NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = B.Acharya

Found 14 matches.

Back to query form



2024SO05      Phys.Rev. C 109, 025502 (2024)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

40Ca transverse response function from coupled-cluster theory

doi: 10.1103/PhysRevC.109.025502
Citations: PlumX Metrics


2023AC12      J.Phys.(London) G50, 095102 (2023)

B.Acharya, L.E.Marcucci, L.Platter

Revisiting proton-proton fusion in chiral effective field theory

NUCLEAR REACTIONS 1H(p, X), E not given; calculated proton-proton fusion S-factor and uncertainties by performing order-by-order computations with a variety of chiral interactions that are regularized and calibrated in different ways.

doi: 10.1088/1361-6471/ace3e2
Citations: PlumX Metrics


2023BO08      Phys.Rev. C 107, 065502 (2023)

J.Bonilla, B.Acharya, L.Platter

Muon capture on the deuteron in chiral effective field theory

NUCLEAR REACTIONS 2H(μ, X), E at <300 MeV/c; calculated total muon capture rate, capture rate from the doublet and quartet channel. Quantified the theoretical uncertainties. Chiral effective field theory at next-to-next-to-leading order (NNLO) currents. Studied the dependence on the cutoff used to regularize the interactions, low energy constants calibrated using different fitting data and strategies, and truncation of the effective-field-theory expansion of the currents. Comparison to available experimental data and other theoretical estimations.

doi: 10.1103/PhysRevC.107.065502
Citations: PlumX Metrics


2023GO01      Phys.Rev. C 107, 014617 (2023)

M.Gobel, B.Acharya, H.-W.Hammer, D.R.Phillips

Final-state interactions and spin structure in E1 breakup of 11Li in halo effective field theory

NUCLEAR STRUCTURE 11Li; charge radii, mean-square neutron charge radius, calculated E1 strength distribution with inclusion of final state interactions in neutron-neutron and neutron-core channels, cumulative B(E1). Halo effective field theory (Halo EFT) at leading order treating 11Li as three-body system 9Li+n+n. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014617
Citations: PlumX Metrics


2022LI43      J.Phys.(London) G49, 105101 (2022)

S.S.Li Muli, B.Acharya, O.J.Hernandez, S.Bacca

Bayesian analysis of nuclear polarizability corrections to the Lamb shift of muonic H-atoms and He-ions

NUCLEAR REACTIONS 2,3H, 3,4He(μ, X), E not given; analyzed available data of the nuclear-polarizability corrections to the Lamb shift with a Bayesian analysis.

doi: 10.1088/1361-6471/ac81e0
Citations: PlumX Metrics


2021AC02      Phys.Rev. C 103, 024001 (2021)

B.Acharya, V.Lensky, S.Bacca, M.Gorchtein, M.Vanderhaeghen

Dispersive evaluation of the Lamb shift in muonic deuterium from chiral effective field theory

NUCLEAR REACTIONS 2H(γ, X), E<80 MeV; 2H(e-, X), E=80, 146.9, 175, 180, 222.6, 292.8 MeV; calculated deuteron photodisintegration σ(E), deuteron electrodissociation differential σ(E, θ), deuteron response functions and corresponding uncertainties up to next-to-next-to-next-to-leading order in chiral effective field theory (χEFT), longitudinal and transverse contributions. Comparison with experimental data.

NUCLEAR STRUCTURE 2H; calculated nuclear polarizability two-photon exchange corrections to the muonic deuterium (μD) Lamb shift by combining dispersion relations with ab initio approach to compute nuclear structure corrections using chiral effective field theory. Comparison with results of previous calculations.

doi: 10.1103/PhysRevC.103.024001
Citations: PlumX Metrics


2021SO24      Phys.Rev.Lett. 127, 072501 (2021)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

Ab Initio Computation of the Longitudinal Response Function in 40Ca

NUCLEAR STRUCTURE 40Ca; calculated longitudinal response function using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-nucleon interactions.

doi: 10.1103/PhysRevLett.127.072501
Citations: PlumX Metrics


2020AC01      Phys.Rev. C 101, 015505 (2020)

B.Acharya, S.Bacca

Neutrino-deuteron scattering: Uncertainty quantification and new Λ1, A constraints

NUCLEAR REACTIONS 2H(ν, ν'), (ν-bar, ν-bar'), E=threshold-150 MeV; calculated deuteron dissociation σ(E) with uncertainty estimates using chiral effective field theory (χEFT). Comparison with previous theoretical calculations.

doi: 10.1103/PhysRevC.101.015505
Citations: PlumX Metrics


2020SO21      Phys.Rev. C 102, 064312 (2020)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

Coulomb sum rule for 4He and 16O from coupled-cluster theory

NUCLEAR STRUCTURE 4He, 16O; calculated Coulomb sum rule (CSR), squared elastic form factors, spurious 1- states as functions of the momentum transfer of 0-500 MeV. Coupled-cluster theory using interactions from chiral effective field theory (EFT). Relevance to improving understanding of neutrino-nucleus scattering process.

doi: 10.1103/PhysRevC.102.064312
Citations: PlumX Metrics


2019AC09      Phys.Rev. C 100, 021001R (2019)

B.Acharya, L.Platter, G.Rupak

Universal behavior of p-wave proton-proton fusion near threshold

NUCLEAR REACTIONS 1H(p, X), E<110 keV; calculated p-wave contribution to the proton-proton fusion S factor and total threshold S factor using chiral effective-field theory (EFT) up to the next-to-leading order.

doi: 10.1103/PhysRevC.100.021001
Citations: PlumX Metrics


2018AC07      Phys.Rev. C 98, 065506 (2018)

B.Acharya, A.Ekstrom, L.Platter

Effective-field-theory predictions of the muon-deuteron capture rate

NUCLEAR REACTIONS 2H(μ-, X), E=125-300 MeV; calculated distribution of central values and uncertainties for muon-capture rate, and capture rate as a function of proton-proton Spp factor using chiral effective-field-theory, and using the experimental value of triton β-decay half-life. Relevance to forthcoming experimental results from the MuSun Collaboration.

doi: 10.1103/PhysRevC.98.065506
Citations: PlumX Metrics


2017AC01      Phys.Rev. C 95, 031301 (2017)

B.Acharya, A.Ekstrom, D.Odell, T.Papenbrock, L.Platter

Corrections to nucleon capture cross sections computed in truncated Hilbert spaces

NUCLEAR REACTIONS 1H(n, γ), E(cm)=1 MeV; 1H(p, X), E(cm)=50, 1000 keV; calculated dependence of the nucleon capture cross section on the radius of the hard wall with Dirichlet boundary condition using computations based on hyperspherical harmonics. Relevance to rp-process.

doi: 10.1103/PhysRevC.95.031301
Citations: PlumX Metrics


2013AC02      Phys.Lett. B 723, 196 (2013)

B.Acharya, C.Ji, D.R.Phillips

Implications of a matter-radius measurement for the structure of Carbon-22

NUCLEAR STRUCTURE 20,21,22C; calculated binding energies, excited Efimov states, rms matter radius of s-wave Borromean halo nuclei. Comparison with available data.

doi: 10.1016/j.physletb.2013.04.055
Citations: PlumX Metrics


2013AC03      Nucl.Phys. A913, 103 (2013)

B.Acharya, D.R.Phillips

19C in halo EFT: Effective-range parameters from Coulomb dissociation experiments

NUCLEAR REACTIONS 181Ta(19C, n18C), E=88 MeV/nucleon; calculated halo nucleus Coulomb dissociation σ(θ), σ(E), 1n separation energy, n-18C scattering length, longitudinal momentum distribution using EFT (effective field theory); deduced EFT parameters. Compared with available data.

doi: 10.1016/j.nuclphysa.2013.05.021
Citations: PlumX Metrics


Back to query form