NSR Query Results
Output year order : Descending NSR database version of April 11, 2024. Search: Author = H.Takemoto Found 18 matches. 2023MY04 Phys.Rev. C 107, 064308 (2023) Resonances and scattering in microscopic cluster models with the complex-scaled generator coordinate method NUCLEAR STRUCTURE ^{8}Be; calculated energy eigenvalues (0^{+}, 2^{+}, 4^{+} and 6^{+}) for full and asymptotic Hamiltonians, J, π, resonance parameters, resonance decay width, nuclear level density. Complex scaling for Bloch-Brink (BB) α cluster model combined with the generator coordinate method (GCM). Comparison to experimental data. NUCLEAR REACTIONS ^{4}He(α, α), E(cm)<50 MeV; calculated phase shifts of the α-α scattering (0^{+}, 2^{+}, 4^{+} and 6^{+}).
doi: 10.1103/PhysRevC.107.064308
2023MY05 Phys.Rev. C 108, 064314 (2023) T.Myo, M.Lyu, Q.Zhao, M.Isaka, N.Wan, H.Takemoto, H.Horiuchi Variation of multi-Slater determinants in antisymmetrized molecular dynamics and its application to ^{10}Be with various clustering
doi: 10.1103/PhysRevC.108.064314
2023TA08 Phys.Rev. C 107, 044304 (2023) H.Takemoto, T.Myo, H.Horiuchi, H.Toki, M.Isaka, M.Lyu, Q.Zhao, N.Wan Appearance of the Hoyle state and its breathing mode in ^{12}C despite strong short-range repulsion of the nucleon-nucleon potential NUCLEAR STRUCTURE ^{8}Be; calculated trajectories of the eigenstates of 0^{+} and 2^{+}, energy and rms radius of the ground state. ^{12}C; calculated levels, J, π, rms radii and energies of the monopole transition of the nine lowest eigenstates, monopole transition matrix elements, trajectories of the eigenstates of 0^{+}. Calculations using 3α cluster model (Blochâ€“Brink wave function) using the AV4P potential, which has a strong repulsive core. Comparison to experimental data and other theoretical calculations.
doi: 10.1103/PhysRevC.107.044304
2022IS04 Phys.Rev. C 105, 064314 (2022) C.Ishizuka, H.Takemoto, Y.Chiba, A.Ono, N.Itagaki Role of tensor interaction as salvation of cluster structure in ^{44}Ti NUCLEAR STRUCTURE ^{44}Ti; calculated energy curves and rms matter radius for the 0+ state as a function of the distance between ^{4}He and ^{40}Ca using antisymmetrized quasicluster model (AQCM) and iSMT model, with tensor interaction; discussed competition of spin-orbit and tensor effects in the medium-heavy region nuclei. Comparison with theoretical predictions of Brink Model, and with experimental data. Relevance to ongoing experimental projects to investigate knockout α clusters from medium-heavy nuclei.
doi: 10.1103/PhysRevC.105.064314
2022IS08 Phys.Rev. C 106, 044310 (2022) M.Isaka, Q.Zhao, T.Myo, M.Lyu, H.Toki, H.Horiuchi, H.Takemoto, N.Wan Role of spatially compact nucleon wave packets in an ab initio description of ^{3}H within high-momentum antisymmetrized molecular dynamics NUCLEAR STRUCTURE ^{3}H; calculated total energy, rms radii. Calculations describing the nucleon correlations by utilizing high-momentum antisymmetrized molecular dynamics (HM-AMD) with Argonne V8' potential. Comparison of the results with and without the spinparallel configuration. Comparison to other theoretical calculations.
doi: 10.1103/PhysRevC.106.044310
2022MY01 Phys.Rev. C 105, 014317 (2022) T.Myo, M.Lyu, H.Toki, H.Horiuchi, Q.Zhao, M.Isaka, H.Takemoto, N.Wan New many-body method using cluster expansion diagrams with tensor-optimized antisymmetrized molecular dynamics NUCLEAR STRUCTURE ^{3}H, ^{4}He; calculated total energy and Hamiltonian components of the kinetic energy, central force, and tensor force using a new variational method of tensor optimized antisymmetrized molecular dynamics (New-TOAMD) with AV6' potential. Comparison with other theoretical calculations such as TOAMD, Green's function Monte Carlo (GFMC) and Faddeev-Yakubovsky (FY).
doi: 10.1103/PhysRevC.105.014317
2022WA32 Phys.Rev. C 106, 034308 (2022) N.Wan, T.Myo, H.Takemoto, H.Toki, C.Xu, H.Horiuchi, M.Isaka, M.Lyu, Q.Zhao Finite particle-number description of symmetric nuclear matter with spin excitations of high-momentum pairs induced by the tensor force
doi: 10.1103/PhysRevC.106.034308
2021ZH34 Prog.Theor.Exp.Phys. 2021, 063D02 (2021) Q.Zhao, M.Isaka, T.Myo, M.Lyu, H.Toki, H.Horiuchi, H.Takemoto, N.Wan Role of the unitary correlation operator on high-momentum antisymmetrized molecular dynamics using the bare NN interaction for ^{3}H and ^{4}He NUCLEAR STRUCTURE ^{3}H, ^{4}He; calculated binding energies using high-momentum antisymmetrized molecular dynamics (HMAMD) by incorporating the short-range part of the unitary correlation operator method (UCOM) as the variational method.
doi: 10.1093/ptep/ptab058
2019MY01 Phys.Rev. C 99, 024312 (2019) T.Myo, H.Takemoto, M.Lyu, N.Wan, C.Xu, H.Toki, H.Horiuchi, T.Yamada, K.Ikeda Variational calculation of nuclear matter in a finite particle number approach using the unitary correlation operator and high-momentum pair methods NUCLEAR STRUCTURE A=28, 76, 108, 132, 228, 324, 0-1500; N=14, 38, 54, 66, 114, 162, 0-800; calculated numbers of 2p2h configurations, total, kinetic, and potential energy per particle in symmetric nuclear matter and neutron matter using the unitary correlation operator method for central correlations, and two-particle two-hole (2p2h) excitations involving a large relative and high-momentum pair (UCOM+HM). Comparison with Brueckner-Hartree-Fock and auxiliary field diffusion Monte Carlo calculations.
doi: 10.1103/PhysRevC.99.024312
2004TA07 Phys.Rev. C 69, 035802 (2004) H.Takemoto, M.Fukushima, S.Chiba, H.Horiuchi, Y.Akaishi, A.Tohsaki Clustering phenomena in nuclear matter below the saturation density
doi: 10.1103/PhysRevC.69.035802
2004TA20 Nucl.Phys. A738, 278 (2004) Dimensional dependency of Coulomb energy in an infinite aggregate with periodicity neutralized by a uniform background
doi: 10.1016/j.nuclphysa.2004.04.045
2002TA32 Prog.Theor.Phys.(Kyoto), Suppl. 146, 632 (2002) H.Takemoto, M.Fukushima, S.Chiba, H.Horiuchi, Y.Akaishi Clustering in Neutron-Rich Nuclear Matter in Low-Density Region
doi: 10.1143/PTPS.146.632
2002TA33 Acta Phys.Hung.N.S. 16, 123 (2002) H.Takemoto, M.Fukushima, S.Chiba, H.Horiuchi Clustering Effects of Nucleonic Matter in Low-Density Region
doi: 10.1556/APH.16.2002.1-4.14
2001TA04 Phys.Rev. C63, 034615 (2001) Incident-Energy Dependence of the Fragmentation Mechanism Reflecting the Cluster Structure of the ^{19}B Nucleus NUCLEAR REACTIONS ^{14}N(^{13}B, X), (^{19}B, X), E=25-100 MeV/nucleon; calculated fragments charge, momentum distributions from projectile breakup; deduced cluster structure effects. Antisymmetrized molecular dynamics. NUCLEAR STRUCTURE ^{10,11,12,13,14,15,16,17,18,19}B; calculated binding energies, radii. Antisymmetrized molecular dynamics, comparison with data.
doi: 10.1103/PhysRevC.63.034615
1999TA09 Prog.Theor.Phys.(Kyoto) 101, 101 (1999) Study of the Clustering Structure of ^{19}B by the Use of Fragmentation Reaction NUCLEAR STRUCTURE ^{10,11,12,13,14,15,17,19}B; calculated binding energies, radii. Antisymmetrized molecular dynamics. NUCLEAR REACTIONS ^{14}N(^{13}B, X), (^{19}B, X), E=35 MeV/nucleon; calculated fragments mass, charge distributions; deduced fragmentation mechanism features. Antisymmetrized molecular dynamics.
doi: 10.1143/PTP.101.101
1998ON01 Nucl.Phys. A630, 148c (1998) A.Ono, H.Horiuchi, H.Takemoto, R.Wada Application of Antisymmetrized Molecular Dynamics to Nucleus-Nucleus Collisions
doi: 10.1016/S0375-9474(97)00751-3
1998TA01 Phys.Rev. C57, 811 (1998) Comparison of Clustering Effects in ^{12}C Fragmentation Among p + ^{12}C, α + ^{12}C, and ^{14}N + ^{12}C Reactions: Excitation of α-cluster degrees of freedom in nuclear collisions NUCLEAR REACTIONS ^{12}C(p, X), E=26, 55, 100 MeV; ^{12}C(α, X), E=22.5, 35 MeV/nucleon; ^{12}C(^{14}N, X), E=35, 55 MeV/nucleon; analyzed fragments mass distributions; deduced fragmentation α-cluster related features. Antisymmetrized molecular dynamics calculations.
doi: 10.1103/PhysRevC.57.811
1996TA06 Phys.Rev. C54, 266 (1996) H.Takemoto, H.Horiuchi, A.Engel, A.Ono ^{4}He Fragments from the ^{14}N + ^{12}C Collision at 35 MeV/nucleon and Clustering in Colliding Nuclei NUCLEAR REACTIONS ^{14}N(^{12}C, X), E=35 MeV/nucleon; analyzed σ(θ); deduced α-fragment production predominance. Clustering in colliding nuclei.
doi: 10.1103/PhysRevC.54.266
Back to query form |