PlumX Metrics


2011AV04      Phys.Rev. C 83, 064316 (2011)

A.Avdeenkov, S.Goriely, S.Kamerdzhiev, S.Krewald

Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes

NUCLEAR STRUCTURE 100,110,112,114,120,124,132,136,142,150,156,166,176Sn; calculated E1 strength functions, integral characteristics of GDR versus A, giant-dipole and pygmy-dipole resonances (GDR, PDR), neutron and proton transitional densities using self-consistent microscopic theory as well as standard quasiparticle random phase approximation (QRPA, QTBA). Comparison with experimental data. Discussed properties of GDR and PDR.

NUCLEAR REACTIONS 123,131,149Sn(n, γ), E=0.001-10 MeV; calculated neutron capture cross sections obtained with E1 strength functions calculated within the QRPA, QTBA, and Kopecky-Uhl approaches.

doi: 10.1103/PhysRevC.83.064316
Citations: PlumX Metrics


2011AV09      J.Korean Phys.Soc. 59, 967s (2011)

A.Avdeenkov, S.Goriely, S.Kamerdzhiev

Impact of the Phonon Coupling on the Dipole Strength and Radiative Neutron Capture

NUCLEAR REACTIONS 124,132,150Sn(γ, X), E=4-30 MeV;123,131,149Sn(n, γ), E=1.E-3-10 MeV; calculated σ; deduced γ-ray strength functions. Self-consistent extended theory of finite Fermi systems (DTBA) with and without phonon coupling, TALYS code. Comparison with (Q)RPA and Kopecky-Uhl.

doi: 10.3938/jkps.59.967
Citations: PlumX Metrics


2011IS01      Phys.Rev. C 83, 034304 (2011)

J.Isaak, D.Savran, M.Fritzsche, D.Galaviz, T.Hartmann, S.Kamerdzhiev, J.H.Kelley, E.Kwan, N.Pietralla, C.Romig, G.Rusev, K.Sonnabend, A.P.Tonchev, W.Tornow, A.Zilges

Investigation of low-lying electric dipole strength in the semimagic nucleus 44Ca

NUCLEAR REACTIONS 44Ca(polarized γ, γ'), E = 6-10, 9.9 MeV; measured Eγ, Iγ, γ(θ), integrated cross sections, and polarization asymmetry at DHIPS facility using S-DALINAC accelerator, and at HIγS facility. 44Ca; deduced levels, J, π, photon branching ratios, widths, B(E1) and B(M1) transition strengths. Comparisons with dipole strengths in 40,48Ca and with microscopic calculations within the extended theory of finite Fermi systems. Dependence of total E1 strength on neutron number.

doi: 10.1103/PhysRevC.83.034304
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2011TO13      Phys.Rev. C 84, 064324 (2011)

S.V.Tolokonnikov, S.Kamerdzhiev, D.Voitenkov, S.Krewald, E.E.Saperstein

Effects of density dependence of the effective pairing interaction on the first 2+ excitations and quadrupole moments of odd nuclei

NUCLEAR STRUCTURE 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated level energies, B(E2) of first 2+ states, diagonal matrix elements of effective proton quadrupole field. 200Pb, 118Sn; calculated proton and neutron transition densities. 204Pb, 116Sn; calculated static proton and neutron effective fields. 105,107,109,111,113,115,117,119,121,123,125,127In, 109,111,113,115,117,119,121, 123,125Sn, 115,117,119,121,123Sb, 205Tl, 191,193,195,197,199,201,203,205,209Pb, 203,205,209Bi; calculated quadrupole moments. Self-consistent theory of finite Fermi systems based on energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064324
Citations: PlumX Metrics


2010AV04      Phys.Atomic Nuclei 73, 1119 (2010)

A.V.Avdeenkov, S.Goriely, S.P.Kamerdzhiev

Impact of the phonon coupling on the radiative neutron capture

NUCLEAR REACTIONS 123,149Sn(n, γ), E<10 MeV; 124,150Sn(γ, X), E<28 MeV; calculated σ; deduced phonon contribution to pigmy-dipole resonance and radiative neutron capture σ. Extended theory of Finite fermi Systems (ETFFS).

doi: 10.1134/S1063778810070057
Citations: PlumX Metrics


2009AV04      Phys.Atomic Nuclei 72, 1332 (2009); Yad.Fiz. 72, 1385 (2009)

A.V.Avdeenkov, S.P.Kamerdzhiev

Pygmy dipole resonance in nuclei

NUCLEAR REACTIONS 124Sn(α, αγ), E = 0-30 MeV; calculated photoabsorption σ, isoscalar and isovector strength functions, energies and B(E1) for pygmy and dipole resonances.

doi: 10.1134/S1063778809080080
Citations: PlumX Metrics


2009TS03      Phys.Rev. C 79, 034309 (2009)

V.Tselyaev, J.Speth, S.Krewald, E.Litvinova, S.Kamerdzhiev, N.Lyutorovich, A.Avdeenkov, F.Grummer

Description of the giant monopole resonance in the even-A 112-124Sn isotopes within a microscopic model including quasiparticle-phonon coupling

NUCLEAR STRUCTURE 90Zr, 110,112,114,116,118,120,122,124,132Sn, 144Sm, 208Pb; calculated strength distribution, mean energies and widths of isoscalar giant-monopole resonances (ISGMR) using two microscopic models: quasiparticle random phase approximation (QRPA) and quasiparticle time blocking approximation (QTBA) with self-consistence scheme based on Hartree-Fock+Bardeen-Cooper-Schrieffer (HF+BCS) approximation and Skyrme energy functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.034309
Citations: PlumX Metrics


2008KA40      Eur.Phys.J. A 37, 333 (2008)

S.Kamerdzhiev, E.E.Saperstein

Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: The role of phonon tadpole terms

doi: 10.1140/epja/i2008-10628-0
Citations: PlumX Metrics


2008LY03      Eur.Phys.J. A 37, 381 (2008)

N.Lyutorovich, J.Speth, A.Avdeenkov, F.Grummer, S.Kamerdzhiev, S.Krewald, V.I.Tselyaev

Self-consistent calculations within the Green's function method including particle-phonon coupling and the single-particle continuum

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated levels, J, π, B(E1), GDR, photoabsorption σ, isoscalar/isovector quadrupole strength distributions using a quasiparticle time blocking approximation. Comparison with RPA and data.

doi: 10.1140/epja/i2008-10638-x
Citations: PlumX Metrics


2007TE05      Phys.Lett. B 647, 104 (2007)

G.Tertychny, V.Tselyaev, S.Kamerdzhiev, F.Grummer, S.Krewald, J.Speth, A.Avdeenkov, E.Litvinova

Microscopic description of the low lying and high lying electric dipole strength in stable Ca isotopes

NUCLEAR STRUCTURE 40,44,48Ca; calculated B(E1), electric dipole strength distribution, GDR. Extended theory of finite Fermi systems.

doi: 10.1016/j.physletb.2007.01.069
Citations: PlumX Metrics


2007TE08      Nucl.Phys. A788, 159c (2007)

G.Tertychny, V.Tselyaev, S.Kamerdzhiev, F.Grummer, S.Krewald, J.Speth, E.Litvinova, A.Avdeenkov

Pygmy dipole resonance in stable Ca isotopes

NUCLEAR STRUCTURE 40,44,48Ca; calculated B(E1), electric dipole strength distribution, transition densities. Extended theory of finite Fermi systems using RPA. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.077
Citations: PlumX Metrics


2006KA17      Phys.Atomic Nuclei 69, 418 (2006); Yad.Fiz. 69, 442 (2006)

S.P.Kamerdzhiev, S.F.Kovalev

Photonuclear Data and Modern Physics of Giant Resonances

NUCLEAR STRUCTURE 40,44,48Ca, 50Ti, 52Cr, 54Fe, 90Zr, 104,120,132Sn, 140Ce, 206,208Pb; calculated resonance properties, strength distributions, photoabsorption σ.

doi: 10.1134/S1063778806030057
Citations: PlumX Metrics


2006KA34      Phys.Atomic Nuclei 69, 1110 (2006)

S.P.Kamerdzhiev

Extended Theory of Finite Fermi Systems for Magic and Nonmagic Nuclei

NUCLEAR REACTIONS 208Pb(e, e'), E=50 MeV; 208Pb(p, p'), E=200 MeV; analyzed particle spectra, isoscalar E2 strength function. 40Ca(α, α'), E=240 MeV; calculated Eα, σ(θ=1.08°). Extended theory of finite Fermi systems, comparisons with data.

NUCLEAR STRUCTURE 40,44,48Ca, 104,120,132Sn; calculated pygmy resonance energies. RPA, extended theory of finite Fermi systems, comparisons with data.

doi: 10.1134/S1063778806070039
Citations: PlumX Metrics


2004HA51      Phys.Rev.Lett. 93, 192501 (2004)

T.Hartmann, M.Babilon, S.Kamerdzhiev, E.Litvinova, D.Savran, S.Volz, A.Zilges

Microscopic Nature of the Pygmy Dipole Resonance: The Stable Ca Isotopes

NUCLEAR REACTIONS 44Ca(γ, γ'), E=9.9 MeV bremsstrahlung; measured Eγ, Iγ. 44Ca deduced electric dipole strength distribution, pygmy dipole resonance features.

NUCLEAR STRUCTURE 40,44,48Ca; analyzed B(E1), summed strength; deduced quasiparticle-phonon coupling contributions to pygmy dipole resonance. Microscopic model.

doi: 10.1103/PhysRevLett.93.192501
Citations: PlumX Metrics


2004KA06      Yad.Fiz. 67, 180 (2004); Phys.Atomic Nuclei 67, 183 (2004); Erratum Yad.Fiz. 67, 1632 (2004); Phys.Atomic Nuclei 67, 1610 (2004)

S.P.Kamerdzhiev, E.V.Litvinova

Green's Function Method in the Problem of Complex Configurations in Fermi Systems with pairing

NUCLEAR STRUCTURE 104,120,132Sn; calculated dipole photoabsorption σ, isovector dipole resonance energies, widths; deduced pairing contributions. Green's function method.

doi: 10.1134/1.1644022
Citations: PlumX Metrics


2004KA11      Phys.Rep. 393, 1 (2004)

S.Kamerdzhiev, J.Speth, G.Tertychny

Extended theory of finite Fermi systems: collective vibrations in closed shell nuclei

doi: 10.1016/j.physrep.2003.11.001
Citations: PlumX Metrics


2003LI11      Yad.Fiz. 66, 584 (2003); Phys.Atomic Nuclei 66, 558 (2003)

E.V.Litvinova, S.P.Kamerdzhiev, V.I.Tselyaev

Temperature Generalization of the Quasiparticle Random-Phase Approximation with Allowance for a Continuum

NUCLEAR STRUCTURE 104,120Sn; calculated dipole photoabsorption σ vs excitation energy, resonance features. Continuum quasiparticle RPA.

doi: 10.1134/1.1563722
Citations: PlumX Metrics


2002KA57      Phys.Rev. C66, 044304 (2002)

S.P.Kamerdzhiev, V.I.Tselyaev

Excitations of the unstable nuclei 48Ni and 49Ni

NUCLEAR STRUCTURE 48,49Ni, 48Ca, 49Sc; calculated strength functions, resonance features. Continuum RPA and odd RPA.

doi: 10.1103/PhysRevC.66.044304
Citations: PlumX Metrics


2001KA06      Phys.Rev. C63, 034304 (2001)

S.P.Kamerdzhiev, R.J.Liotta, V.I.Tselyaev

Random Phase Approximation for Odd Nuclei and Its Application to the Description of the Electric Dipole Modes in 17O

NUCLEAR STRUCTURE 16,17O; calculated E1 resonance photoabsorption σ. Generalization of RPA for odd nuclei.

doi: 10.1103/PhysRevC.63.034304
Citations: PlumX Metrics


2001KA33      Yad.Fiz. 64, No 4, 686 (2001); Phys.Atomic Nuclei 64, 627 (2001)

S.P.Kamerdzhiev, E.V.Litvinova

Some Problems in the Generalized Theory of Finite Fermi Systems

doi: 10.1134/1.1368221
Citations: PlumX Metrics


2001KA62      Eur.Phys.J. A 12, 285 (2001)

S.Kamerdzhiev, E.Litvinova, D.Zawischa

Quasiparticle-Phonon Interaction in Non-Magic Nuclei

doi: 10.1007/s100500170006
Citations: PlumX Metrics


2000KA22      Eur.Phys.J. A 7, 483 (2000)

S.Kamerdzhiev, J.Speth, G.Tertychny

Microscopic Analysis of the Breathing Mode in 40Ca and 58Ni

NUCLEAR REACTIONS 40Ca, 58Ni(α, α'), E=240 MeV; analyzed isoscalar monopole resonance transition densities. Microscopic model.

doi: 10.1007/s100500050421
Citations: PlumX Metrics


1999AV02      Yad.Fiz. 62, No 4, 610 (1999); Phys.Atomic Nuclei 62, 563 (1999)

A.V.Avdeenkov, S.P.Kamerdzhiev

Description of Excitations in Odd Nonmagic Nuclei by Green's Function Method

NUCLEAR STRUCTURE 119,121Sn; calculated single-particle strength distributions, neutron states spectrocopic factors. Single-particle Green's function method.


1999AV03      Pisma Zh.Eksp.Teor.Fiz. 69, 669 (1999); JETP Lett. 69, 715 (1999)

A.V.Avdeenkov, S.P.Kamerdzhiev

On the Mechanisms of Superfluidity in Atomic Nuclei

doi: 10.1134/1.568080
Citations: PlumX Metrics


1999AV05      Phys.Lett. 459B, 423 (1999)

A.V.Avdeenkov, S.P.Kamerdzhiev

The Role of Ground State Correlations in the Single-Particle Strength of Odd Nuclei with Pairing

NUCLEAR STRUCTURE 119,121Sn; calculated single-particle levels, spectroscopic factors; deduced role of ground-state correlations, quasiparticle-phonon interactions. Comparisons with data.

doi: 10.1016/S0370-2693(99)00719-4
Citations: PlumX Metrics


1998KA29      Phys.Rev. C58, 172 (1998)

S.Kamerdzhiev, R.J.Liotta, E.Litvinova, V.Tselyaev

Continuum Quasiparticle Random-Phase Approximation Description of Isovector E1 Giant Resonances

NUCLEAR STRUCTURE 100,104,120,132Sn; calculated E1 photoabsorption σ; deduced continuum effect on giant resonances. Continuum RPA, forced consistency procedure.

doi: 10.1103/PhysRevC.58.172
Citations: PlumX Metrics


1998KA44      Acta Phys.Pol. B29, 2231 (1998)

S.Kamerdzhiev, J.Speth, G.Tertychny

Effects of the Quasiparticle-Phonon Interaction in Magic and Non-Magic Nuclei

NUCLEAR REACTIONS 40Ca, 58Ni(α, α'), E=240 MeV; analyzed E0 resonance strength distributions; deduced quasiparticle-phonon interaction role.


1998TS15      Bull.Rus.Acad.Sci.Phys. 62, 880 (1998)

V.I.Tselyaev, S.P.Kamerdzhiev, R.Liotta, E.V.Litvinova

Calculation of E1 Resonance by the ' QRPA + Continuum ' Model

NUCLEAR STRUCTURE 104,120Sn; calculated isovector E1 resonance strength distribution; deduced role of single-particle continuum. QRPA plus continuum model.


1997AV07      Bull.Rus.Acad.Sci.Phys. 61, 1656 (1997)

A.V.Avdeenkov, S.P.Kamerdzhiev

Effect of Quasiparticle-Phonon Interaction on Single-Particle Filling Numbers for Nonmagic Nuclei

NUCLEAR STRUCTURE 86Kr, 120Sn, 208Pb; calculated single-particle occupancies; deduced quasiparticle-phonon interaction contribution. Green's function method.


1997KA17      Phys.Rev. C55, 2101 (1997)

S.Kamerdzhiev, J.Lisantti, P.von Neumann-Cosel, A.Richter, G.Tertychny, J.Wambach

Fine Structure of the Giant Isoscalar Quadrupole Resonance in 208Pb Observed in High-Resolution (e, e') and (p, p') Experiments

NUCLEAR REACTIONS 208Pb(p, p'), E=200 MeV; measured proton spectra. 208Pb(e, e'), E=50 MeV; analyzed electron spectra. 208Pb deduced giant isoscalar quadrupole resonance fine structure. RPA modes coupled to surface vibration.

doi: 10.1103/PhysRevC.55.2101
Citations: PlumX Metrics


1997KA20      Yad.Fiz. 60, No 3, 572 (1997); Phys.Atomic Nuclei 60, 497 (1997)

S.P.Kamerdzhiev

Equations for Single-Particle Green's Functions in Nonmagic Nuclei


1997KA50      Bull.Rus.Acad.Sci.Phys. 61, 122 (1997)

S.P.Kamerdzhiev

Microscopic Theory of Giant Resonances (A Review)

NUCLEAR STRUCTURE 40,48Ca, 208Pb, 100,132Sn, 56,78Ni, 16O; compiled, reviewed giant multipole resonance calculations; deduced models improvement related features.


1997KA57      Nucl.Phys. A624, 328 (1997)

S.Kamerdzhiev, J.Speth, G.Tertychny

Microscopic Description of the E0, E2 and E1 Giant Resonances in 40Ca, 48Ca and 56Ni

NUCLEAR STRUCTURE 40,48Ca, 56Ni; calculated E0, E1, E2 giant resonances, strength functions, E1 transition densities; deduced ground-state correlations role. Continuum RPA, particle-hole-phonon coupling.

doi: 10.1016/S0375-9474(97)00315-1
Citations: PlumX Metrics


1997KA80      Fiz.Elem.Chastits At.Yadra 28, 333 (1997); Phys.Part.Nucl. 28, 134 (1997)

S.P.Kamerdzhiev, G.Ya.Tertychnyi, V.I.Tselyaev

The Method of Time-Ordered Graph Decoupling and Its Application to the Description of Giant Resonances in Magic Nuclei

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 208Pb; calculated giant resonance E, Γ, photoabsorption σ. Time-ordered graph decoupling method.


1996AV07      Bull.Rus.Acad.Sci.Phys. 60, 1716 (1996)

A.V.Avdeenkov, S.P.Kamerdzhiev

On Application of the Optical Potential Theory to Calculation of Nucleon-Nucleus Cross Sections

NUCLEAR REACTIONS 120Sn, 208Pb(n, γ)E=0-4 MeV; calculated optical potentials, s-wave absorption σ. Green function potential, particle+phonon states.


1996KA09      Nucl.Phys. A599, 373c (1996)

S.Kamerdzhiev, J.Speth

Distribution of Giant Resonance Strength in Stable and Unstable Nuclei

NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 40 MeV; compiled, reviewed calculations of giant resonance photoabsorption σ(E). 208Pb(γ, n), E ≤ 22 MeV; calculated σ(E). Microscopic theory.

NUCLEAR STRUCTURE 48,40Ca, 56,78Ni, 100,132Sn, 208Pb; compiled, reviewed calculations of B(M1).

doi: 10.1016/0375-9474(96)00080-2
Citations: PlumX Metrics


1996KA53      Bull.Rus.Acad.Sci.Phys. 60, 702 (1996)

S.P.Kamerdzhiev, E.V.Litvinova

Simple Model of Dynamic Correlation Effects in a Nuclear Ground State

NUCLEAR STRUCTURE 40Ca, 16O; calculated levels, B(λ). Microscopic two-level model, ground state correlation effects.


1995KA35      Phys.Rev.Lett. 74, 3943 (1995)

S.Kamerdzhiev, J.Speth, G.Tertychny

Splitting of the Isoscalar E2 Giant Resonance and Evidence of Low-Lying E0 Strength in 40Ca

NUCLEAR STRUCTURE 40Ca; calculated E2, E0 giant resonances EWSR depletion, E2 transition strength function.

doi: 10.1103/PhysRevLett.74.3943
Citations: PlumX Metrics


1994KA04      Phys.Lett. 321B, 6 (1994)

S.Kamerdzhiev, O.Rosso, G.Tertychnyi, W.Unkelbach

On the Nature of Low-Lying 1+ Levels in Spherical Open-Shell Nuclei

NUCLEAR STRUCTURE 96Zr; calculated levels, B(λ); deduced ground state correlations role. RPA, quasipaticle RPA, 1p1h coupling to phonon ground state correlations.

doi: 10.1016/0370-2693(94)90319-0
Citations: PlumX Metrics


1994KA10      Nucl.Phys. A569, 313c (1994)

S.Kamerdzhiev, G.Tertychnyi, J.Speth

Theoretical Description of Giant Resonances in Stable and Unstable Magic Nuclei

NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 35 MeV; calculated photoabsorption σ(E). Microscopic approach, Green function method, RPA with complex configuration.

NUCLEAR STRUCTURE 40Ca, 56,78Ni, 100,132Sn, 208Pb; calculated diverse giant resonance excitation functions, B(λ). Microscopic approach, Green function method, RPA with complex configuration.

doi: 10.1016/0375-9474(94)90122-8
Citations: PlumX Metrics


1994KA28      Nucl.Phys. A577, 641 (1994)

S.Kamerdzhiev, G.Tertychny, J.Speth, J.Wambach

The Role of 1p1h (x) Phonon Ground-State Correlations in the Isoscalar E0 Excitations of Magic Nuclei

NUCLEAR STRUCTURE 40,48Ca, 208Pb, 56Ni; calculated isoscalar E0 transition strength functions. Extended RPA, continuum effects.

doi: 10.1016/0375-9474(94)90937-7
Citations: PlumX Metrics


1993KA11      Nucl.Phys. A555, 90 (1993)

S.Kamerdzhiev, J.Speth, G.Tertychnyi, V.Tselyaev

Microscopic Description of the Giant Electric-Dipole Resonance in Magic Nuclei

NUCLEAR REACTIONS 40,48Ca(γ, X), E=10-32 MeV; 208Pb(γ, X), E ≈ 6-20 MeV; calculated photoabsorption σ(E). 40,48Ca, 208Pb deduced E1 resonances integral characteristics, giant resonances. Extended RPA approach.

doi: 10.1016/0375-9474(93)90315-O
Citations: PlumX Metrics


1993KA25      Z.Phys. A346, 253 (1993)

S.Kamerdzhiev, J.Speth, G.Tertychnyi, J.Wambach

M1 Resonances in Unstable Magic Nuclei

NUCLEAR STRUCTURE 48Ca, 208Pb, 56,78Ni, 100,132Sn; calculated M1 transition strength distributions, B(M1). Microscopic approach, RPA configurations, single particle continuum.

doi: 10.1007/BF01292513
Citations: PlumX Metrics


1992KA04      Phys.Lett. 275B, 1 (1992)

S.Kamerdzhiev, D.Zawischa

Calculation of the Giant Dipole Resonance in Hot Nonspherical Heavy Nuclei with Realistic Forces

NUCLEAR STRUCTURE 160Er; calculated B(E1) strength spectral distribution at different temperatures. Hot nuclei, quasiparticle RPA.

doi: 10.1016/0370-2693(92)90841-Q
Citations: PlumX Metrics


1992KA30      Phys.Lett. 287B, 293 (1992)

S.Kamerdzhiev, G.Tertychnyi, W.Unkelbach

Giant Dipole Resonance in 208Pb within the Approach Including 1p1h (x) Phonon Configurations and Continuum

NUCLEAR STRUCTURE 208Pb; calculated E1 giant resonances, Γ, photoabsorption σ(E). RPA, 1p1h plus phonon configurations, continuum.

NUCLEAR REACTIONS 208Pb(γ, X), E=6-20 MeV; calculated giant resonances, E1 photoabsorption σ(E). RPA, 1p1h plus phonon configurations, continuum.

doi: 10.1016/0370-2693(92)90985-D
Citations: PlumX Metrics


1991KA26      Phys.Lett. 267B, 12 (1991)

S.P.Kamerdzhiev, G.Ya.Tertychnyi, V.I.Tselyaev

Calculations of E1 Resonances in 40Ca, 48Ca and 208Pb Including 1p1h(x) Phonon Configurations

NUCLEAR STRUCTURE 40,48Ca, 208Pb; calculated E1 resonances, Γ, sum rule strength. Microscopic model, (1px1h)+phonon configuration.

NUCLEAR REACTIONS 40,48Ca(γ, X), E=8-32 MeV; 208Pb(γ, X), E ≈ 6-20 MeV; calculated absorption σ(E). Microscopic model, (1px1h)+phonon configuration.

doi: 10.1016/0370-2693(91)90515-R
Citations: PlumX Metrics


1991KA30      Pisma Zh.Eksp.Teor.Fiz. 53, 393 (1991); JETP Lett.(USSR) 53, 412 (1991)

S.P.Kamerdzhiev, G.Ya.Tertychnyi

Calculations of the E1 Resonance in 48Ca in the 1P1H + 2P2H + Continuum Approximation

NUCLEAR REACTIONS 48Ca(γ, X), E ≈ 12-26 MeV; calculated double photoabsorption σ(E). 48Ca deduced E1 resonance, Γ. Finite Fermi system theory, RPA.


1991KA42      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 49 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.1, 45 (1991)

S.P.Kamerdzhiev, V.I.Tselyaev

Effects from Ground-State 2p2h Correlation on the M1 Resonance in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated B(λ), isovector M1 resonance spreading width; deduced 2p-2h ground state correlation role. Microscopic model, 1p-1h coupling to phonon included.


1989KA28      Z.Phys. A334, 19 (1989)

S.P.Kamerdzhiev, V.N.Tkachev

A Microscopic Model Taking into Account 2p2h Configurations in Magic Nuclei. Calculations of M1 Excitations

NUCLEAR STRUCTURE 16O, 40,42,44,48Ca, 54Fe, 90Zr, 208Pb; calculated B(λ). Green's function formalism, 2p-2h configurations, microscopic model.


1988KA36      Izv.Akad.Nauk SSSR, Ser.Fiz. 52, 874 (1988); Bull.Acad.Sci.USSR, Phys.Ser. 52, No.5, 38 (1988)

S.P.Kamerdzhiev, V.N.Tkachev

Calculating M1 Excitations in 42Ca, 44Ca, and 54Fe Incorporating 1p1h (x) Phonon Configurations

NUCLEAR STRUCTURE 42,44Ca, 54Fe; calculated levels, B(λ). Phonon coupled to 1p-1h.


1986KA29      Yad.Fiz. 43, 1426 (1986)

S.P.Kamerdzhiev, V.N.Tkachev

Analysis of the Microscopic Model of taking 2p2h Configurations into Account

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated levels, B(M1). Microscopic model.


1986KA48      Yad.Fiz. 44, 606 (1986)

S.P.Kamerdzhiev, V.I.Tselyaev

Single-Particle Characteristics in Problem taking Account of Complex Configurations

NUCLEAR STRUCTURE 208Pb; calculated neutron energy levels. Single particle motion, quasiparticle-phonon interaction.


1985TK01      Yad.Fiz. 42, 832 (1985)

V.N.Tkachev, S.P.Kamerdzhiev

The ' 1p1h + Phonon ' Configuration Effect on M1 Excitations in Magic Nuclei

NUCLEAR STRUCTURE 40,48Ca, 208Pb, 90Zr; calculated levels, B(λ). Microscopic model.


1984KA08      Izv.Akad.Nauk SSSR, Ser.Fiz. 48, 97 (1984); Bull.Acad.Sci.USSR, Phys.Ser. 48, No.1, 95 (1984)

S.P.Kamerdzhiev, V.N.Tkachev

Calculation of M1-Resonance Characteristics in 208Pb and Estimate of 1p1h + 31--Phonon Configurations

NUCLEAR STRUCTURE 208Pb; calculated B(M1) distribution. Finite Fermi system, diagrammatic approach.


1984KA18      Phys.Lett. 142B, 225 (1984)

S.P.Kamerdzhiev, V.N.Tkachev

M1 Resonance Calculations in Magic Nuclei taking into Account 1p1h + Phonon Configurations

NUCLEAR STRUCTURE 40,48Ca, 208Pb, 90Zr; calculated M1 resonance characteristics, strength distribution, B(M1). Microscopic model, Green's function technique.

doi: 10.1016/0370-2693(84)91186-9
Citations: PlumX Metrics


1984KA39      Pisma Zh.Eksp.Teor.Fiz. 40, 31 (1984); JETP Lett.(USSR) 40, 756 (1984)

S.P.Kamerdzhiev, V.N.Tkachev

Calculated Properties of M1 Excitations in 40Ca and 48Ca

NUCLEAR STRUCTURE 40,48Ca; calculated levels, B(M1) strength distribution. Microscopic model.


1977KA20      Acta Phys.Pol. B8, 415 (1977)

S.P.Kamerdzhiev, I.N.Borzov, V.N.Tkachev

M1 Resonance and Comparative Study of E1, E2 and M1 Resonances in Near-Threshold Region

NUCLEAR STRUCTURE 88Sr, 90Zr, 114,116,120,124,126Sn, 140Ce, 202,204,208Pb; calculated M1 resonance characteristics.

NUCLEAR REACTIONS 90Zr, 208Pb, 120Sn(γ, γ); calculated E1, E2, M1 resonance contributions to absorption σ.


1976TK01      Yad.Fiz. 24, 715 (1976); Sov.J.Nucl.Phys. 24, 373 (1976)

V.N.Tkachev, I.N.Borzov, S.P.Kamerdzhiev

M1 Transitions in Spherical Nuclei

NUCLEAR STRUCTURE 88Sr, 90Zr, 140Ce, 114,116,120,124,126Sn, 140Ce, 202,204,208Pb; calculated M1 resonances, γ absorption σ, B(λ). 207,209Pb, 209Bi, 207Tl; calculated μ, B(M1).


1975BO10      Yad.Fiz. 21, 31 (1975); Sov.J.Nucl.Phys. 21, 15 (1975)

I.N.Borzov, S.P.Kamerdzhiev

Electric Quadrupole Transitions in 88Sr and 90Zr

NUCLEAR STRUCTURE 88Sr, 90Zr; calculated levels, B(E2).


1973KA36      Phys.Lett. 47B, 147 (1973)

S.P.Kamerdzhiev

Electric Quadrupole Transitions in 120Sn and 208Pb

NUCLEAR STRUCTURE 120Sn, 208Pb; calculated levels, B(E2).

doi: 10.1016/0370-2693(73)90592-3
Citations: PlumX Metrics


1972KA32      Yad.Fiz. 15, 676 (1972); Sov.J.Nucl.Phys. 15, 379 (1972)

S.P.Kamerdzhiev

E1 and E2 Transitions in Medium and Heavy Spherical Nuclei

NUCLEAR STRUCTURE 112,120,124Sn, 208Pb; calculated levels, B(E2); analyzed giant resonance structure.


1971KA37      Yad.Fiz. 13, 1335 (1971); Sov.J.Nucl.Phys. 13, 767 (1971)

S.P.Kamerdzhiev, L.V.Manakhov

Low-Lying 2+ Levels of Pb208

NUCLEAR STRUCTURE 208Pb; calculated low-lying levels, B(E2).


1970KA24      Yad.Fiz. 11, 537 (1970); Sov.J.Nucl.Phys. 301 (1970)

S.V.Kamerdzhiev

Low-Lying 'Single-Phonon' 0+ Levels in Spherical Nuclei

NUCLEAR STRUCTURE 118,120Sn, 140Ce, 142Nd, 202,204Pb; calculated single-phonon o+ levels, B(E0).


1969KA30      Yadern.Fiz. 9, 324 (1969); Soviet J.Nucl.Phys. 9, 190 (1969)

S.P.Kamerdzhiev

Collective Oscillations of Nuclei in the Theory of Finite Fermi Systems

NUCLEAR STRUCTURE 124Sn, 204Pb; calculated effective monopole, quadrupole charges.


1967KA21      Yadern.Fiz. 5, 971 (1967); Soviet J.Nucl.Phys. 5, 693 (1967)

S.P.Kamerdzhiev

E2 transition and Effective Quadrupole Charge in Odd Near-Magic Nuclei


Back to query form


Note: The following list of authors and aliases matches the search parameter S.Kamerdzhiev: , S.P.KAMERDZHIEV, S.V.KAMERDZHIEV