NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 19, 2024.

Search: Author = G.I.Kosenko

Found 26 matches.

Back to query form



2020LI21      Phys.Rev. C 101, 064616 (2020)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, S.Chiba

Formation of superheavy nuclei in 36S 238U and 64Ni 238U reactions

NUCLEAR REACTIONS 238U(36S, X)274Hs*, E*=35.8, 41.6, 47.3, 57.7 MeV; 238U(64Ni, X)302120*, E*=23.2, 33.5, 45.2, 64.1 MeV; calculated capture, fusion, fission, and evaporation residue formation σ(E), and neutron emission probabilities. Comparison with experimental results for 238U+36S, and with other theoretical calculations for 238U+64Ni.

doi: 10.1103/PhysRevC.101.064616
Citations: PlumX Metrics


2019LI27      Phys.Rev. C 99, 054624 (2019)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, S.Chiba

Description of the mass-asymmetric fission of the Pt isotopes, obtained in the reaction 36Ar + 142Nd within the two-stage fusion-fission model

NUCLEAR REACTIONS 142Nd(36Ar, X)178Pt*,142Nd(36Ar, xn), E(cm)=122.78, 134.68, 142.58 MeV; calculated potential energy of projectile-target system, partial σ(E), fission fragment mass distribution, mass-energy distribution of fission events, and deformation energy and potential energy surface of 178Pt compound nucleus before neutron evaporation, neutron evaporation probability. Two-stage dynamical stochastic model. Comparison with experimental data. 178Pt; calculated deformation and potential energy surfaces.

doi: 10.1103/PhysRevC.99.054624
Citations: PlumX Metrics


2016LI32      Phys.Rev. C 93, 064606 (2016)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk

Description of fusion and evaporation residue formation cross sections in reactions leading to the formation of element Z=122 within the Langevin approach

NUCLEAR REACTIONS 248Cm(58Fe, xn), 244Pu(64Ni, xn), 208Pb(90Zr, xn), E not given; calculated cross sections of touching, fusion, and evaporation residue formation, dependence of the touching and fusion cross sections on the angular momentum in connection with the synthesis of Z=122 isotopes. Dynamical multidimensional stochastic approach, based on Langevin equations.

doi: 10.1103/PhysRevC.93.064606
Citations: PlumX Metrics


2016LI55      Phys.Atomic Nuclei 79, 342 (2016); Yad.Fiz. 79, 236 (2016)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk

Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

NUCLEAR REACTIONS 238U, 244Pu, 248Cm(48Ca, x), E*=20-50 MeV;248Cm(54Cr, x), E*=20-50 MeV;248Cm(58Fe, x), E*=20-50 MeV;208Pb(90Zr, x), E=20-50 MeV;244Pu(64Ni, x), E*=20-50 MeV;248Cm(58Fe, x), E*=20-50 MeV; calculated grazing σ, capture σ using two-stage model with and without allowance for tunelling effect. Compared with data. 208Pb(48Ca, x), E*=20-50 MeV; calculated capture σ. Compared with data. Deduced possibility for tunelling effect.

doi: 10.1134/S1063778816020113
Citations: PlumX Metrics


2014LI06      Phys.Rev. C 89, 034626 (2014)

V.L.Litnevsky, V.V.Pashkevich, G.I.Kosenko, F.A.Ivanyuk

Description of synthesis of super-heavy elements within the multidimensional stochastic model

NUCLEAR REACTIONS 238U(64Ni, xn), E(cm)=250-350 MeV; 244Pu(58Fe, xn), E=230-350 MeV; 248Cm(48Ca, xn), E=180-280 MeV; 248Cm(54Cr, xn), E(cm)=225-350 MeV; calculated capture σ(E), yield of quasi-fission fragments in the fission of Z=116 isotopes produced in 248Cm+48Ca reaction, fission barrier heights of Z=116 and 120 systems, crossing fission barrier σ(E), evaporation residue σ(E) for Z=116 and 120 superheavy elements. Two-stage reaction model for fusion-fission processes. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034626
Citations: PlumX Metrics


2012LI13      Phys.Atomic Nuclei 75, 37 (2012); Yad.Fiz. 75, 39 (2012)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Allowance for the shell structure of the 10042Mo and 11046Pd nuclei in the synthesis of 20084Po, 21088Ra, and 22092U

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 100Mo(110Pd, X)210Ra, 110Pd(110Pd, X)220U, E(cm) < 300 MeV; calculated potential energy surfaces, σ, touching probabilities. Fusion-fission reactions involving nuclei deformed in the ground state.

doi: 10.1134/S1063778812010115
Citations: PlumX Metrics


2012LI17      Phys.Rev. C 85, 034602 (2012)

V.L.Litnevsky, V.V.Pashkevich, G.I.Kosenko, F.A.Ivanyuk

Influence of the shell structure of colliding nuclei in fusion-fission reactions

NUCLEAR REACTIONS 208Pb(16O, X)224Th, 208Pb(18O, X)226Th, E(cm)=70-96 MeV; 208Pb(48Ca, X)256No, E(cm)=170-205 MeV; calculated fusion and evaporation residue cross sections, yield of fission fragments, mass-energy distribution of fission fragments. Two-stage reaction model for fusion-fission process, Langevin equations for the collective coordinates. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034602
Citations: PlumX Metrics


2012LI55      Phys.Atomic Nuclei 75, 1500 (2012); Yad.Fiz. 75, 1579 (2012)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Allowance for the orientation of colliding ions in describing the synthesis of heavy nuclei

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 208Pb(16O, X)224Th, 100Mo(110Pd, X)210Ra, 110Pd(110Pd, X)220U, E(cm)<95 MeV; analyzed available data; calculated σ. Comparison with available data.

doi: 10.1134/S1063778812110142
Citations: PlumX Metrics


2010LI50      Iader.Fiz.Enerh. 11, 341 (2010); Nuc.phys.atom.energ. 11, 341 (2010)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, V.V.Pashkevich

The fusion of heavy ions within the two step reaction model

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 208Pb(18O, X)226Th, E(cm)<260 MeV; calculated deformation energy, touching probability. Two stage model of fusion-fission reactions is extended by the account of the shell structure of colliding nuclei.


2008KO30      Phys.Atomic Nuclei 71, 2052 (2008); Yad.Fiz. 71, 2086 (2008)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich, D.V.Dinner

Application of a two-step dynamical model to calculating properties of fusion-fission reactions

NUCLEAR REACTIONS 244Pu(48Ca, X), E=238 MeV; calculated partial touching cross sections.

doi: 10.1134/S1063778808120065
Citations: PlumX Metrics


2008NE07      Phys.Atomic Nuclei 71, 1373 (2008); Yad.Fiz. 71, 1401 (2008)

T.I.Nevzorova, G.I.Kosenko

Dynamical calculations of the cross section for heavy-ion fusion with allowance for tunneling

NUCLEAR REACTIONS 208Pb(16O, X), 208Pb, 244Pu(48Ca, X), E(cm)=65-105 MeV; calculated fusion σ; surface friction model including tunneling; sub-barrier reaction.

doi: 10.1134/S1063778808080061
Citations: PlumX Metrics


2006AB33      Phys.Atomic Nuclei 69, 1101 (2006)

Y.Abe, G.I.Kosenko, C.W.Shen, B.Bouriquet, A.Marchix, D.Boilley, B.Giraud

Fusion Hindrance and Synthesis of Superheavy Elements

NUCLEAR REACTIONS 208Pb(58Ni, X), (64Ni, X), (70Zn, X), (71Ga, X), (76Ge, X), E(cm) ≈ 210-310 MeV; 209Bi(70Zn, X), E(cm) ≈ 260-300 MeV; 160Gd(132Sn, X), E(cm) ≈ 325-350 MeV; calculated fusion excitation functions. 208Pb(58Fe, n), (64Ni, n), (70Zn, n), (71Ga, n), (76Ge, n), E(cm) ≈ 215-285 MeV; 209Bi(64Ni, n), (70Zn, n), E(cm) ≈ 235-275 MeV; 160Gd(132Sn, γ), (132Sn, n), (132Sn, 2n), (132Sn, 3n), E(cm) ≈ 325-350 MeV; calculated σ. Fusion hindrance mechanism discussed.

doi: 10.1134/S1063778806070027
Citations: PlumX Metrics


2004KU22      Yad.Fiz. 67, 2094 (2004); Phys.Atomic Nuclei 67, 2073 (2004)

R.S.Kurmanov, G.I.Kosenko

New Method for Calculating the Potential Energy of Deformed Nuclei within the Liquid-Drop Model

doi: 10.1134/1.1825532
Citations: PlumX Metrics


2003AB17      Yad.Fiz. 66, 1093 (2003); Phys.Atomic Nuclei 66, 1057 (2003)

Y.Abe, C.W.Shen, G.I.Kosenko, D.Boilley

Theory of Fusion for Superheavy Elements

NUCLEAR REACTIONS 238U, 244Pu, 248Cm, 252Cf(48Ca, X), E(cm) ≈ 180-240 MeV; calculated fusion σ, maximum evaporation residue σ. Two-step model, comparison with data.

doi: 10.1134/1.1586418
Citations: PlumX Metrics


2002KO47      Yad.Fiz. 65, 1629 (2002); Phys.Atomic Nuclei 65, 1588 (2002)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Multidimensional Langevin Approach to Describing the 18O + 208Pb Fusion-Fission Reaction

NUCLEAR REACTIONS 208Pb(18O, X), E(cm) ≈ 70-100 MeV; calculated potential energy features, fusion σ, fission fragment mass distributions, related features. Multi-step approach, Langevin equations.

doi: 10.1134/1.1508690
Citations: PlumX Metrics


2002KO71      J.Nucl.Radiochem.Sci. 3, No 1, 19 (2002)

G.I.Kosenko, C.Shen, Y.Abe

A Dynamical Approach to Heavy-ion Fusion: 48Ca + 244Pu

NUCLEAR REACTIONS 244Pu(48Ca, X), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E* ≈ 30-70 MeV; calculated fusion, evaporation residue σ.


2002KO72      J.Nucl.Radiochem.Sci. 3, No 1, 71 (2002)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

The Multi-dimensional Langevin Approach to the Description of Fusion-fission Reaction

NUCLEAR REACTIONS 208Pb(18O, X), E(cm) ≈ 70-95 MeV; calculated fusion, fission σ, fragment mass distributions, neutron multiplicity. Comparison with data.


2000KU37      Yad.Fiz. 63, No 11, 1978 (2000); Phys.Atomic Nuclei 63, 1885 (2000)

R.S.Kurmanov, G.I.Kosenko, G.D.Adeev

New Formula for Calculating Coulomb Energies in the Liquid-Drop Model

doi: 10.1134/1.1326978
Citations: PlumX Metrics


2000VA27      Yad.Fiz. 63, No 11, 1957 (2000); Phys.Atomic Nuclei 63, 1865 (2000)

D.V.Vanin, P.N.Nadtochy, G.I.Kosenko, G.D.Adeev

Langevin Description of Mass Distributions of Fragments Originating from the Fission of Excited Nuclei

NUCLEAR REACTIONS 232Th(12C, F), E=97 MeV; 249Cf(16O, F), E=145 MeV; calculated fission fragment mass distributions, neutron yields following compound nucleus decay. Liquid drop model.

doi: 10.1134/1.1326976
Citations: PlumX Metrics


1999VA06      Phys.Rev. C59, 2114 (1999)

D.V.Vanin, G.I.Kosenko, G.D.Adeev

Langevin Calculations of Fission Fragment Mass Distribution in Fission of Excited Nuclei

NUCLEAR STRUCTURE 105Ag, 117I, 124Ba, 210Po, 244Cm, 249Fm; calculated potential energy surfaces, fission fragment mass distributions, variances vs fissility parameter. Two-dimensional stochastic approach, two liquid drop models compared.

NUCLEAR REACTIONS 165Ho(40Ar, F), E=180-280 MeV; calculated fission fragment mass distributions. Two-dimensional stochastic approach, two liquid drop models compared. Comparison with data.

doi: 10.1103/PhysRevC.59.2114
Citations: PlumX Metrics


1998BA05      J.Phys.(London) G24, L1 (1998)

S.I.Bastrukov, D.V.Podgainy, I.V.Molodtsova, G.I.Kosenko

Macroscopic Calculus for the Fission Barrier Height of Superheavy Elements

NUCLEAR STRUCTURE 265Hs, 269,271,275,276Ds, 272Rg, 275,277,281,282Cn, 276Nh, 283,287,288Fl, 291,292Lv; calculated elastic deformation energy, fission barrier height. Elastic globe, liquid drop models.

doi: 10.1088/0954-3899/24/1/002
Citations: PlumX Metrics


1998KO12      Yad.Fiz. 61, No 3, 416 (1998); Phys.Atomic Nuclei 61, 356 (1998)

G.I.Kosenko, D.V.Vanin, G.D.Adeev

Multiplicity of Postscission Neutrons Produced in the Fission of Excited Nuclei


1998KO68      Yad.Fiz. 61, No 12, 2142 (1998); Phys.Atomic Nuclei 61, 2031 (1998)

G.I.Kosenko, D.V.Vanin, G.D.Adeev

Application of the Combined Dynamics-Evaporation Model to the Fission of Excited Nuclei

NUCLEAR REACTIONS 232Th, 238U(α, F), E=47-220 MeV; calculated neutron, proton, alpha multiplicities, fission fragments mean kinetic energy; deduced charged particle emission role in fragment deexcitation. Comparisons with data. Combined dynamics-evaporation model.


1997KO14      Yad.Fiz. 60, No 3, 404 (1997); Phys.Atomic Nuclei 60, 334 (1997)

G.I.Kosenko, I.G.Cagliari, G.D.Adeev

Using the Combined Dynamical Evaporation Approach to Describe Fission Induced by Heavy Ions

NUCLEAR REACTIONS 184W(16O, F), E=288 MeV; 181Ta(19F, F), E=124 MeV; 197Au(18O, F), E=159 MeV; calculated fission fragment mean kinetic energy, variance prescission n-, α-, p-multiplicities, postscission n-multiplicities. Combined dynamical evaporation approach.


1993KO06      Yad.Fiz. 56, No 2, 77 (1993); Phys.Atomic Nuclei 56, 189 (1993)

G.I.Kosenko

Choice of Inital Conditions in Dynamical Calculations of Distributions of Nuclear Fission Fragments

NUCLEAR STRUCTURE 248Cf, 235U; calculated fission barrier characteristics, fragment momentum distribution at barrier; deduced best fit for Kramer distribution. Langevin fluctuation-dissipation dynamics.


1992GO08      Yad.Fiz. 55, 920 (1992); Sov.J.Nucl.Phys. 55, 514 (1992)

I.I.Gonchar, G.I.Kosenko, N.I.Pischasov, O.I.Serdyuk

Calculation of the Moments of the Fission-Fragment Energy Distribution by the Method of Langevin Equations

NUCLEAR STRUCTURE Z=54-104; calculated fission fragment energy distribution, moments. Langevin equations, fluctuation dissipation dynamics.


Back to query form