NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = T.Sprouse

Found 20 matches.

Back to query form



2024LI09      Phys.Lett. B 848, 138385 (2024)

M.Li, T.M.Sprouse, B.S.Meyer, M.R.Mumpower

Atomic masses with machine learning for the astrophysical r process

NUCLEAR STRUCTURE N<160; analyzed available data; deduced mass deviations between Machine-Learning (ML) approach and HFB-32 model, neutron separation energies, abundances, β-decay rates. Comparison with AME 2020 data.

doi: 10.1016/j.physletb.2023.138385
Citations: PlumX Metrics


2024VA02      Phys.Rev.Lett. 132, 052701 (2024)

N.Vassh, X.Wang, M.Lariviere, T.Sprouse, M.R.Mumpower, R.Surman, Zh.Liu, G.C.McLaughlin, P.Denissenkov, F.Herwig

Thallium-208: A Beacon of In Situ Neutron Capture Nucleosynthesis

doi: 10.1103/PhysRevLett.132.052701
Citations: PlumX Metrics


2023HO02      Eur.Phys.J. A 59, 28 (2023)

E.M.Holmbeck, T.M.Sprouse, M.R.Mumpower

Nucleosynthesis and observation of the heaviest elements

doi: 10.1140/epja/s10050-023-00927-7
Citations: PlumX Metrics


2023HO14      Phys.Rev.Lett. 131, 262701 (2023)

D.E.M.Hoff, K.Kolos, G.W.Misch, D.Ray, B.Liu, A.A.Valverde, M.Brodeur, D.P.Burdette, N.Callahan, J.A.Clark, A.T.Gallant, F.G.Kondev, G.E.Morgan, M.R.Mumpower, R.Orford, W.S.Porter, F.Rivero, G.Savard, N.D.Scielzo, K.S.Sharma, K.Sieja, T.M.Sprouse, L.Varriano

Direct Mass Measurements to Inform the Behavior of 128mSb in Nucleosynthetic Environments

ATOMIC MASSES 128,128mSb; measured cyclotron frequencies; deduced mass excesses, isomer excitation energy. Comparison with AME2020, NUBASE2020, state-of-the-art shell model calculations using the GCN5082 interaction. The phase-imaging ion-cyclotron resonance (PI-ICR) technique with the Canadian Penning Trap (CPT) mass spectrometer at the Californium Rare Isotope Breeder Upgrade facility.

doi: 10.1103/PhysRevLett.131.262701
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022KI23      Astrophys.J. 936, 107 (2022)

G.G.Kiss, A.Vitez-Sveiczer, Y.Saito, A.Tarifeno-Saldivia, M.Pallas, J.L.Tain, I.Dillmann, J.Agramunt, A.Algora, C.Domingo-Pardo, A.Estrade, C.Appleton, J.M.Allmond, P.Aguilera, H.Baba, N.T.Brewer, C.Bruno, R.Caballero-Folch, F.Calvino, P.J.Coleman-Smith, G.Cortes, T.Davinson, N.Fukuda, Z.Ge, S.Go, C.J.Griffin, R.K.Grzywacz, O.Hall, A.Horvath, J.Ha, L.J.Harkness-Brennan, T.Isobe, D.Kahl, T.T.King, A.Korgul, S.Kovacs, R.Krucken, S.Kubono, M.Labiche, J.Liu, J.Liang, M.Madurga, K.Miernik, F.Molina, A.I.Morales, M.R.Mumpower, E.Nacher, A.Navarro, N.Nepal, S.Nishimura, M.Piersa-Silkowska, V.Phong, B.C.Rasco, B.Rubio, K.P.Rykaczewski, J.Romero-Barrientos, H.Sakurai, L.Sexton, Y.Shimizu, M.Singh, T.Sprouse, T.Sumikama, R.Surman, H.Suzuki, T.N.Szegedi, H.Takeda, A.Tolosa, K.Wang, M.Wolinska-Cichocka, P.Woods, R.Yokoyama, Z.Xu

Measuring the β-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region

NUCLEAR REACTIONS 9Be(238U, X), E=345 MeV/nucleon; measured reaction products, TOF, Eβ, Iβ. 159,160,161,162,163,164,165,166Pm, 161,162,163,164,165,166,167,168Sm, 165,166,167,168,169,170Eu, 167,168,169,170,171,172Gd; deduced new isotopes T1/2 and β-delayed neutron emission probabilities, relative r-process abundance pattern for the neutron-star merger scenario. RIKEN Nishina Center, the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array.

doi: 10.3847/1538-4357/ac80fc
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022LI20      Phys.Rev.Lett. 128, 152701 (2022)

H.F.Li, S.Naimi, T.M.Sprouse, M.R.Mumpower, Y.Abe, Y.Yamaguchi, D.Nagae, F.Suzaki, M.Wakasugi, H.Arakawa, W.B.Dou, D.Hamakawa, S.Hosoi, Y.Inada, D.Kajiki, T.Kobayashi, M.Sakaue, Y.Yokoda, T.Yamaguchi, R.Kagesawa, D.Kamioka, T.Moriguchi, M.Mukai, A.Ozawa, S.Ota, N.Kitamura, S.Masuoka, S.Michimasa, H.Baba, N.Fukuda, Y.Shimizu, H.Suzuki, H.Takeda, D.S.Ahn, M.Wang, C.Y.Fu, Q.Wang, S.Suzuki, Z.Ge, Y.A.Litvinov, G.Lorusso, P.M.Walker, Z.Podolyak, T.Uesaka

First Application of Mass Measurements with the Rare-RI Ring Reveals the Solar r-Process Abundance Trend at A=122 and A=123

ATOMIC MASSES 123Pd, 125Cd, 126In; measured frequencies; deduced mass excess values with low uncertainties. Comparison with calculations. Radioactive Isotope Beam Factory (RIBF) in RIKEN.

doi: 10.1103/PhysRevLett.128.152701
Citations: PlumX Metrics


2022LO09      Phys.Rev. C 106, 014305 (2022)

A.E.Lovell, A.T.Mohan, T.M.Sprouse, M.R.Mumpower

Nuclear masses learned from a probabilistic neural network

ATOMIC MASSES Z=20-110, N=16-160; calculated atomic masses and S(n) using the probabilistic Mixture Density Network (MDN) for six models: M2, MS2, MS6, MS8, MS10, and MS12, and compared with evaluated atomic masses in AME2016 and theoretical masses in Moller's FRDM2012. Relevance to accuracy of the match to the training data, and providing physically meaningful extrapolations beyond the limits of experimental data.

doi: 10.1103/PhysRevC.106.014305
Citations: PlumX Metrics


2022MU14      Phys.Rev. C 106, L021301 (2022)

M.R.Mumpower, T.M.Sprouse, A.E.Lovell, A.T.Mohan

Physically interpretable machine learning for nuclear masses

ATOMIC MASSES 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162Nd; calculated masses. Results obtained with probabilistic machine learning algorithm. Comparison to AME2016.

doi: 10.1103/PhysRevC.106.L021301
Citations: PlumX Metrics


2022MU18      Phys.Rev. C 106, 065805 (2022)

M.R.Mumpower, T.Kawano, T.M.Sprouse

β-delayed fission in the coupled quasiparticle random-phase approximation plus Hauser-Feshbach approach

RADIOACTIVITY 282Bk(β-F); calculated probabilities for neutron, γ, and fission channels, and total transmission coefficient sum. 290Am, 295Fm(β-n), (β-F); calculated probabilities for delayed neutron and delayed fission as a function of j-th neutrons emitted from the daughter nuclei. Z=94, A=254-324(β-n), (β-F); Z=97, A=257-327(β-n), (β-F); calculated cumulative probabilities for emitting neutrons or fission after β- decay, S(n) and maximum fission barriers. Z=85-120, N=160-230(β-n), (β-F); calculated average neutron multiplicities, average β--delayed neutron emission energies, cumulative probability of β--delayed fission (βdf). 244,246Pa, 248,250Np, 252,254Am, 256,258,259Bk, 261Cf, 262,263Es, 264,266,267Md, 269No, 268,269,270,271Lr, 271,273Rf, 272,273,274,275Db, 280,281,282,283Bh, 285Hs, 284,285,286,287Mt(β-F); calculated β-delayed fission (βdf) branching ratios greater than 1% among 72 model variations. Z=80, A=207-266; Z=81, A=210-268; Z=82, A=211-273; Z=83, A=212-276; Z=84, A=215, 217-279; Z=85, A=216-282; Z=86, A=221, 223-286; Z=87, A=222-289; Z=88, A=225, 227, 229-292; Z=89, A=224, 226, 228-295; Z=90, A=233-299; Z=91, A=230, 232, 234-302; Z=92, A=239-305; Z=93, A=236, 238, 240-308; Z=94, A=243, 245-312; Z=95, A=242, 244-315; Z=96, A=249, 251-318; Z=97, A=248, 250-321; Z=98, A=253, 255, 257-325; Z=99, A=252, 254-328; Z=100, A=261, 263-331; Z=101, A=260, 262-334; Z=102, A=265, 267-338; Z=103, A=264, 266-339; Z=104, A=269, 271, 273, 275-339; Z=105, A=270, 272-339; Z=106, A=279, 281-339; Z=107, A=274, 276, 278, 280-339; Z=108, A=285, 287-339; Z=109, A=282, 284-339; Z=110, A=291, 293-339; Z=111, A=288, 290-339; Z=112, A=295, 297-339; Z=113, A=294, 296-339; Z=114, A=301, 303, 305-339; Z=115, A=300, 302, 304-339; Z=116, A=309, 313, 315-339; Z=117, A=306, 308, 310-339; Z=118, A=323-339; Z=119, A=312, 316-339; Z=120, A=323, 325, 327-339; Z=121, A=320, 322, 324-339; Z=122, A=329, 331, 335-339; Z=123, A=326, 328-339; Z=124, A=337; Z=125, A=332, 334, 336-339; Z=127, A=338; calculated j-neutron emission probabilities (%β-xn or Pxn up to x=0-10), average neutron emission energies, average neutron multiplicities, and j-th neutron beta-delayed fission (βdf) probabilities after β- decay for 2436 neutron-rich nuclei, with numerical values listed in Supplemental Material. Los Alamos coupled quasiparticle random-phase approximation plus Hauser-Feshbach (QRPA+HF) approach.

doi: 10.1103/PhysRevC.106.065805
Citations: PlumX Metrics


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2022SP02      Astrophys.J. 929, 22 (2022)

T.M.Sprouse, G.W.Misch, M.R.Mumpower

Isochronic Evolution and the Radioactive Decay of r-process Nuclei

doi: 10.3847/1538-4357/ac470f
Citations: PlumX Metrics


2021HO13      Astrophys.J. 909, 21 (2021)

E.M.Holmbeck, A.Frebel, G.C.McLaughlin, R.Surman, R.Fernandez, B.D.Metzger, M.R.Mumpower, T.M.Sprouse

Reconstructing Masses of Merging Neutron Stars from Stellar r-process Abundance Signatures

doi: 10.3847/1538-4357/abd720
Citations: PlumX Metrics


2021MI12      Astrophys.J. 913, L2 (2021)

G.W.Misch, T.M.Sprouse, M.R.Mumpower

Astromers in the Radioactive Decay of r-process Nuclei

RADIOACTIVITY 69,71Zn, 79,81Se, 83,85Kr, 93,95,97Nb, 99Tc, 113,115,117Cd, 115,117,119In, 119,121,129Sn, 126,128,130Sb, 125,127,129,131,133Te, 131,133Xe, 137Ba, 144Pr, 166Ho, 189Os, 191,195Ir, 195Pt(IT); analyzed available data; deduced the dynamic population of nuclear isomers in the r process.

doi: 10.3847/2041-8213/abfb74
Citations: PlumX Metrics


2021SP05      Phys.Rev. C 104, 015803 (2021)

T.M.Sprouse, M.R.Mumpower, R.Surman

Following nuclei through nucleosynthesis: A novel tracing technique

NUCLEAR STRUCTURE A=80-240; calculated relative contributions to final isotopic abundances by terminating all the fission channels for different conditions of neutron star merger, relative contributions to final isotopic abundances for the β-delayed and neutron-induced fission products of neptunium and plutonium isotopes, comparison of fission yield to final traced abundances for the neutron-induced fission of 290Np and β-delayed fission of 270Bk. N=158-205; calculated integrated β-delayed and neutron-induced fission flows for individual nuclides during the cold tidal-tail ejecta conditions of neutron star merger. A=126-210; calculated isotopic abundances based on tracing β- decay of 152,176,186Nd. Z=40-80, N=50-134; calculated traced abundances of individual β-decays for Z=40-80 isotopes. Nucleosynthesis tracing framework for the r process, starting with system of coupled differential equations, and by quantifying relative fraction of nuclear abundances that pass through individual nuclear reaction, decay, and fission processes during nucleosynthesis.

doi: 10.1103/PhysRevC.104.015803
Citations: PlumX Metrics


2021ZH02      Astrophys.J. 906, 94 (2021)

Y.L.Zhu, K.A.Lund, J.Barnes, T.M.Sprouse, N.Vassh, G.C.McLaughlin, M.R.Mumpower, R.Surman

Modeling Kilonova Light Curves: Dependence on Nuclear Inputs

RADIOACTIVITY 254Cf, 254Cm, 258,259Fm, 267,269,270,271Rf, 273Db, 288Hs(SF); calculated total spontaneous fission heating, electron fractions using HFB22, HFB27, FRDM2012, UNEDF1 and ETFSI models.

doi: 10.3847/1538-4357/abc69e
Citations: PlumX Metrics


2020SP04      Phys.Rev. C 101, 055803 (2020)

T.M.Sprouse, R.Navarro-Perez, R.Surman, M.R.Mumpower, G.C.McLaughlin, N.Schunck

Propagation of statistical uncertainties of Skyrme mass models to simulations of r-process nucleosynthesis

ATOMIC MASSES Z=1-120; calculated atomic mass tables within the nuclear density functional theory (DFT) approach to nuclear structure with Skyrme energy density functionals (EDFs), and UNEDF1 parametrization. A=120-200; analyzed propagation of uncertainties in the Skyrme mass models using Bayesian statistics for the simulated r-process abundance patterns, by considering nuclear masses and the influence of the masses on β-decay and neutron capture rates.

doi: 10.1103/PhysRevC.101.055803
Citations: PlumX Metrics


2020WU04      Phys.Rev. C 101, 042801 (2020)

J.Wu, S.Nishimura, P.Moller, M.R.Mumpower, R.Lozeva, C.B.Moon, A.Odahara, H.Baba, F.Browne, R.Daido, P.Doornenbal, Y.F.Fang, M.Haroon, T.Isobe, H.S.Jung, G.Lorusso, B.Moon, Z.Patel, S.Rice, H.Sakurai, Y.Shimizu, L.Sinclair, P.-A.Soderstrom, T.Sumikama, H.Watanabe, Z.Y.Xu, A.Yagi, R.Yokoyama, D.S.Ahn, F.L.Bello Garrote, J.M.Daugas, F.Didierjean, N.Fukuda, N.Inabe, T.Ishigaki, D.Kameda, I.Kojouharov, T.Komatsubara, T.Kubo, N.Kurz, K.Y.Kwon, S.Morimoto, D.Murai, H.Nishibata, H.Schaffner, T.M.Sprouse, H.Suzuki, H.Takeda, M.Tanaka, K.Tshoo, Y.Wakabayashi

β-decay half-lives of 55 neutron-rich isotopes beyond the N = 82 shell gap

RADIOACTIVITY 134,135,136,137,138,139Sn, 134,135,136,137,138,139,140,141,142Sb, 137,138,139,140,141,142,143,144Te, 140,141,142,143,144,145,146I, 142,143,144,145,146,147,148Xe, 145,146,147,148,149,150,151Cs, 148,149,150,151,152,153Ba, 151,152,153,154,155La(β-)[from 9Be(238U, F), E=345 MeV/nucleon, followed by separation of fragments using BigRIPS separator at RIBF-RIKEN]; measured β and γ radiations, half-lives by (implant)β and (implant)βγ correlations using the Wide range Active Silicon-Strip Stop per Array for Beta and ion (WAS3ABi) detection system and Euroball RIKEN Cluster Array (EURICA) of 84 Ge cluster detectors. Comparison with previously available experimental half-lives, and with theoretical calculations using FRDM+QRPA, KTUY+GT2, RHB+pn-RQRPA, and DF+CQRPA models. 141Te(β-); calculated half-life and Gamow-Teller strengths using FRDM+QRPA(2019) model, and compared with experimental data. Discussed and calculated effects of new half-life data on r-process abundance.

doi: 10.1103/PhysRevC.101.042801
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018MU17      Astrophys.J. 869, 14 (2018)

M.R.Mumpower, T.Kawano, T.M.Sprouse, N.Vassh, E.M.Holmbeck, R.Surman, P.Moller

β-delayed Fission in r-process Nucleosynthesis

doi: 10.3847/1538-4357/aaeaca
Citations: PlumX Metrics


2018ZH34      Astrophys.J. 863, L23 (2018)

Y.Zhu, R.T.Wollaeger, N.Vassh, R.Surman, T.M.Sprouse, M.R.Mumpower, P.Moller, G.C.McLaughlin, O.Korobkin, T.Kawano, P.J.Jaffke, E.M.Holmbeck, C.L.Fryer, W.P.Even, A.J.Couture, J.Barnes

Californium-254 and Kilonova Light Curves

RADIOACTIVITY 254Cf(SF); calculated abundance, fission product yields, heating rates, mid-IR light curves.

doi: 10.3847/2041-8213/aad5de
Citations: PlumX Metrics


2017MU13      Phys.Rev. C 96, 024612 (2017)

M.R.Mumpower, T.Kawano, J.L.Ullmann, M.Krticka, T.M.Sprouse

Estimation of M1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

NUCLEAR REACTIONS 152,154,155,156,157,158Gd(n, γ), E=1 keV-4.5 MeV; calculated capture σ(E) with and without M1 scissors mode strength, capture γ-ray spectra, and compared with available experimental data. A=90-200; calculated capture cross sections at 200 keV with and without M1 scissors mode strength, and compared with evaluated cross sections in ENDF/B-VII.1 and JENDL-4 libraries; deduced additional M1 strength for nuclei in the fission product region nuclei required to reproduce evaluated capture cross section. A=50-250; calculated average photon width Γγ and compared with values in RIPL-3 database. Z=10-100, N=10-180; evaluated M1 enhancement of neutron capture reaction rates at a temperature of 1.0 GK. A=100-250; deduced isotopic abundances with the inclusion of M1 enhancement in the neutron capture rates relevant to r-process simulations. Impact of M1 scissors mode on neutron capture cross sections. Hauser-Feshbach calculation with a simple Lorentzian form for the M1 scissors mode.

doi: 10.1103/PhysRevC.96.024612
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter T.Sprouse: , T.M.SPROUSE, T.T.SPROUSE