NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = G.C.McLaughlin

Found 34 matches.

Back to query form

2024VA02      Phys.Rev.Lett. 132, 052701 (2024)

N.Vassh, X.Wang, M.Lariviere, T.Sprouse, M.R.Mumpower, R.Surman, Zh.Liu, G.C.McLaughlin, P.Denissenkov, F.Herwig

Thallium-208: A Beacon of In Situ Neutron Capture Nucleosynthesis

doi: 10.1103/PhysRevLett.132.052701
Citations: PlumX Metrics

2023LU01      Astrophys.J. 944, 144 (2023)

K.A.Lund, J.Engel, G.C.McLaughlin, M.R.Mumpower, E.M.Ney, R.Surman

The Influence of β-decay Rates on r-process Observables

doi: 10.3847/1538-4357/acaf56
Citations: PlumX Metrics

2022OR02      Phys.Rev. C 105, L052802 (2022)

R.Orford, N.Vassh, J.A.Clark, G.C.McLaughlin, M.R.Mumpower, D.Ray, G.Savard, R.Surman, F.Buchinger, D.P.Burdette, M.T.Burkey, D.A.Gorelov, J.W.Klimes, W.S.Porter, K.S.Sharma, A.A.Valverde, L.Varriano, X.L.Yan

Searching for the origin of the rare-earth peak with precision mass measurements across Ce-Eu isotopic chains

ATOMIC MASSES 152,153,154Ce, 152,153,154,156,157Pr, 157Nd, 161Pm, 163,165Eu; measured cyclotron frequency; deduced mass excess, solar abundances of rare-earth elements. Comparison to AME2016 and AME2020 evaluations, previous experimental data and calculations using Markov chain Monte Carlo (MCMC) technique. Canadian Penning Trap (CPT) with low-energy ion beams from the Californium Rare Isotope Breeder Upgrade(CARIBU) facility at Argonne National Laboratory. Systematics of CPT mass-measurements for Ce, Pr, Nd, Pm, Sm, Eu (Z=58-63).

doi: 10.1103/PhysRevC.105.L052802
Citations: PlumX Metrics

2021HO13      Astrophys.J. 909, 21 (2021)

E.M.Holmbeck, A.Frebel, G.C.McLaughlin, R.Surman, R.Fernandez, B.D.Metzger, M.R.Mumpower, T.M.Sprouse

Reconstructing Masses of Merging Neutron Stars from Stellar r-process Abundance Signatures

doi: 10.3847/1538-4357/abd720
Citations: PlumX Metrics

2021ZH02      Astrophys.J. 906, 94 (2021)

Y.L.Zhu, K.A.Lund, J.Barnes, T.M.Sprouse, N.Vassh, G.C.McLaughlin, M.R.Mumpower, R.Surman

Modeling Kilonova Light Curves: Dependence on Nuclear Inputs

RADIOACTIVITY 254Cf, 254Cm, 258,259Fm, 267,269,270,271Rf, 273Db, 288Hs(SF); calculated total spontaneous fission heating, electron fractions using HFB22, HFB27, FRDM2012, UNEDF1 and ETFSI models.

doi: 10.3847/1538-4357/abc69e
Citations: PlumX Metrics

2020SP04      Phys.Rev. C 101, 055803 (2020)

T.M.Sprouse, R.Navarro-Perez, R.Surman, M.R.Mumpower, G.C.McLaughlin, N.Schunck

Propagation of statistical uncertainties of Skyrme mass models to simulations of r-process nucleosynthesis

ATOMIC MASSES Z=1-120; calculated atomic mass tables within the nuclear density functional theory (DFT) approach to nuclear structure with Skyrme energy density functionals (EDFs), and UNEDF1 parametrization. A=120-200; analyzed propagation of uncertainties in the Skyrme mass models using Bayesian statistics for the simulated r-process abundance patterns, by considering nuclear masses and the influence of the masses on β-decay and neutron capture rates.

doi: 10.1103/PhysRevC.101.055803
Citations: PlumX Metrics

2019HO18      J.Phys.(London) G46, 083001 (2019)

C.J.Horowitz, A.Arcones, B.Cote, I.Dillmann, W.Nazarewicz, I.U.Roederer, H.Schatz, A.Aprahamian, D.Atanasov, A.Bauswein, T.C.Beers, J.Bliss, M.Brodeur, J.A.Clark, A.Frebel, F.Foucart, C.J.Hansen, O.Just, A.Kankainen, G.C.McLaughlin, J.M.Kelly, S.N.Liddick, D.M.Lee, J.Lippuner, D.Martin, J.Mendoza-Temis, B.D.Metzger, M.R.Mumpower, G.Perdikakis, J.Pereira, B.W.O'Shea, R.Reifarth, A.M.Rogers, D.M.Siegel, A.Spyrou, R.Surman, X.Tang, T.Uesaka, M.Wang

r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

doi: 10.1088/1361-6471/ab0849
Citations: PlumX Metrics

2018OR02      Phys.Rev.Lett. 120, 262702 (2018)

R.Orford, N.Vassh, J.A.Clark, G.C.McLaughlin, M.R.Mumpower, G.Savard, R.Surman, A.Aprahamian, F.Buchinger, M.T.Burkey, D.A.Gorelov, T.Y.Hirsh, J.W.Klimes, G.E.Morgan, A.Nystrom, K.S.Sharma

Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation

ATOMIC MASSES 154,156,158,159,160Nd, 162,163,164Sm; measured cyclotron frequency ratios; deduced mass excess values. Comparison with AME16 evaluation.

doi: 10.1103/PhysRevLett.120.262702
Citations: PlumX Metrics

2018ZH34      Astrophys.J. 863, L23 (2018)

Y.Zhu, R.T.Wollaeger, N.Vassh, R.Surman, T.M.Sprouse, M.R.Mumpower, P.Moller, G.C.McLaughlin, O.Korobkin, T.Kawano, P.J.Jaffke, E.M.Holmbeck, C.L.Fryer, W.P.Even, A.J.Couture, J.Barnes

Californium-254 and Kilonova Light Curves

RADIOACTIVITY 254Cf(SF); calculated abundance, fission product yields, heating rates, mid-IR light curves.

doi: 10.3847/2041-8213/aad5de
Citations: PlumX Metrics

2017AR04      Prog.Part.Nucl.Phys. 94, 1 (2017)

A.Arcones, D.W.Bardayan, T.C.Beers, L.A.Bernstein, J.C.Blackmon, B.Messer, B.A.Brown, E.F.Brown, C.R.Brune, A.E.Champagne, A.Chieffi, A.J.Couture, P.Danielewicz, R.Diehl, M.El Eid, J.E.Escher, B.D.Fields, C.Frohlich, F.Herwig, W.R.Hix, C.Iliadis, W.G.Lynch, G.C.McLaughlin, B.S.Meyer, A.Mezzacappa, F.Nunes, B.W.O'Shea, M.Prakash, B.Pritychenko, S.Reddy, E.Rehm, G.Rogachev, R.E.Rutledge, H.Schatz, M.S.Smith, I.H.Stairs, A.W.Steiner, T.E.Strohmayer, F.X.Timmes, D.M.Townsley, M.Wiescher, R.G.T.Zegers, M.Zingale

White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

doi: 10.1016/j.ppnp.2016.12.003
Citations: PlumX Metrics

2017MU08      J.Phys.(London) G44, 034003 (2017)

M.R.Mumpower, G.C.McLaughlin, R.Surman, A.W.Steiner

Reverse engineering nuclear properties from rare earth abundances in the r process

COMPILATION A<250; compiled experimental nuclear reaction and structure data.

doi: 10.1088/1361-6471/44/3/034003
Citations: PlumX Metrics

2016MU01      Prog.Part.Nucl.Phys. 86, 86 (2016); Erratum Prog.Part.Nucl.Phys. 87, 116 (2016)

M.R.Mumpower, R.Surman, G.C.McLaughlin, A.Aprahamian

The impact of individual nuclear properties on r-process nucleosynthesis

doi: 10.1016/j.ppnp.2015.09.001
Citations: PlumX Metrics

2016SH39      Phys.Rev. C 94, 055802 (2016)

T.Shafer, J.Engel, C.Frohlich, G.C.McLaughlin, M.Mumpower, R.Surman

β decay of deformed r-process nuclei near A=80 and A=160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

RADIOACTIVITY 68,69,70,71,72Cr, 71,72,73,74,75Mn, 72,73,74,75,76Fe, 76,77Co, 80,81Cu, 84,85,86Zn, 86,87Ga, 86,87,88,89,90,91,92Ge, 89,90,91,92,93,94,95As, 92,93,94,95,96,97,98Se, 157,159,161,163,165,167Cs, 163,165,167,169,171,173,175La, 146,148,150,152,160,164,166,168,170,172,174,176Ce, 152,154,156,164,166,172,174,176,178Nd(β-); calculated half-lives using proton-neutron finite-amplitude method (pn-FAM) with Skyrme energy-density functionals (EDFs) in the quasiparticle random-phase approximation (QRPA), after optimizing the nuclear interaction to best fit the measured half-lives in A=80 and A=160 regions. Deduced r-process abundances. Comparison with other theoretical calculations and experimental values.

doi: 10.1103/PhysRevC.94.055802
Citations: PlumX Metrics

2013PA23      Int.J.Mod.Phys. E22, 1330013 (2013)

K.M.Patton, G.C.McLaughlin, K.Scholberg

Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

doi: 10.1142/S0218301313300130
Citations: PlumX Metrics

2012MU06      Phys.Rev. C 85, 045801 (2012)

M.R.Mumpower, G.C.McLaughlin, R.Surman

Formation of the rare-earth peak: Gaining insight into late-time r-process dynamics

ATOMIC MASSES A=150-180, N=90-115; calculated effects of neutron capture rates, S(n) and β-decay rates on rare earth peak formation in elemental abundance plot using three nuclear data set simulations: ETFSI-Q, FRDM and HFB-17. R-process nucleosynthesis. Comparison between hot and cold r-process environments and with nuclear models.

doi: 10.1103/PhysRevC.85.045801
Citations: PlumX Metrics

2012MU11      Phys.Rev. C 86, 035803 (2012)

M.R.Mumpower, G.C.McLaughlin, R.Surman

Influence of neutron capture rates in the rare earth region on the r-process abundance pattern

NUCLEAR STRUCTURE Z=58-66, N=94-109, A=153-175; calculated sensitivity of rare earth elemental abundances to neutron capture rates in the rare earth region of the r-process abundance pattern. Introduced concepts of large nuclear flow and flow saturation.

doi: 10.1103/PhysRevC.86.035803
Citations: PlumX Metrics

2012PA23      Phys.Rev. C 86, 024612 (2012)

K.Patton, J.Engel, G.C.McLaughlin, N.Schunck

Neutrino-nucleus coherent scattering as a probe of neutron density distributions

NUCLEAR REACTIONS 40Ar, 74Ge, 132Xe(ν, ν), E at 0-100 MeV/c; calculated event rates in 40Ar as a function of recoil energy and neutron radius, neutron form factors, neutron rms radii, effective moments using density functional theory and Monte Carlo techniques for argon, germanium, and xenon detectors of neutrinos.

doi: 10.1103/PhysRevC.86.024612
Citations: PlumX Metrics

2010KI02      Phys.Rev. C 81, 025802 (2010)

L.-T.Kizivat, G.Martinez-Pinedo, K.Langanke, R.Surman, G.C.McLaughlin

ψ-ray bursts black hole accretion disks as a site for the νp process

doi: 10.1103/PhysRevC.81.025802
Citations: PlumX Metrics

2009AM01      J.Phys.(London) G36, 015105 (2009)

P.S.Amanik, G.C.McLaughlin

Nuclear neutron form factor from neutrino-nucleus coherent elastic scattering

doi: 10.1088/0954-3899/36/1/015105
Citations: PlumX Metrics

2009BE01      J.Phys.(London) G36, 025201 (2009)

J.Beun, J.C.Blackmon, W.R.Hix, G.C.McLaughlin, M.S.Smith, R.Surman

Neutron capture on 130Sn during r-process freeze-out

doi: 10.1088/0954-3899/36/2/025201
Citations: PlumX Metrics

2009SU07      Phys.Rev. C 79, 045809 (2009)

R.Surman, J.Beun, G.C.McLaughlin, W.R.Hix

Neutron capture rates near A=130 that effect a global change to the r-process abundance distribution

NUCLEAR REACTIONS Sn, In, Cd(n, γ); calculated σ for A=105-155, neutron capture rates, separation energies. Implications for r-process model.

doi: 10.1103/PhysRevC.79.045809
Citations: PlumX Metrics

2008BE07      Phys.Rev. C 77, 035804 (2008)

J.Beun, G.C.McLaughlin, R.Surman, W.R.Hix

Fission cycling in a supernova r process

doi: 10.1103/PhysRevC.77.035804
Citations: PlumX Metrics

2008JA05      Phys.Rev. C 77, 055501 (2008)

N.Jachowicz, G.C.McLaughlin, C.Volpe

Untangling supernova-neutrino oscillations with β-beam data

NUCLEAR REACTIONS 2H, 16O, 208Pb(ν, ν), E=14, 18, 22 MeV; calculated σ, neutrino spectra, supernova neutrino interactions.

doi: 10.1103/PhysRevC.77.055501
Citations: PlumX Metrics

2008SU04      J.Phys.(London) G35, 014059 (2008)

R.Surman, J.Beun, G.C.McLaughlin, S.Kane, W.R.Hix

The role of neutrinos in r-process nucleosynthesis in supernovae and gamma-ray bursts

doi: 10.1088/0954-3899/35/1/014059
Citations: PlumX Metrics

2007AM06      Phys.Rev. C 75, 065502 (2007)

P.S.Amanik, G.C.McLaughlin

Manipulating a neutrino spectrum to maximize the physics potential from a low-energy β beam

doi: 10.1103/PhysRevC.75.065502
Citations: PlumX Metrics

2006JA08      Phys.Rev.Lett. 96, 172301 (2006)

N.Jachowicz, G.C.McLaughlin

Reconstructing Supernova-Neutrino Spectra using Low-Energy Beta Beams

NUCLEAR REACTIONS 2H(ν, ep), 16O, 208Pb(ν, ν'), E ≈ 18-22 MeV; calculated σ(E). Application to detector response calibration discussed.

doi: 10.1103/PhysRevLett.96.172301
Citations: PlumX Metrics

2006JA16      Eur.Phys.J. A 27, Supplement 1, 43 (2006)

N.Jachowicz, G.C.McLaughlin

On the importance of low-energy beta beams for supernova neutrino physics

NUCLEAR REACTIONS 16O(ν, ν'X), E=14, 18, 22 MeV; calculated neutral-current σ(E). 2H(ν, ep), E=14, 18, 22 MeV; calculated charged-current σ(E).

doi: 10.1140/epja/i2006-08-005-x
Citations: PlumX Metrics

2006KN01      J.Phys.(London) G32, 443 (2006)

J.P.Kneller, G.C.McLaughlin, R.A.Surman

Neutrino scattering, absorption and annihilation above the accretion discs of gamma ray bursts

doi: 10.1088/0954-3899/32/4/004
Citations: PlumX Metrics

2005MC10      Nucl.Phys. A758, 189c (2005)

G.C.McLaughlin, R.Surman

Prospects for obtaining an r process from Gamma Ray Burst Disk Winds

doi: 10.1016/j.nuclphysa.2005.05.036
Citations: PlumX Metrics

2004MC05      Phys.Lett. B 591, 229 (2004)

G.C.McLaughlin, C.Volpe

Prospects for detecting a neutrino magnetic moment with a tritium source and beta-beams

RADIOACTIVITY 3H, 6He(β-); 18Ne(β+); calculated neutrino spectra. Application to neutrino magnetic moment measurement discussed.

doi: 10.1016/j.physletb.2004.02.073
Citations: PlumX Metrics

2004MC07      Phys.Rev. C 70, 045804 (2004)


Neutrino-lead cross section measurements using stopped pions and low energy β beams

NUCLEAR REACTIONS 208Pb(ν, eX), E=spectrum; calculated electron spectra, σ.

doi: 10.1103/PhysRevC.70.045804
Citations: PlumX Metrics

2001MC01      Phys.Rev. D63, 053002 (2001)

G.C.McLaughlin, J.N.Ng

Use of Nuclear β Decay as a Test of Bulk Neutrinos in Extra Dimensions

RADIOACTIVITY 3H(β-); 38mK(EC); calculated Kurie plots, recoil spectra, effects of bulk neutrinos in extra dimensions.

doi: 10.1103/PhysRevD.63.053002
Citations: PlumX Metrics

1999MC02      Phys.Rev. C59, 2873 (1999)

G.C.McLaughlin, J.M.Fetter, A.B.Balantekin, G.M.Fuller

Active-Sterile Neutrino Transformation Solution for r-Process Nucleosynthesis

doi: 10.1103/PhysRevC.59.2873
Citations: PlumX Metrics

1998ME25      Phys.Rev. C58, 3696 (1998)

B.S.Meyer, G.C.McLaughlin, G.M.Fuller

Neutrino Capture and r-Process Nucleosynthesis

doi: 10.1103/PhysRevC.58.3696
Citations: PlumX Metrics

Back to query form

Note: The following list of authors and aliases matches the search parameter G.C.McLaughlin: , G.C.MCLAUGHLIN