NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = D.Lee

Found 181 matches.

    Showing 1 to 100.


Back to query form

2024ME01      Phys.Rev.Lett. 132, 062501 (2024)

U.-G.Meissner, Sh.Shen, S.Elhatisari, D.Lee

Ab Initio Calculation of the Alpha-Particle Monopole Transition Form Factor

NUCLEAR STRUCTURE 4He; calculated monopole transition form factor in the framework of nuclear lattice effective field theory, a parameter-free ab initio calculation. Comparison with available data.

doi: 10.1103/PhysRevLett.132.062501
Citations: PlumX Metrics

2023LE17      Eur.Phys.J. A 59, 275 (2023); Erratum Eur.Phys.J. A 60, 19 (2024)


Quantum techniques for eigenvalue problems

doi: 10.1140/epja/s10050-023-01183-5
Citations: PlumX Metrics

2023SA53      Phys.Rev.Lett. 131, 242503 (2023)

A.Sarkar, D.Lee, Ulf-G.Meissner

Floating Block Method for Quantum Monte Carlo Simulations

NUCLEAR STRUCTURE 4He, 8Be, 12C, 16O; analyzed available data; deduced the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies, the quantum phase transition line from a Bose gas of alpha particles to a nuclear liquid.

doi: 10.1103/PhysRevLett.131.242503
Citations: PlumX Metrics

2023YU04      Phys.Rev.Lett. 131, 212502 (2023)

H.Yu, S.Konig, D.Lee

Charged-Particle Bound States in Periodic Boxes

doi: 10.1103/PhysRevLett.131.212502
Citations: PlumX Metrics

2022BO15      Rev.Mod.Phys. 94, 031003 (2022)

A.Boehnlein, M.Diefenthaler, N.Sato, M.Schram, V.Ziegler, C.Fanelli, M.Hjorth-Jensen, T.Horn, M.P.Kuchera, D.Lee, W.Nazarewicz, P.Ostroumov, K.Orginos, A.Poon, X.-N.Wang, A.Scheinker, M.S.Smith, L.-G.Pang

Colloquium: Machine learning in nuclear physics

doi: 10.1103/RevModPhys.94.031003
Citations: PlumX Metrics

2022BO18      Phys.Rev. C 106, 054322 (2022)

E.Bonilla, P.Giuliani, K.Godbey, D.Lee

Training and projecting: A reduced basis method emulator for many-body physics

doi: 10.1103/PhysRevC.106.054322
Citations: PlumX Metrics

2022HI08      Eur.Phys.J. A 58, 167 (2022)

F.Hildenbrand, S.Elhatisari, T.A.Lahde, D.Lee, U.-G.Meissner

Lattice Monte Carlo simulations with two impurity worldlines

doi: 10.1140/epja/s10050-022-00821-8
Citations: PlumX Metrics

2022LU05      Phys.Rev.Lett. 128, 242501 (2022)

B.-N.Lu, N.Li, S.Elhatisari, Y.-Z.Ma, D.Lee, U.-G.Meissner

Perturbative Quantum Monte Carlo Method for Nuclear Physics

NUCLEAR STRUCTURE 3H, 4He, 8Be, 12C, 16O; calculated binding energies using ptQMC. Comparison with experimental data.

doi: 10.1103/PhysRevLett.128.242501
Citations: PlumX Metrics

2022SA48      Phys. Rev. Res. 4, 023214 (2022)

A.Sarkar, D.Lee

Self-learning emulators and eigenvector continuation

doi: 10.1103/PhysRevResearch.4.023214
Citations: PlumX Metrics

2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics

2021BE14      Eur.Phys.J. A 57, 100 (2021)

P.Bedaque, A.Boehnlein, M.Cromaz, M.Diefenthaler, L.Elouadrhiri, T.Horn, M.Kuchera, D.Lawrence, D.Lee, S.Lidia, R.McKeown, W.Melnitchouk, W.Nazarewicz, K.Orginos, Y.Roblin, M.S.Smith, M.Schram, X.-N.Wang

A.I. for nuclear physics

doi: 10.1140/epja/s10050-020-00290-x
Citations: PlumX Metrics

2021FR11      J.Nucl.Mater.Manage. 49, 114 (2021)

S.Friedrich, G.-B.Kim, D.Lee, J.A.Hall, R.Cantor, A.Voyles, R.Hummatov, S.P.T.Boyd

Ultra-High Resolution Magnetic Microcalorimeter Gamma-Ray Detectors for Non-Destructive Assay of Uranium and Plutonium

RADIOACTIVITY 169Yb(EC) [from 169Tm(d, 2n)169Yb, E=15 MeV]; measured decay products, Eγ, Iγ, X-rays; deduced γ-ray energies, branching ratios, Au K X-ray escape lines, Kα2/Kα1 ratio. Comparison with available data. Magnetic microcalorimeter (MMC) gamma-ray detector characterization, accurate nondestructive assay (NDA) of U and Pu.

2021KA12      Phys.Rev. C 103, 024318 (2021)

Y.Kanada-En'yo, D.Lee

Effective interactions between nuclear clusters

NUCLEAR STRUCTURE 2H, 3H, 4He; calculated molecular orbitals and energies of the two-dimer systems, nuclear matter density of the two-cluster wave functions, energies of single-cluster and two-cluster systems, effective interactions between nuclear clusters d+d, t+t and α+α within the cluster model using Volkov central force with two sets of the parametrization, the SU4-even and tuned nucleon-nucleon (NN) forces; deduced possible d+d bound system, and that d+d system is repulsive for all intercluster distances, whereas the spin-aligned t+t and the α+α systems are attractive at intermediate distances.

doi: 10.1103/PhysRevC.103.024318
Citations: PlumX Metrics

2021LE13      Phys.Rev.Lett. 127, 062501 (2021)

D.Lee, S.Bogner, B.A.Brown, S.Elhatisari, E.Epelbaum, H.Hergert, M.Hjorth-Jensen, H.Krebs, N.Li, B.-N.Lu, U.-G.Meissner

Hidden Spin-Isospin Exchange Symmetry

doi: 10.1103/PhysRevLett.127.062501
Citations: PlumX Metrics

2021LE20      Phys.Rev. A 104, 042819 (2021)

D.-Y.Lee, S.Lee, M.M.Kim, S.H.Yim

Magnetic-field-inhomogeneity-induced transverse-spin relaxation of gaseous 129Xe in a cubic cell with a stem

ATOMIC PHYSICS 129Xe; analyzed available data; deduced the diffusion coefficients of 129Xe in the gas mixture of nitrogen, 129Xe, and 131Xe.

doi: 10.1103/PhysRevA.104.042819
Citations: PlumX Metrics

2021SA02      Phys.Rev.Lett. 126, 032501 (2021)

A.Sarkar, D.Lee

Convergence of Eigenvector Continuation

doi: 10.1103/PhysRevLett.126.032501
Citations: PlumX Metrics

2021SH37      Eur.Phys.J. A 57, 276 (2021)

S.Shen, T.A.Lahde, D.Lee, U.-G.Meissner

Wigner SU(4) symmetry, clustering, and the spectrum of 12C

NUCLEAR STRUCTURE 12C; calculated transient energies of 0+, 2+, 3- states, J, π by NLEFT using an SU(4) symmetric NN interaction.

doi: 10.1140/epja/s10050-021-00586-6
Citations: PlumX Metrics

2021SO28      Phys.Rev. C 104, 044304 (2021)

Y.-H.Song, Y.Kim, N.Li, B.-N.Lu, R.He, D.Lee

Quantum many-body calculations using body-centered cubic lattices

doi: 10.1103/PhysRevC.104.044304
Citations: PlumX Metrics

2021SU20      Phys.Rev. C 104, L041901 (2021)

N.Summerfield, B.-N.Lu, C.Plumberg, D.Lee, J.Noronha-Hostler, A.Timmins

16O16O collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider comparing α clustering versus substructure

NUCLEAR REACTIONS 16O(16O, X), E=200, 6500 GeV; calculated various flow coefficients versus centrality using state-of-the-art iEBE-VISHNU package, tuned using a Bayesian analysis on p+Pb and Pb+Pb systems for proposed experiments using 16O+16O systems at LHC-CERN and at RHIC-BNL to investigate α clustering in 16O; deduced measurable differences between α-clustering, nucleonic, and subnucleonic degrees of freedom in the initial state from ratios of flow harmonics.

doi: 10.1103/PhysRevC.104.L041901
Citations: PlumX Metrics

2020DE11      Phys.Rev. C 101, 041302 (2020)

P.Demol, T.Duguet, A.Ekstrom, M.Frosini, K.Hebeler, S.Konig, D.Lee, A.Schwenk, V.Soma, A.Tichai

Improved many-body expansions from eigenvector continuation

NUCLEAR STRUCTURE 3H, 18O; calculated ground state energies using many-body perturbation theory (MBPT)-based eigenvector continuation (EC) resummation method for 3He, and Bogoliubov many-body perturbation theory (BMBPT)-based EC resummation method for 16O, using realistic nuclear two-body interaction derived from chiral effective field theory. Comparison with MBPT, BMBPT, and MBPT-based Pade approximation calculations.

doi: 10.1103/PhysRevC.101.041302
Citations: PlumX Metrics

2020FR13      Eur.Phys.J. A 56, 248 (2020)

D.Frame, T.A.Lahde, D.Lee, U-G.Meissner

Impurity lattice Monte Carlo for hypernuclei

doi: 10.1140/epja/s10050-020-00257-y
Citations: PlumX Metrics

2020LU12      Phys.Rev.Lett. 125, 192502 (2020)

B.-N.Lu, N.Li, S.Elhatisari, D.Lee, J.E.Drut, T.A.Lahde, E.Epelbaum, U.G.Meissner

Ab Initio Nuclear Thermodynamics

doi: 10.1103/PhysRevLett.125.192502
Citations: PlumX Metrics

2019BO17      Phys.Rev. C 100, 064001 (2019)

L.Bovermann, E.Epelbaum, H.Krebs, D.Lee

Scattering phase shifts and mixing angles for an arbitrary number of coupled channels on the lattice

doi: 10.1103/PhysRevC.100.064001
Citations: PlumX Metrics

2019HO18      J.Phys.(London) G46, 083001 (2019)

C.J.Horowitz, A.Arcones, B.Cote, I.Dillmann, W.Nazarewicz, I.U.Roederer, H.Schatz, A.Aprahamian, D.Atanasov, A.Bauswein, T.C.Beers, J.Bliss, M.Brodeur, J.A.Clark, A.Frebel, F.Foucart, C.J.Hansen, O.Just, A.Kankainen, G.C.McLaughlin, J.M.Kelly, S.N.Liddick, D.M.Lee, J.Lippuner, D.Martin, J.Mendoza-Temis, B.D.Metzger, M.R.Mumpower, G.Perdikakis, J.Pereira, B.W.O'Shea, R.Reifarth, A.M.Rogers, D.M.Siegel, A.Spyrou, R.Surman, X.Tang, T.Uesaka, M.Wang

r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

doi: 10.1088/1361-6471/ab0849
Citations: PlumX Metrics

2019LE21      Acta Phys.Pol. B50, 253 (2019)


From Nuclear Forces and Effective Field Theory to Nuclear Structure and Reactions

NUCLEAR STRUCTURE 12,14,16C; calculated proton and neutron densities for the ground states;8Be, 12C, 16O, 20Ne; calculated ground state energy using 2N forces up to NNLO in the NLEFT (Nuclear Lattice Effective Field Theory). Comparison to available experimental data.

doi: 10.5506/aphyspolb.50.253
Citations: PlumX Metrics

2019LI31      Phys.Rev. C 99, 064001 (2019)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.Lu, U.-G.Meissner

Galilean invariance restoration on the lattice

NUCLEAR REACTIONS 1H(n, n), at relative momentum of 0-140 MeV/c; calculated dispersion relation, S-, P-, and D-wave neutron-proton scattering phase shifts, mixing angles as a function of relative momenta using chiral effective field theory with and without Galilean invariance restoration operators.

doi: 10.1103/PhysRevC.99.064001
Citations: PlumX Metrics

2018FR03      Phys.Rev.Lett. 121, 032501 (2018)

D.Frame, R.He, I.Ipsen, D.Lee, D.Lee, E.Rrapaj

Eigenvector Continuation with Subspace Learning

doi: 10.1103/PhysRevLett.121.032501
Citations: PlumX Metrics

2018KL02      Eur.Phys.J. A 54, 121 (2018)

N.Klein, S.Elhatisari, T.A.Lahde, D.Lee, U.-G.Meissner

The Tjon band in Nuclear Lattice Effective Field Theory

NUCLEAR REACTIONS 1H(n, n'), (p, p'), E(cm) at 0-200 MeV/c; calculated phase shifts vs p(cm), mixing angles using NLEFT (Nuclear Lattice Effective Field Theory) within LO and NNLO; compared to NPWA (Nijmegen partial wave analysis).

NUCLEAR STRUCTURE 7Be[considered as3He+4He]; calculated binding energy, Q for various lattice spacings; deduced Tjon band to be reached by decreasing lattice spacing; deduced four-body force not necessary to describe light nuclei.

doi: 10.1140/epja/i2018-12553-y
Citations: PlumX Metrics

2018KL04      Eur.Phys.J. A 54, 233 (2018)

N.Klein, D.Lee, Ulf -G.Meissner

Lattice improvement in lattice effective field theory

doi: 10.1140/epja/i2018-12676-1
Citations: PlumX Metrics

2018LI53      Phys.Rev. C 98, 044002 (2018)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.-N.Lu, U.-G.Meissner

Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order

NUCLEAR STRUCTURE 2H; calculated neutron-proton scattering phase shifts and mixing angles versus relative momenta for different lattice spacings, properties of deuteron wave function and the s-wave effective range parameters, low-energy constants using ab initio lattice formulation of the chiral effective field theory for LO, NLO, N2LO and N3LO NN interactions. Comparison with empirical values.

doi: 10.1103/PhysRevC.98.044002
Citations: PlumX Metrics

2017AL18      Eur.Phys.J. A 53, 83 (2017)

J.M.Alarcon, D.Du, N.Klein, T.A.Lahde, D.Lee, N.Li, B.-N.Lu, T.Luu, Ulf-G.Meissner

Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

NUCLEAR STRUCTURE 4He, 8Be, 12C, 16O, 20Ne, 24Mg, 28Si;calculated binding energy, mass excess using 2N forces up to NNLO in the NLEFT (Nuclear Lattice Effective Field Theory);deduced parameters using available data.

doi: 10.1140/epja/i2017-12273-x
Citations: PlumX Metrics

2017EL05      Phys.Rev.Lett. 119, 222505 (2017)

S.Elhatisari, E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, N.Li, B.-n.Lu, U.-G.Meissner, G.Rupak

Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering

NUCLEAR STRUCTURE 12,14,16C; calculated proton and neutron densities for the ground states, spin-up proton probability distributions.

doi: 10.1103/PhysRevLett.119.222505
Citations: PlumX Metrics

2017MU04      Phys.Rev. C 95, 015805 (2017)

J.M.Munson, E.B.Norman, J.T.Burke, R.J.Casperson, L.W.Phair, E.McCleskey, M.McCleskey, D.Lee, R.O.Hughes, S.Ota, A.Czeszumska, P.A.Chodash, A.J.Saastamoinen, R.A.E.Austin, A.E.Spiridon, M.Dag, R.Chyzh, M.S.Basunia, J.J.Ressler, T.J.Ross

Decay branching ratios of excited 24Mg

NUCLEAR REACTIONS 24Mg(α, α'), E=40 MeV; measured decay products identified by outgoing α particles, protons and γ rays from the resulting 20Ne, 23Na, and 23Mg daughters, (particle)(particle)-coin, αγ-coin using the STARLiTeR detector array at Texas A and M K150 cyclotron facility; deduced branching ratios for α-, proton- and neutron-emitting channels from the decay of unbound states in 24Mg. Possible surrogate reaction for 12C(12C, α)20Ne, 12C(12C, p)23Na, 12C(12C, n)23Mg reactions of astrophysical interest. 20Ne, 23Na, 23Mg; deduced levels populated by the decay of excited states of 24Mg.

doi: 10.1103/PhysRevC.95.015805
Citations: PlumX Metrics

2017RO12      Phys.Rev.Lett. 118, 232502 (2017)

A.Rokash, E.Epelbaum, H.Krebs, D.Lee

Effective Forces Between Quantum Bound States

doi: 10.1103/PhysRevLett.118.232502
Citations: PlumX Metrics

2016EL02      Eur.Phys.J. A 52, 174 (2016)

S.Elhatisari, D.Lee, U.-G.Meissner, G.Rupak

Nucleon-deuteron scattering using the adiabatic projection method

doi: 10.1140/epja/i2016-16174-2
Citations: PlumX Metrics

2016EL03      Phys.Rev.Lett. 117, 132501 (2016)

S.Elhatisari, N.Li, A.Rokash, J.M.Alarcon, D.Du, N.Klein, B.-n.Lu, U.-G.Meissner, E.Epelbaum, H.Krebs, Ti.A.Lahde, De.Lee, G.Rupak

Nuclear Binding Near a Quantum Phase Transition

NUCLEAR STRUCTURE 3H, 3,4He, 8Be, 12C, 16O, 20Ne; calculated ground state energies; deduced a first-order transition at zero temperature from a Bose-condensed gas of alpha particles to a nuclear liquid. Leading order (LO) nuclear interactions.

doi: 10.1103/PhysRevLett.117.132501
Citations: PlumX Metrics

2015EL07      Nature(London) 528, 111 (2015)

S.Elhatisari, D.Lee, G.Rupak, E.Epelbaum, H.Krebs, T.A.Lahde, T.Luu, Ulf-G.Meissner

Ab initio alpha-alpha scattering

NUCLEAR REACTIONS 4He(α, α), (α, X), E<12 MeV; calculated phase shifts, wave functions. Comparison with experimental data, lattice Monte Carlo simulations.

doi: 10.1038/nature16067
Citations: PlumX Metrics

2015LA16      Eur.Phys.J. A 51, 92 (2015)

T.A.Lahde, T.Luu, D.Lee, U.-G.Meissner, E.Epelbaum, H.Krebs, G.Rupak

Nuclear lattice simulations using symmetry-sign extrapolation

NUCLEAR STRUCTURE 6He, 6Be, 12C; calculated two-nucleon, three-nucleon forces shift for low energy levels using PMC (Projection Monte Carlo) with LO, NLO, EMIB and 3NF.

doi: 10.1140/epja/i2015-15092-1
Citations: PlumX Metrics

2015RO24      Phys.Rev. C 92, 054612 (2015)

A.Rokash, M.Pine, S.Elhatisari, D.Lee, E.Epelbaum, H.Krebs

Scattering cluster wave functions on the lattice using the adiabatic projection method

doi: 10.1103/PhysRevC.92.054612
Citations: PlumX Metrics

2014EL05      Phys.Rev. C 90, 064001 (2014)

S.Elhatisari, D.Lee

Fermion-dimer scattering using an impurity lattice Monte Carlo approach and the adiabatic projection method

doi: 10.1103/PhysRevC.90.064001
Citations: PlumX Metrics

2014EP01      Phys.Rev.Lett. 112, 102501 (2014)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, Ulf-G.Meissner, G.Rupak

Ab Initio Calculation of the Spectrum and Structure of 16O

NUCLEAR STRUCTURE 16O; calculated lowest energy even-parity states, J, π, charge radius, quadrupole moments, B(E2), M(E0). Comparison with experimental data.

doi: 10.1103/PhysRevLett.112.102501
Citations: PlumX Metrics

2014RO01      J.Phys.(London) G41, 015105 (2014)

A.Rokash, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Finite volume effects in low-energy neutron-deuteron scattering

doi: 10.1088/0954-3899/41/1/015105
Citations: PlumX Metrics

2013EP01      Phys.Rev.Lett. 110, 112502 (2013)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, U.-G.Meissner

Viability of Carbon-Based Life as a Function of the Light Quark Mass

NUCLEAR REACTIONS 8Be(α, X)12C, E not given; calculated triple-alpha process parameters; deduced correlations, limits. ab initio lattice calculations.

doi: 10.1103/PhysRevLett.110.112502
Citations: PlumX Metrics

2013EP02      Eur.Phys.J. A 49, 82 (2013)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, U.-G.Meissner

Dependence of the triple-alpha process on the fundamental constants of nature

NUCLEAR STRUCTURE 4He, 8Be, 12C; calculated ground state energies, mass excess and 12C Hoyle state energy using ab-initio lattice chiral EFT (effective field theory).

doi: 10.1140/epja/i2013-13082-y
Citations: PlumX Metrics

2013PI12      Eur.Phys.J. A 49, 151 (2013)

M.Pine, D.Lee, G.Rupak

Adiabatic projection method for scattering and reactions on the lattice

doi: 10.1140/epja/i2013-13151-3
Citations: PlumX Metrics

2013RU09      Phys.Rev.Lett. 111, 032502 (2013)

G.Rupak, D.Lee

Radiative Capture Reactions in Lattice Effective Field Theory

doi: 10.1103/PhysRevLett.111.032502
Citations: PlumX Metrics

2012BO13      Phys.Rev. C 86, 034003 (2012)

S.Bour, H.-W.Hammer, D.Lee, U.G.Meissner

Benchmark calculations for elastic fermion-dimer scattering

doi: 10.1103/PhysRevC.86.034003
Citations: PlumX Metrics

2012EL01      Eur.Phys.J. A 48, 110 (2012)

S.Elhatisari, D.Lee

Causality bounds for neutron-proton scattering

doi: 10.1140/epja/i2012-12110-x
Citations: PlumX Metrics

2012EP01      Phys.Rev.Lett. 109, 252501 (2012)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, Ulf.-G.Meissner

Structure and Rotations of the Hoyle State

NUCLEAR STRUCTURE 12C, 4He, 8Be; calculated structure of Hoyle state, B(E2), J, π. ab initio lattice calculations, comparison with available data.

doi: 10.1103/PhysRevLett.109.252501
Citations: PlumX Metrics

2011EP01      Phys.Rev.Lett. 106, 192501 (2011)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Ab Initio Calculation of the Hoyle State

NUCLEAR STRUCTURE 4He, 8Be, 12C; calculated ground state energies, J, π, radial distribution function for the ground and Hoyle states; deduced Hoyle state as a resonance with spin zero and positive parity. Lattice effective theory.

doi: 10.1103/PhysRevLett.106.192501
Citations: PlumX Metrics

2011LE25      J.Phys.(London) G38, 075201 (2011)

D.W.Lee, J.Powell, K.Perajarvi, F.Q.Guo, D.M.Moltz, J.Cerny

Study of the 11C(p, γ) reaction via the indirect d(11C, 12N)n transfer reaction

NUCLEAR REACTIONS 2H(11C, 12N), E=150 MeV; measured reaction products; deduced σ(θ), S-factors, reaction rates. DWUCK4 code calculations.

doi: 10.1088/0954-3899/38/7/075201
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1903. Data from this article have been entered in the XUNDL database. For more information, click here.

2011LE46      Eur.Phys.J. A 47, 41 (2011)

D.Lee, M.Pine

How quantum bound states bounce and the structure it reveals

doi: 10.1140/epja/i2011-11041-4
Citations: PlumX Metrics

2010EP01      Phys.Rev.Lett. 104, 142501 (2010)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice Effective Field Theory Calculations for A = 3, 4, 6, 12 Nuclei

NUCLEAR STRUCTURE 3H, 3,4He, 6Li, 12C; calculated ground state energies.

doi: 10.1103/PhysRevLett.104.142501
Citations: PlumX Metrics

2010EP02      Eur.Phys.J. A 45, 335 (2010)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice calculations for A = 3, 4, 6, 12 nuclei using chiral effective field theory

NUCLEAR STRUCTURE 3H, 3,4He, 6Li, 12C; calculated mass e xcess using chiral effective field theory on lattice.

doi: 10.1140/epja/i2010-11009-x
Citations: PlumX Metrics

2009CE04      Phys.Rev.Lett. 103, 152502 (2009)

J.Cerny, D.M.Moltz, D.W.Lee, K.Perajarvi, B.R.Barquest, L.E.Grossman, W.Jeong, C.C.Jewett

Reinvestigation of the Direct Two-Proton Decay of the Long-Lived Isomer 94Agm [0.4 s, 6.7 MeV, (21+)]

RADIOACTIVITY 94Ag(p), (2p) [from Ni(40Ca, 3np), E=197 MeV]; measured Ep, Ip, pp-coin.; deduced 94Agm one-proton radioactivity, energy groups, branching ratio, no two-proton radioactivity.

doi: 10.1103/PhysRevLett.103.152502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2009EP02      Eur.Phys.J. A 40, 199 (2009)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Ground-state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

doi: 10.1140/epja/i2009-10755-0
Citations: PlumX Metrics

2009EP03      Eur.Phys.J. A 41, 125 (2009)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice chiral effective field theory with three-body interactions at next-to-next-to-leading order

doi: 10.1140/epja/i2009-10764-y
Citations: PlumX Metrics

2008BO17      Eur.Phys.J. A 35, 343 (2008)

B.Borasoy, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Chiral effective field theory on the lattice at next-to-leading order

doi: 10.1140/epja/i2007-10544-3
Citations: PlumX Metrics

2008BO18      Eur.Phys.J. A 35, 357 (2008)

B.Borasoy, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory

doi: 10.1140/epja/i2007-10545-2
Citations: PlumX Metrics

2008LE04      Eur.Phys.J. A 35, 171 (2008)


The symmetric heavy-light ansatz

doi: 10.1140/epja/i2008-10537-2
Citations: PlumX Metrics

2008LE20      Phys.Rev. C 78, 024001 (2008)


Ground state energy at unitarity

doi: 10.1103/PhysRevC.78.024001
Citations: PlumX Metrics

2007BO02      Eur.Phys.J. A 31, 105 (2007)

B.Borasoy, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice simulations for light nuclei: Chiral effective field theory at leading order

doi: 10.1140/epja/i2006-10154-1
Citations: PlumX Metrics

2007BO43      Eur.Phys.J. A 34, 185 (2007)

B.Borasoy, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Two-particle scattering on the lattice: Phase shifts, spin-orbit coupling, and mixing angles

doi: 10.1140/epja/i2007-10500-9
Citations: PlumX Metrics

2007LE12      Phys.Rev.Lett. 98, 182501 (2007)


Spectral Convexity for Attractive SU(2N) Fermions

doi: 10.1103/PhysRevLett.98.182501
Citations: PlumX Metrics

2007LE18      Phys.Rev. C 75, 064003 (2007)

D.Lee, R.Thomson

Temperature-dependent errors in nuclear lattice simulations

doi: 10.1103/PhysRevC.75.064003
Citations: PlumX Metrics

2007LE26      Phys.Rev. C 76, 024314 (2007)

D.W.Lee, K.Perajarvi, J.Powell, J.P.O'Neil, D.M.Moltz, V.Z.Goldberg, J.Cerny

Low-lying resonant states in 16F using a 15O radioactive ion beam

NUCLEAR REACTIONS 1H(15O, p), E=120 MeV; measured excitation function. 16F deduced level widths.

doi: 10.1103/PhysRevC.76.024314
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2006BO09      Nucl.Phys. A768, 179 (2006)

B.Borasoy, H.Krebs, D.Lee, U.-G.Meissner

The triton and three-nucleon force in nuclear lattice simulations

NUCLEAR STRUCTURE 3H; calculated binding energy, three-nucleon force effects. Pionless effective field theory.

doi: 10.1016/j.nuclphysa.2006.01.009
Citations: PlumX Metrics

2006LE04      Phys.Rev. C 73, 015201 (2006)

D.Lee, T.Schafer

Cold dilute neutron matter on the lattice. I. Lattice virial coefficients and large scattering lengths

doi: 10.1103/PhysRevC.73.015201
Citations: PlumX Metrics

2006LE05      Phys.Rev. C 73, 015202 (2006)

D.Lee, T.Schafer

Cold dilute neutron matter on the lattice. II. Results in the unitary limit

doi: 10.1103/PhysRevC.73.015202
Citations: PlumX Metrics

2006PE21      Phys.Rev. C 74, 024306 (2006)

K.Perajarvi, C.Fu, G.V.Rogachev, G.Chubarian, V.Z.Goldberg, F.Q.Guo, D.Lee, D.M.Moltz, J.Powell, B.B.Skorodumov, G.Tabacaru, X.D.Tang, R.E.Tribble, B.A.Brown, A.Volya, J.Cerny

Structure of 12N using 11C+p resonance scattering

NUCLEAR REACTIONS 1H(11C, p), E(cm)=2.2-11.0 MeV; measured recoil proton spectra, σ(θ), excitation functions. 12N deduced levels, J, π, widths. R-matrix analysis.

doi: 10.1103/PhysRevC.74.024306
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1506. Data from this article have been entered in the XUNDL database. For more information, click here.

2005GU25      Phys.Rev. C 72, 034312 (2005)

F.Q.Guo, J.Powell, D.W.Lee, D.Leitner, M.A.McMahan, D.M.Moltz, J.P.O'Neil, K.Perajarvi, L.Phair, C.A.Ramsey, X.J.Xu, J.Cerny

Reexamination of the energy levels of 15F by 14O + 1H elastic resonance scattering

NUCLEAR REACTIONS 1H(14O, p), E=120 MeV; measured recoil proton spectra, σ(θ). 15F deduced resonance energies, J, π.

doi: 10.1103/PhysRevC.72.034312
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1369.

2005HA18      Phys.Rev. C 71, 044005 (2005)

M.Hamilton, I.Lynch, D.Lee

Lattice gas models derived from effective field theory

doi: 10.1103/PhysRevC.71.044005
Citations: PlumX Metrics

2005LE02      Nucl.Phys. B(Proc.Supp.) S140, 577 (2005)


Nuclear Lattice Simulations with EFT

doi: 10.1016/j.nuclphysbps.2004.11.273
Citations: PlumX Metrics

2005LE18      Phys.Rev. C 71, 044001 (2005)


Pressure inequalities for nuclear and neutron matter

doi: 10.1103/PhysRevC.71.044001
Citations: PlumX Metrics

2005LE28      Phys.Rev. C 72, 024006 (2005)

D.Lee, T.Schafer

Neutron matter on the lattice with pionless effective field theory

doi: 10.1103/PhysRevC.72.024006
Citations: PlumX Metrics

2005PE12      Nucl.Instrum.Methods Phys.Res. A546, 418 (2005)

K.Perajarvi, J.Cerny, J.Hakala, J.Huikari, A.Jokinen, P.Karvonen, J.Kurpeta, D.Lee, I.Moore, H.Penttila, A.Popov, J.Aysto

New ion-guide for the production of beams of neutron-rich nuclei between Z = 20 - 28

NUCLEAR REACTIONS 197Au(65Cu, X)62Co/63Co, E ≈ 400-460 MeV; measured yields. Ion-guide isotope separator.

RADIOACTIVITY 63Co(β-) [from 197Au(65Cu, X)]; measured β-delayed Eγ, Iγ. Ion-guide isotope separator.

doi: 10.1016/j.nima.2005.03.124
Citations: PlumX Metrics

2005PE23      Eur.Phys.J. A 25, Supplement 1, 749 (2005)

K.Perajarvi, J.Cerny, U.Hager, J.Hakala, J.Huikari, A.Jokinen, P.Karvonen, J.Kurpeta, D.Lee, I.Moore, H.Penttila, A.Popov, J.Aysto

Production of beams of neutron-rich nuclei between Ca and Ni using the ion-guide technique

RADIOACTIVITY 63Cu(EC) [from 197Au(65Cu, X)]; measured β-delayed Eγ, Iγ.

NUCLEAR REACTIONS 197Au(65Cu, X)62Cu/63Cu, E=443 MeV; measured yields.

doi: 10.1140/epjad/i2005-06-060-x
Citations: PlumX Metrics

2005ST16      Nucl.Instrum.Methods Phys.Res. A543, 509 (2005)

L.Stavsetra, K.E.Gregorich, J.Alstad, H.Breivik, K.Eberhardt, C.M.Folden III, T.N.Ginter, M.Johansson, U.W.Kirbach, D.M.Lee, M.Mendel, L.A.Omtvedt, J.B.Patin, G.Skarnemark, R.Sudowe, P.A.Wilk, P.M.Zielinski, H.Nitsche, D.C.Hoffman, J.P.Omtvedt

Liquid-scintillation detection of preseparated 257Rf with the SISAK-system

NUCLEAR REACTIONS 208Pb(50Ti, n), E=237 MeV; measured delayed αα-coin; deduced evidence for 257Rf. Gas-filled separator, fast liquid-liquid extraction system.

doi: 10.1016/j.nima.2004.12.010
Citations: PlumX Metrics

2004CH63      Phys.Rev.Lett. 93, 242302 (2004)

J.-W.Chen, D.Lee, T.Schaefer

Inequalities for Light Nuclei in the Wigner Symmetry Limit

doi: 10.1103/PhysRevLett.93.242302
Citations: PlumX Metrics

2004LE25      Phys.Rev. C 70, 014007 (2004)

D.Lee, B.Borasoy, T.Schaefer

Nuclear lattice simulations with chiral effective field theory

doi: 10.1103/PhysRevC.70.014007
Citations: PlumX Metrics

2004LE41      Phys.Rev. C 70, 064002 (2004)


Inequalities for low-energy symmetric nuclear matter

doi: 10.1103/PhysRevC.70.064002
Citations: PlumX Metrics

2004VO16      Phys.Rev.Lett. 93, 172501 (2004)

C.Vockenhuber, F.Oberli, M.Bichler, I.Ahmad, G.Quitte, M.Meier, A.N.Halliday, D.-C.Lee, W.Kutschera, P.Steier, R.J.Gehrke, R.G.Helmer

New Half-Life Measurement of 182Hf: Improved Chronometer for the Early Solar System

RADIOACTIVITY 182Hf(β-); measured T1/2. Neutron activation, isotope dilution, activity measurement. Astrophysical implications discussed.

doi: 10.1103/PhysRevLett.93.172501
Citations: PlumX Metrics

2003DU27      Czech.J.Phys. (Supplement) 53, A291 (2003)

Ch.E.Dullmann, R.Dressler, B.Eichler, H.W.Gaggeler, F.Glaus, D.T.Jost, D.Piguet, S.Soverna, A.Turler, W.Bruchle, R.Eichler, E.Jager, V.Pershina, M.Schadel, B.Schausten, E.Schimpf, H.-J.Schott, G.Wirth, K.Eberhardt, P.Thorle, N.Trautmann, T.N.Ginter, K.E.Gregorich, D.C.Hoffman, U.W.Kirbach, D.M.Lee, H.Nitsche, J.B.Patin, R.Sudowe, P.M.Zielinski, S.N.Timokhin, A.B.Yakushev, A.Vahle, Z.Qin

First chemical investigation of hassium (Hs, Z=108)

RADIOACTIVITY 269,270Hs(α); measured Eα, Iα.

doi: 10.1007/s10582-003-0037-4
Citations: PlumX Metrics

2003GI05      Phys.Rev. C 67, 064609 (2003); Erratum Phys.Rev. C 68, 029901 (2003)

T.N.Ginter, K.E.Gregorich, W.Loveland, D.M.Lee, U.W.Kirbach, R.Sudowe, C.M.Folden III, J.B.Patin, N.Seward, P.A.Wilk, P.M.Zielinski, K.Aleklett, R.Eichler, H.Nitsche, D.C.Hoffman

Confirmation of production of element 110 by the 208Pb(64Ni, n) reaction

NUCLEAR REACTIONS 208Pb(64Ni, n), E=312.5, 315, 317.5 MeV: measured delayed (recoil)α-coin; deduced production σ.

RADIOACTIVITY 271Ds, 267Hs, 263Sg, 259Rf, 255No(α) [from 208Pb(64Ni, n) and subsequent decay]; measured Eα.

doi: 10.1103/PhysRevC.67.064609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1698.

2003GR26      Eur.Phys.J. A 18, 633 (2003)

K.E.Gregorich, T.N.Ginter, W.Loveland, D.Peterson, J.B.Patin, C.M.Folden III, D.C.Hoffman, D.M.Lee, H.Nitsche, J.P.Omtvedt, L.A.Omtvedt, L.Stavsetra, R.Sudowe, P.A.Wilk, P.M.Zielinski, K.Aleklett

Cross-section limits for the 208Pb(86Kr, n)293118 reaction

NUCLEAR REACTIONS 208Pb(86Kr, X), E=449 MeV; measured evaporation residue yields; deduced no evidence for 293Og. 208Pb(86Kr, n), E=449 MeV; deduced production σ upper limit.

doi: 10.1140/epja/i2002-10165-x
Citations: PlumX Metrics

2003LE31      Phys.Rev. C 68, 064003 (2003)

D.J.Lee, I.C.F.Ipsen

Zone determinant expansions for nuclear lattice simulations

doi: 10.1103/PhysRevC.68.064003
Citations: PlumX Metrics

2003TU05      Eur.Phys.J. A 17, 505 (2003)

A.Turler, Ch.E.Dullmann, H.W.Gaggeler, U.W.Kirbach, A.B.Yakushev, M.Schadel, W.Bruchle, R.Dressler, K.Eberhardt, B.Eichler, R.Eichler, T.N.Ginter, F.Glaus, K.E.Gregorich, D.C.Hoffman, E.Jager, D.T.Jost, D.M.Lee, H.Nitsche, J.B.Patin, V.Pershina, D.Piguet, Z.Qin, B.Schausten, E.Schimpf, H.-J.Schott, S.Soverna, R.Sudowe, P.Thorle, S.N.Timokhin, N.Trautmann, A.Vahle, G.Wirth, P.M.Zielinski

On the decay properties of 269Hs and indications for the new nuclide 270Hs

NUCLEAR REACTIONS 248Cm(26Mg, xn), E=143.7-146.8 MeV; measured residual nucleus decay; deduced evidence for 269,270Hs. Chemical separation.

RADIOACTIVITY 269,270Hs, 265,266Sg, 261Rf, 257No(α) [from 248Cm(26Mg, xn) and subsequent decay]; measured Eα, T1/2. 261,262Rf(SF); measured fission fragment energies.

doi: 10.1140/epja/i2002-10163-0
Citations: PlumX Metrics

2002CH51      Phys.Lett. 548B, 175 (2002)

Y.-Y.Charng, K.-W.Ng, C.-Y.Lin, D.-S.Lee

Photon production from non-equilibrium disoriented chiral condensates in a spherical expansion

doi: 10.1016/S0370-2693(02)02848-4
Citations: PlumX Metrics

2002DU21      Nature(London) 418, 859 (2002)

Ch.E.Dullmann, W.Bruchle, R.Dressler, K.Eberhardt, B.Eichler, R.Eichler, H.W.Gaggeler, T.N.Ginter, F.Glaus, K.E.Gregorich, D.C.Hoffman, E.Jager, D.T.Jost, U.W.Kirbach, D.M.Lee, H.Nitsche, J.B.Patin, V.Pershina, D.Piguet, Z.Qin, M.Schadel, B.Schausten, E.Schimpf, H.-J.Schott, S.Soverna, R.Sudowe, P.Thorle, S.N.Timokhin, N.Trautmann, A.Turler, A.Vahle, G.Wirth, A.B.Yakushev, P.M.Zielinski

Chemical investigation of hassium (element 108)

RADIOACTIVITY 269,270Hs, 265,266Sg, 261Rf(α) [from 248Cm(26Mg, xn) and subsequent decay]; measured Eα. Chemical properties of hassium discussed.

doi: 10.1038/nature00980
Citations: PlumX Metrics

2002KI21      J.Korean Phys.Soc. 41, 655 (2002)

H.Kim, E.Jung, J.K.Ahn, D.Lee, G.Kim, T.I.Ro, Y.Min, M.Igashira, T.Ohsaki, S.Mizuno

Neutron-Capture Cross-Section Measurement for 163Dy in the Neutron Energy Range from 15 to 75 keV

NUCLEAR REACTIONS 163Dy(n, γ), E=15-75 keV; measured Eγ, capture σ. Comparison with previous results. Pulse-height weighting technique.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22683.

2002KI25      Nucl.Instrum.Methods Phys.Res. A484, 587 (2002)

U.W.Kirbach, C.M.Folden III, T.N.Ginter, K.E.Gregorich, D.M.Lee, V.Ninov, J.P.Omtvedt, J.B.Patin, N.K.Seward, D.A.Strellis, R.Sudowe, A.Turler, P.A.Wilk, P.M.Zielinski, D.C.Hoffman, H.Nitsche

The Cryo-Thermochromatographic Separator (CTS): A new rapid separation and α-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides

doi: 10.1016/S0168-9002(01)01990-8
Citations: PlumX Metrics

2002NI10      Phys.Rev.Lett. 89, 039901 (2002); see also 1999Ni03

V.Ninov, K.E.Gregorich, W.Loveland, A.Ghiorso, D.C.Hoffman, D.M.Lee, H.Nitsche, W.J.Swiatecki, U.W.Kirbach, C.A.Laue, J.L.Adams, J.B.Patin, D.A.Shaughnessy, D.A.Strellis, P.A.Wilk

Editorial Note: Observation of Superheavy Nuclei Produced in the Reaction of 86Kr with 208Pb

doi: 10.1103/PhysRevLett.89.039901
Citations: PlumX Metrics

2002SH02      Phys.Rev. C65, 024612 (2002)

D.A.Shaughnessy, K.E.Gregorich, J.L.Adams, M.R.Lane, C.A.Laue, D.M.Lee, C.A.McGrath, V.Ninov, J.B.Patin, D.A.Strellis, E.R.Sylwester, P.A.Wilk, D.C.Hoffman

Electron-Capture Delayed Fission Properties of 244Es

RADIOACTIVITY 244Es(EC) [from 237Np(12C, 5n)]; measured EC-delayed fission T1/2, Eα, fission fragment energies, mass distribution; deduced delayed fission probability.

NUCLEAR REACTIONS 237Np(12C, 5n), E=81 MeV; measured σ.

doi: 10.1103/PhysRevC.65.024612
Citations: PlumX Metrics

2001BO55      Nucl.Phys. A696, 537 (2001)

B.Borasoy, D.Lee

Study of Relativistic Bound States in a Scalar Model using Diagonalization/Monte Carlo Methods

doi: 10.1016/S0375-9474(01)01127-7
Citations: PlumX Metrics

2001KI14      J.Korean Phys.Soc. 38, 14 (2001)

G.Kim, Y.S.Lee, V.Skoy, V.Kovalchuk, M.-H.Cho, I.S.Ko, W.Namkung, D.W.Lee, H.D.Kim, S.K.Ko, S.H.Park, D.S.Kim, T.I.Ro, Y.G.Min

First Experiment at the Pohang Neutron Facility

NUCLEAR REACTIONS Sm, Ta, W, Ag(n, X), E=low; measured transmission neutron spectra. Pulsed neutron source.

2001KI26      Ann.Nucl.Energy 28, 1549 (2001)

G.Kim, Y.Lee, I.S.Ko, M.-H.Cho, W.Namkung, D.Lee, H.Kim, Y.Kim, T.-I.Ro, Y.Min, J.Moon, M.Igashira, S.Mizuno, T.Ohsaki, S.Y.Lee

Measurement of keV-Neutron Capture Cross-Sections for 164Dy

NUCLEAR REACTIONS 164Dy(n, γ), E=10-90 keV; measured Eγ, Iγ, capture σ. Comparison with previous results.

doi: 10.1016/S0306-4549(00)00138-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22652.

2001NI02      Nucl.Phys. A682, 98c (2001)

V.Ninov, K.E.Gregorich, T.N.Ginter, F.P.Hessberger, R.Krucken, D.M.Lee, W.Loveland, W.D.Myers, J.Patin, M.W.Rowe, N.K.Seward, W.J.Swiatecki, A.Turler, P.A.Wilk

Production and Structure of the Heaviest Elements

doi: 10.1016/S0375-9474(00)00627-8
Citations: PlumX Metrics

2001SH09      Phys.Rev. C63, 037603 (2001)

D.A.Shaughnessy, K.E.Gregorich, M.R.Lane, C.A.Laue, D.M.Lee, C.A.McGrath, D.A.Strellis, E.R.Sylwester, P.A.Wilk, D.C.Hoffman

Electron-Capture Delayed Fission Probabilities of 248Es and 246Es

RADIOACTIVITY 246,248Es(EC) [from 249Cf(p, xn)]; measured EC-delayed fission probability. Systematics of fission probability vs Q(EC) discussed.

doi: 10.1103/PhysRevC.63.037603
Citations: PlumX Metrics

2000LA25      Phys.Rev. C61, 067603 (2000)

C.A.Laue, K.E.Gregorich, R.Sudowe, J.L.Adams, M.R.Lane, D.M.Lee, C.A.McGrath, D.A.Shaughnessy, D.A.Strellis, E.R.Sylwester, P.A.Wilk, D.C.Hoffman

Half-Life of 232Pu and Excitation Function for the 233U (3He, 4n)232Pu Reaction

NUCLEAR REACTIONS 233U(3He, 4n), E=28-47 MeV; measured excitation function.

RADIOACTIVITY 232Pu(α) [from 233U(3He, 4n)]; measured T1/2.

doi: 10.1103/PhysRevC.61.067603
Citations: PlumX Metrics

2000LE33      Phys.Lett. 492B, 303 (2000)

D.-S.Lee, K.-W.Ng

Out-of-Equilibrium Photon Production from Disoriented Chiral Condensates

doi: 10.1016/S0370-2693(00)01089-3
Citations: PlumX Metrics

Back to query form    [Next]

Note: The following list of authors and aliases matches the search parameter D.Lee: , D.C.LEE, D.D.LEE, D.H.LEE, D.J.LEE, D.M.LEE, D.S.LEE, D.W.LEE, D.Y.LEE