NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Tichai

Found 20 matches.

Back to query form



2024CO02      Phys.Rev. C 109, 024311 (2024)

M.Companys Franzke, A.Tichai, K.Hebeler, A.Schwenk

Eigenvector continuation for the pairing Hamiltonian

doi: 10.1103/PhysRevC.109.024311
Citations: PlumX Metrics


2024TI03      Phys.Lett. B 851, 138571 (2024)

A.Tichai, P.Demol, T.Duguet

Towards heavy-mass ab initio nuclear structure: Open-shell Ca, Ni and Sn isotopes from Bogoliubov coupled-cluster theory

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Sn; calculated ground-state and two-neutron separation energies using three different values for the harmonic oscillator frequency around the empirical minimum. Controlled ab initio Bogoliubov coupled cluster (BCC) method. Comparison with available data.

doi: 10.1016/j.physletb.2024.138571
Citations: PlumX Metrics


2023HE04      Phys.Rev. C 107, 024310 (2023)

K.Hebeler, V.Durant, J.Hoppe, M.Heinz, A.Schwenk, J.Simonis, A.Tichai

Normal ordering of three-nucleon interactions for ab initio calculations of heavy nuclei

NUCLEAR STRUCTURE 18O, 48Ca, 78Ni, 132Sn, 208Pb; calculated ground-state energies. 132Sn, 208Pb; calculated charge radii. Jacobi normal-ordering (NO) framework to include three-nucleon (3N) interactions in ab initio many-body calculations up to heavy nuclei at the two-body operator level. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024310
Citations: PlumX Metrics


2022HA19      Phys.Rev. C 105, 064311 (2022)

G.Hagen, S.J.Novario, Z.H.Sun, T.Papenbrock, G.R.Jansen, J.G.Lietz, T.Duguet, A.Tichai

Angular-momentum projection in coupled-cluster theory: Structure of 34Mg

NUCLEAR STRUCTURE 8Be; calculated energies using symmetry-unrestricted Hartree-Fock and HF-RVAP as a function of the mass quadrupole moment q20. 20Ne, 34Mg; calculated the norm kernels and Hamiltonian kernels as function of the rotation angle using Hartree-Fock and CCD theories. 8Be, 20Ne, 34Mg; calculated projected coupled-cluster energies of the ground and excited states as a function of oscillator frequency using CCD, SLD, and SQD approximations. 44,46,48Ti, 48,50Cr; calculated low-lying states of J=0, 2 and 4 using projection-after-variation Hartree-Fock (PAV HF), variation-after-projection Hartree-Fock (VAP-HF), and projected CCD, SLD, and SQD methods, and compared to FCI results. Angular-momentum projection after variation with the disentangled coupled-cluster formalism and a Hermitian approach. Comparison with two-nucleon interaction from chiral effective field theory and for pf-shell nuclei within the traditional shell model, and with experimental data.

doi: 10.1103/PhysRevC.105.064311
Citations: PlumX Metrics


2022HO06      Phys.Rev. C 105, 034324 (2022)

J.Hoppe, A.Tichai, M.Heinz, K.Hebeler, A.Schwenk

Importance truncation for the in-medium similarity renormalization group

NUCLEAR STRUCTURE 4He, 40,48,52,60Ca, 56,68,78Ni; calculated ground state energy. Importance truncation (IT) methods in the nonperturbative in-medium similarity renormalization group (IMSRG) approach. Investigated the effect of truncation in different sub-blocks of the two-body Hamiltonian on the solution error.

doi: 10.1103/PhysRevC.105.034324
Citations: PlumX Metrics


2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics


2022TI02      Eur.Phys.J. A 58, 2 (2022)

A.Tichai, P.Arthuis, H.Hergert, T.Duguet

ADG: automated generation and evaluation of many-body diagrams

doi: 10.1140/epja/s10050-021-00621-6
Citations: PlumX Metrics


2022TI04      Phys.Rev. C 106, 024320 (2022)

A.Tichai, P.Arthuis, K.Hebeler, M.Heinz, J.Hoppe, A.Schwenk, L.Zurek

Least-square approach for singular value decompositions of scattering problems

doi: 10.1103/PhysRevC.106.024320
Citations: PlumX Metrics


2021HE11      Phys.Rev. C 103, 044318 (2021)

M.Heinz, A.Tichai, J.Hoppe, K.Hebeler, A.Schwenk

In-medium similarity renormalization group with three-body operators

NUCLEAR STRUCTURE 4He, 16O; calculated ground-state energies using various truncation schemes. Full and approximate in-medium similarity renormalization group (IMSRG(3)) truncations applied to the closed-shell nuclei using nucleon-nucleon and nucleon-nucleon+3N-chiral Hamiltonians with the Hartree-Fock and natural orbital single-particle bases.

doi: 10.1103/PhysRevC.103.044318
Citations: PlumX Metrics


2021HO03      Phys.Rev. C 103, 014321 (2021)

J.Hoppe, A.Tichai, M.Heinz, K.Hebeler, A.Schwenk

Natural orbitals for many-body expansion methods

NUCLEAR STRUCTURE 16,22O, 40Ca, 78Ni; calculated one-body proton density matrix, occupation numbers of the single-particle proton orbitals, and absolute value of the radial wave function for 16O, negative occupations of the p orbitals for 16O and 22O, ground-state energies and charge radii of 16O, 40Ca and 78Ni. Nonperturbative many-body calculations using the in-medium similarity renormalization group (IMSRG) approach, with large single-particle basis. Comparison with experimental data for 78Ni.

doi: 10.1103/PhysRevC.103.014321
Citations: PlumX Metrics


2021PO10      Eur.Phys.J. A 57, 297 (2021)

A.Porro, V.Soma, A.Tichai, T.Duguet

Importance truncation in non-perturbative many-body techniques - Gorkov self-consistent Green's function calculations

NUCLEAR STRUCTURE 40,44Ca, 44Ti; calculated binding energies, number of three-quasiparticle configurations, ground-state energy errors.

doi: 10.1140/epja/s10050-021-00606-5
Citations: PlumX Metrics


2020DE11      Phys.Rev. C 101, 041302 (2020)

P.Demol, T.Duguet, A.Ekstrom, M.Frosini, K.Hebeler, S.Konig, D.Lee, A.Schwenk, V.Soma, A.Tichai

Improved many-body expansions from eigenvector continuation

NUCLEAR STRUCTURE 3H, 18O; calculated ground state energies using many-body perturbation theory (MBPT)-based eigenvector continuation (EC) resummation method for 3He, and Bogoliubov many-body perturbation theory (BMBPT)-based EC resummation method for 16O, using realistic nuclear two-body interaction derived from chiral effective field theory. Comparison with MBPT, BMBPT, and MBPT-based Pade approximation calculations.

doi: 10.1103/PhysRevC.101.041302
Citations: PlumX Metrics


2020DU16      Phys.Rev. C 102, 054320 (2020)

T.Duguet, B.Bally, A.Tichai

Zero-pairing limit of Hartree-Fock-Bogoliubov reference states

NUCLEAR STRUCTURE 18,22,26O, 44Ca; calculated zero pairing energies, valence shell canonical pairing gap, nondegenerate elementary excitations, zero particle-number variances, weights of Slater determinants associated with a given particle number, neutron-number variance of the constrained HFB solution, pairing gaps and average occupation of neutron canonical states near Fermi energy. 40,42,44,46,48Ca; calculated pairing energies in the zero-pairing limit, and compared with analytical prediction. Zero-pairing limit of an even-number parity Bogoliubov state solution of Hartree-Fock-Bogoliubov (HFB) equation with a two-nucleon interaction derived within the framework of chiral effective field theory.

doi: 10.1103/PhysRevC.102.054320
Citations: PlumX Metrics


2020RI01      Eur.Phys.J. A 56, 40 (2020)

J.Ripoche, A.Tichai, T.Duguet

Normal-ordered k-body approximation in particle-number-breaking theories

doi: 10.1140/epja/s10050-020-00045-8
Citations: PlumX Metrics


2020TI05      Eur.Phys.J. A 56, 272 (2020)

A.Tichai, R.Wirth, J.Ripoche, T.Duguet

Symmetry reduction of tensor networks in many-body theory

doi: 10.1140/epja/s10050-020-00233-6
Citations: PlumX Metrics


2019TI03      Phys.Rev. C 99, 034320 (2019)

A.Tichai, R.Schutski, G.E.Scuseria, T.Duguet

Tensor-decomposition techniques for ab initio nuclear structure calculations: From chiral nuclear potentials to ground-state energies

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated size of the singular values of the Hamiltonian tensor, relative error in Hamiltonian tensor hypercontraction (THC) decomposition for both 2- and 3-nucleon interactions, data compression factor, and relative error in tensor-decomposed ground-state energy correction. Tensor-decomposition techniques within the frame of ab initio nuclear structure theory.

doi: 10.1103/PhysRevC.99.034320
Citations: PlumX Metrics


2019TI04      Phys.Rev. C 99, 034321 (2019)

A.Tichai, J.Muller, K.Vobig, R.Roth

Natural orbitals for ab initio no-core shell model calculations

NUCLEAR STRUCTURE 4He, 12C, 14,15,16,17,18,19,20,21,22,23,24,25,26O; calculated squared radial wave functions of different single particle orbits in 16O, ground state energies and point-proton radii of 4He and 16O, ground state energies of 14O to 26O nuclei, and levels, quadrupole moment, B(E2), and B(M1) of 12C using ab initio no-core shell model (NCSM) calculations with natural-orbital, Hartree-Fock, and harmonic oscillator bases.

doi: 10.1103/PhysRevC.99.034321
Citations: PlumX Metrics


2019TI05      Eur.Phys.J. A 55, 90 (2019)

A.Tichai, J.Ripoche, T.Duguet

Pre-processing the nuclear many-body problem

doi: 10.1140/epja/i2019-12758-6
Citations: PlumX Metrics


2018TI07      Phys.Lett. B 786, 195 (2018)

A.Tichai, P.Arthuis, T.Duguet, H.Hergert, V.Soma, R.Roth

Bogoliubov many-body perturbation theory for open-shell nuclei

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni; calculated absolute ground-state binding energies and two-neutron separation energies. A Rayleigh–Schrodinger many-body perturbation theory (MBPT) approach.

doi: 10.1016/j.physletb.2018.09.044
Citations: PlumX Metrics


2018TI08      Phys.Lett. B 786, 448 (2018)

A.Tichai, E.Gebrerufael, K.Vobig, R.Roth

Open-shell nuclei from No-Core Shell Model with perturbative improvement

NUCLEAR STRUCTURE 6,7Li, 10,11,12,13,14,15,16,17,18,19,20C, 16,17,18,19,20,21,22,23,24,25,26O, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31F; calculated ground-state energies, excitation spectra, J, π. Comparison with available data.

doi: 10.1016/j.physletb.2018.10.029
Citations: PlumX Metrics


Back to query form