NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = T.D.Morris

Found 10 matches.

Back to query form



2021NO04      Phys.Rev.Lett. 126, 182502 (2021)

S.Novario, P.Gysbers, J.Engel, G.Hagen, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix element for the neutrinoless ββ-decay using coupled-cluster theory and nuclear interactions from chiral effective field theory.

doi: 10.1103/PhysRevLett.126.182502
Citations: PlumX Metrics


2019BA11      Phys.Lett. B 790, 251 (2019)

S.Bagchi, R.Kanungo, W.Horiuchi, G.Hagen, T.D.Morris, S.R.Stroberg, T.Suzuki, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, S.Kaur, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, Y.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Neutron skin and signature of the N = 14 shell gap found from measured proton radii of 17-22N

NUCLEAR REACTIONS C(14N, X), (15N, X), (17N, X), (18N, X), (19N, X), (20N, X), (21N, X), (22N, X), E=851-932 MeV/nucleon; measured reaction products. 14,15,17,18,19,20,21,22N; deduced σ, root mean square point proton and matter radii, unconventional shell gap at N = 14 arising from the attractive proton–neutron tensor interaction. Comparison with ab initio calculations.

doi: 10.1016/j.physletb.2019.01.024
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0941.


2019GY02      Nat.Phys. 15, 428 (2019)

P.Gysbers, G.Hagen, J.D.Holt, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni, A.Schwenk, S.R.Stroberg, K.A.Wendt

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

NUCLEAR STRUCTURE 3H, 6Li, 7Be, 8He, 10C, 14O, 19,24Ne, 37K, 25,28Al, 24,26Na, 30Mg, 33,34P, 42,43,46Sc, 42,45Ti, 45,47V, 100Sn; calculated the Gamow–Teller strength for β decay.

doi: 10.1038/s41567-019-0450-7
Citations: PlumX Metrics


2019LI10      Phys.Rev.Lett. 122, 072502 (2019)

H.N.Liu, A.Obertelli, P.Doornenbal, C.A.Bertulani, G.Hagen, J.D.Holt, G.R.Jansen, T.D.Morris, A.Schwenk, R.Stroberg, N.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, D.Sohler, P.-A.Soderstrom, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

How Robust is the N=34 Subshell Closure? First Spectroscopy of 52Ar

NUCLEAR REACTIONS 1H(53K, 2p), E=245 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced γ-ray energies, J, π, σ. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.122.072502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018EK02      Phys.Rev. C 97, 024332 (2018)

A.Ekstrom, G.Hagen, T.D.Morris, T.Papenbrock, P.D.Schwartz

Δ isobars and nuclear saturation

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies, charge radii at LO, NLO, and NNLO with and without the Δ(1232) isobar as function of momentum cutoff values of 450 and 500 MeV. 4He, 16O, 40Ca; calculated ground-state energies per nucleon and charge radii computed with coupled cluster theory and the Δ-full potential at LO, NLO, and NNLO. 8He, 16,22,24O, 40,48Ca; calculated binding energies, charge radii, proton and neutron point radii, neutron skin. 40Ca; calculated elastic charge form factor. Chiral effective field theory with inclusion of the Δ-isobar Δ(1232) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024332
Citations: PlumX Metrics


2018MO07      Phys.Rev.Lett. 120, 152503 (2018)

T.D.Morris, J.Simonis, S.R.Stroberg, C.Stumpf, G.Hagen, J.D.Holt, G.R.Jansen, T.Papenbrock, R.Roth, A.Schwenk

Structure of the Lightest Tin Isotopes

NUCLEAR STRUCTURE 100,108,116,124,132Sn, 101Sn, 105Te; calculated energy levels, J, π using nucleon-nucleon and three-nucleon forces constrained by data of few-nucleon systems.

doi: 10.1103/physrevlett.120.152503
Citations: PlumX Metrics


2018SU23      Phys.Rev. C 98, 054320 (2018)

Z.H.Sun, T.D.Morris, G.Hagen, G.R.Jansen, T.Papenbrock

Shell-model coupled-cluster method for open-shell nuclei

NUCLEAR STRUCTURE 6,7,8He, 6,7,8Li; calculated low-lying levels, J, π, squared point-proton radii, and isotope shifts using shell-model coupled-cluster method employing 4He core. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.054320
Citations: PlumX Metrics


2017PA09      Phys.Rev. C 95, 044304 (2017)

N.M.Parzuchowski, T.D.Morris, S.K.Bogner

Ab initio excited states from the in-medium similarity renormalization group

NUCLEAR STRUCTURE 16,22O; calculated low-lying levels using ab initio approach within the in-medium similarity renormalization group (IMSRG) framework, and Tamm-Dancoff approximation (TDA) with equations-of-motion (EOM) techniques.

doi: 10.1103/PhysRevC.95.044304
Citations: PlumX Metrics


2015MO19      Phys.Rev. C 92, 034331 (2015)

T.D.Morris, N.M.Parzuchowski, S.K.Bogner

Magnus expansion and in-medium similarity renormalization group

NUCLEAR STRUCTURE 16O; calculated energy of the ground-state of 16O and that of homogeneous electron gas (HEG) using an improved variant of the in-medium similarity renormalization group (IM-SRG) based on the Magnus expansion and a first-order Euler method. Substantial memory savings and modest computational speedups.

doi: 10.1103/PhysRevC.92.034331
Citations: PlumX Metrics


2014HE23      Phys.Rev. C 90, 041302 (2014)

H.Hergert, S.K.Bogner, T.D.Morris, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni; calculated ground state energies, and S(2n) using multireference in-medium similarity renormalization group based on NN+3N nucleon interactions from chiral effective field theory. Comparison with other calculations and experimental results.

doi: 10.1103/PhysRevC.90.041302
Citations: PlumX Metrics


Back to query form