NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = B.D.Serot

Found 36 matches.

Back to query form



2012SE04      Phys.Rev. C 86, 015501 (2012)

B.D.Serot, X.Zhang

Neutrino production of photons and pions from nucleons in a chiral effective field theory for nuclei

doi: 10.1103/PhysRevC.86.015501
Citations: PlumX Metrics


2012ZH38      Phys.Rev. C 86, 035502 (2012)

X.Zhang, B.D.Serot

Incoherent neutrino production of photons and pions in a chiral effective field theory for nuclei

NUCLEAR REACTIONS 12C(e, e'), E=620, 680, 730 MeV; calculated differential σ(E, θ). 12C(ν, X), (ν-bar, X), E=250-600 MeV; calculated incoherent pion and photon production σ(E). Lorentz-covariant effective field theory (EFT). Comparison with experimental data. Relevance to background analysis in neutrino-oscillation experiments such as MiniBooNE collaboration. 12C; calculated proton and neutron densities with G1 and G2 parameter sets.

doi: 10.1103/PhysRevC.86.035502
Citations: PlumX Metrics


2012ZH39      Phys.Rev. C 86, 035504 (2012)

X.Zhang, B.D.Serot

Coherent neutrino production of photons and pions in a chiral effective field theory for nuclei

NUCLEAR REACTIONS 12C(γ, γ'), E=173, 235, 290 MeV; calculated differential σ(E, θ). 12C(ν, X), (ν-bar, X), E=250-600 MeV; calculated coherent pion and photon production σ(E). Lorentz-covariant effective field theory (EFT). Comparison with experimental data. Relevance to background analysis in neutrino-oscillation experiments such as MiniBooNE collaboration. 12C; calculated proton and neutron densities with G1 and G2 parameter sets.

doi: 10.1103/PhysRevC.86.035504
Citations: PlumX Metrics


2010SE01      Phys.Rev. C 81, 034305 (2010)

B.D.Serot

Field-theoretic parametrization of low-energy nucleon form factors

doi: 10.1103/PhysRevC.81.034305
Citations: PlumX Metrics


2007HU21      Nucl.Phys. A794, 187 (2007)

Y.Hu, J.McIntire, B.D.Serot

Two-loop corrections for nuclear matter in a covariant effective field theory

doi: 10.1016/j.nuclphysa.2007.08.005
Citations: PlumX Metrics


2007MC05      Nucl.Phys. A794, 166 (2007)

J.McIntire, Y.Hu, B.D.Serot

Loop corrections and naturalness in a chiral effective field theory

doi: 10.1016/j.nuclphysa.2007.08.008
Citations: PlumX Metrics


2007SE15      Ann.Phys.(New York) 322, 2811 (2007)

B.D.Serot

Electromagnetic interactions in a chiral effective lagrangian for nuclei

doi: 10.1016/j.aop.2007.04.003
Citations: PlumX Metrics


2002AN29      Phys.Rev. C 66, 055502 (2002)

S.M.Ananyan, B.D.Serot, J.Di.Walecka

Axial-vector current in nuclear many-body physics

doi: 10.1103/PhysRevC.66.055502
Citations: PlumX Metrics


2000FU02      Nucl.Phys. A663-664, 513c (2000)

R.J.Furnstahl, B.D.Serot

Effective Field Theory and Nuclear Mean-Field Models

doi: 10.1016/S0375-9474(99)00644-2
Citations: PlumX Metrics


2000FU04      Nucl.Phys. A671, 447 (2000)

R.J.Furnstahl, B.D.Serot

Parameter Counting in Relativistic Mean-Field Models

NUCLEAR STRUCTURE 16O, 208Pb; calculated energy contributions from relativistic mean field model terms; deduced parameter constraints, related features.

doi: 10.1016/S0375-9474(99)00839-8
Citations: PlumX Metrics


2000FU07      Nucl.Phys. A673, 298 (2000)

R.J.Furnstahl, B.D.Serot

Large Lorentz Scalar and Vector Potentials in Nuclei

doi: 10.1016/S0375-9474(00)00146-9
Citations: PlumX Metrics


1998FU04      Nucl.Phys. A632, 607 (1998)

R.J.Furnstahl, J.J.Rusnak, B.D.Serot

The Nuclear Spin-Orbit Force in Chiral Effective Field Theories

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb; analyzed spin-orbit splitting; deduced role of tensor couplings of vector mesons.

doi: 10.1016/S0375-9474(98)00004-9
Citations: PlumX Metrics


1997AL12      Phys.Rev. C55, 2704 (1997)

M.P.Allendes, B.D.Serot

Sudakov Form Factor in a Massive Vector Field Theory

doi: 10.1103/PhysRevC.55.2704
Citations: PlumX Metrics


1997FU03      Nucl.Phys. A615, 441 (1997); Erratum Nucl.Phys. A640, 505 (1998)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

A Chiral Effective Lagrangian for Nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 88Sr, 208Pb; calculated binding energies, charge densities, form factors. Quantum chromodynamics approach, chiral effective hadronic lagrangian.

doi: 10.1016/S0375-9474(96)00472-1
Citations: PlumX Metrics


1997FU05      Nucl.Phys. A618, 446 (1997)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

Vacuum Nucleon Loops and Naturalness

doi: 10.1016/S0375-9474(97)00062-6
Citations: PlumX Metrics


1997SE16      Int.J.Mod.Phys. E6, 515 (1997)

B.D.Serot, J.D.Walecka

Recent Progress in Quantum Hadrodynamics

doi: 10.1142/S0218301397000299
Citations: PlumX Metrics


1996FU02      Nucl.Phys. A598, 539 (1996)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

Analysis of Chiral Mean-Field Models for Nuclei

NUCLEAR STRUCTURE 208Pb; calculated charge density, form factors. Chiral mean-field models.

doi: 10.1016/0375-9474(95)00488-2
Citations: PlumX Metrics


1996MU07      Nucl.Phys. A606, 508 (1996)

H.Muller, B.D.Serot

Relativistic Mean-Field Theory and the High-Density Nuclear Equation of State

doi: 10.1016/0375-9474(96)00187-X
Citations: PlumX Metrics


1995FU06      Phys.Rev. C52, 1368 (1995)

R.J.Furnstahl, J.-B.Tang, B.D.Serot

Vacuum Contributions in a Chiral Effective Lagrangian for Nuclei

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb; calculated rms charge radii, charge density, binding energy systematics. Relativistic hadronic model.

doi: 10.1103/PhysRevC.52.1368
Citations: PlumX Metrics


1995MU16      Phys.Rev. C52, 2072 (1995)

H.Muller, B.D.Serot

Phase Transitions in Warm, Asymmetric Nuclear Matter

doi: 10.1103/PhysRevC.52.2072
Citations: PlumX Metrics


1995SE01      Phys.Rev. C51, 969 (1995)

B.D.Serot, H.-B.Tang

Two-Loop Calculations with Vertex Corrections in the Walecka Model

doi: 10.1103/PhysRevC.51.969
Citations: PlumX Metrics


1993FU03      Phys.Rev. C47, 2338 (1993)

R.J.Furnstahl, B.D.Serot

Finite Nuclei in Relativistic Models with a Light Chiral Scalar Meson

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated charge density. 208Pb; calculated proton single-particle spectrum. Different mean field models, light chiral scalar meson.

doi: 10.1103/PhysRevC.47.2338
Citations: PlumX Metrics


1993FU08      Phys.Lett. 316B, 12 (1993)

R.J.Furnstahl, B.D.Serot

Finite Nuclei in a Relativistic Model with Broken Chiral and Scale Invariance

NUCLEAR STRUCTURE 208Pb; calculated charge density, proton single particle spectra. Relativistic hadronic model, broken chiral, scale invariances.

doi: 10.1016/0370-2693(93)90649-3
Citations: PlumX Metrics


1988HA08      Phys.Rev. C37, 1111 (1988)

S.Hama, B.C.Clark, R.E.Kozack, S.Shim, E.D.Cooper, R.L.Mercer, B.D.Serot

Dirac Optical Potentials Constrained by a Dirac-Hartree Approach to Nuclear Structure

NUCLEAR REACTIONS 16O, 48,40Ca, 90Zr, 208Pb(p, p), (polarized p, p), E=800 MeV; calculated σ(θ), polarization observables. Relativistic treatment.

doi: 10.1103/PhysRevC.37.1111
Citations: PlumX Metrics


1987CO32      Phys.Rev. C36, 2170 (1987)

E.D.Cooper, B.C.Clark, R.Kozack, S.Shim, S.Hama, J.I.Johansson, H.S.Sherif, R.L.Mercer, B.D.Serot

Global Optical Potentials for Elastic p + 40Ca Scattering using the Dirac Equation

NUCLEAR REACTIONS 40Ca(p, p), (polarized p, p), E=400 MeV; calculated σ(θ), analyzing power, spin rotation function vs θ; deduced global model parameters. Relativistic optical model.

doi: 10.1103/PhysRevC.36.2170
Citations: PlumX Metrics


1987FU06      Nucl.Phys. A468, 539 (1987)

R.J.Furnstahl, B.D.Serot

Nuclear Currents in a Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 15N, 15,17O, 17F, 39K, 39,41Ca, 41Sc, 89Y, 91Zr, 209Bi, 207Pb; calculated μ. 22Na, 26Al, 30P, 34Cl, 54Co, 78Y, 82Nb; calculated isoscalar μ. Relativistic mean field theory.

NUCLEAR REACTIONS 17O, 209Bi(e, e), E=175-500 MeV; calculated transverse form factors. Relativistic mean field theory.

doi: 10.1016/0375-9474(87)90182-5
Citations: PlumX Metrics


1985FU13      Acta Phys.Pol. B16, 875 (1985)

R.J.Furnstahl, B.D.Serot

Nuclear Giant Resonances in a Relativistic Mean-Field Theory

NUCLEAR REACTIONS 40Ca(e, e'), E not given; calculated isoscalar Coulomb, transverse form factors. Relativistic mean field theory.

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 208Pb; calculated isoscalar, isovector collective mode energies. A=40-240; analyzed isovector dipole, quadrupole, isoscalar quadrupole, octupole, monopole giant resonance systematics. Relativistic mean field theory.


1984CL05      Phys.Rev. C30, 314 (1984)

B.C.Clark, S.Hama, E.Sugarbaker, M.A.Franey, R.L.Mercer, L.Ray, G.W.Hoffmann, B.D.Serot

Relativistic Description of (p, n) Reactions to the Isobaric Analog State

NUCLEAR REACTIONS 90Zr(polarized p, p), (polarized p, n), E=160, 500 MeV; calculated σ(θ), analyzing power vs θ, spin rotation function vs θ; deduced proton-nucleus optical potential parameters. Lane model, relativistic generalization.

doi: 10.1103/PhysRevC.30.314
Citations: PlumX Metrics


1984CL11      Phys.Rev.Lett. 53, 1423 (1984)

B.C.Clark, S.Hama, J.A.McNeil, R.L.Mercer, L.Ray, B.D.Serot, D.A.Sparrow, K.Stricker-Bauer

Relative Impulse-Approximation Calculation of p(bar)-Nucleus Elastic Scattering

NUCLEAR REACTIONS 12C(p-bar, p-bar), (polarized p-bar, p-bar), E=46.8 MeV; calculated σ(θ), analyzing power, spin rotation parameter vs θ. Relativistic impulse approximation.

doi: 10.1103/PhysRevLett.53.1423
Citations: PlumX Metrics


1984HO12      Phys.Lett. 140B, 181 (1984)

C.J.Horowitz, B.D.Serot

Relativistic Hartree Theory of Finite Nuclei: The role of the quantum vacuum

NUCLEAR STRUCTURE 208Pb; calculated total point baryon, scalar densities. Relativistic Hartree calculations.

doi: 10.1016/0370-2693(84)90916-X
Citations: PlumX Metrics


1983CL04      Phys.Rev.Lett. 50, 1644 (1983)

B.C.Clark, S.Hama, R.L.Mercer, L.Ray, B.D.Serot

Dirac-Equation Impulse Approximation for Intermediate-Energy Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 40Ca, 208Pb(polarized p, p), E=497, 800 MeV; calculated σ(θ), analyzing power, spin rotation parameter vs θ.

doi: 10.1103/PhysRevLett.50.1644
Citations: PlumX Metrics


1983CL05      Phys.Rev. C28, 1421 (1983)

B.C.Clark, S.Hama, R.L.Mercer, L.Ray, G.W.Hoffmann, B.D.Serot

Energy Dependence of the Relativistic Impulse Approximation for Proton-Nucleus Elastic Scattering

NUCLEAR REACTIONS 40Ca(p, p), (polarized p, p), E=181-1040 MeV; calculated σ(θ), analyzing power, spin rotation power vs θ. Relativistic, nonrelativistic impulse approximation.

doi: 10.1103/PhysRevC.28.1421
Citations: PlumX Metrics


1981HO25      Nucl.Phys. A368, 503 (1981)

C.J.Horowitz, B.D.Serot

Self-Consistent Hartree Description of Finite Nuclei in a Relativistic Quantum Field Theory

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb, 90Zr; calculated radii, nucleon binding energy, charge density distribution; 40,48Ca; calculated isotope shift. Self-consistent, relativistic Hartree-Fock equations.

doi: 10.1016/0375-9474(81)90770-3
Citations: PlumX Metrics


1981SE17      Phys.Lett. 107B, 263 (1981)

B.D.Serot

Elastic Electron-Nucleus Scattering in a Relativistic Theory of Nuclear Structure

NUCLEAR REACTIONS 209Bi(e, e), E not given; calculated transverse form factor. Relativistic structure theory.

doi: 10.1016/0370-2693(81)90826-1
Citations: PlumX Metrics


1979SE06      Nucl.Phys. A322, 408 (1979)

B.D.Serot

Semileptonic Weak and Electromagnetic Interactions with Nuclei: Parity Violations in Electron Scattering and Abnormal-Parity Admixtures in Nuclear States

NUCLEAR REACTIONS 12C, 13C(polarized e, e'), E at 30, 200 MeV/c, 1 GeV/c; calculated σ(θ); deduced one-body transition densities.

doi: 10.1016/0375-9474(79)90435-4
Citations: PlumX Metrics


1979SE09      Phys.Lett. 87B, 172 (1979)

B.D.Serot, J.D.Walecka

Properties of Finite Nuclei in a Relativistic Quantum Field Theory

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated mass formula parameter, p-densities. Renormalizable relativistic quantum field theory.

doi: 10.1016/0370-2693(79)90957-2
Citations: PlumX Metrics


Back to query form