NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = A.R.Raduta

Found 61 matches.

Back to query form

2023BE03      Phys.Rev. C 107, 045803 (2023)

M.V.Beznogov, A.R.Raduta

Bayesian inference of the dense matter equation of state built upon covariant density functionals

doi: 10.1103/PhysRevC.107.045803
Citations: PlumX Metrics

2022RA14      Eur.Phys.J. A 58, 115 (2022)


Equations of state for hot neutron stars-II. The role of exotic particle degrees of freedom

doi: 10.1140/epja/s10050-022-00772-0
Citations: PlumX Metrics

2022TY01      Eur.Phys.J. A 58, 221 (2022)

S.Typel, M.Oertel, T.Klahn, D.Chatterjee, V.Dexheimer, C.Ishizuka, M.Mancini, J.Novak, H.Pais, C.Providencia, Ad.R.Raduta, M.Servillat, L.Tolos, for the CompOSE Core Collaboration

CompOSE reference manual

doi: 10.1140/epja/s10050-022-00847-y
Citations: PlumX Metrics

2021KH02      Phys.Rev. C 103, 055811 (2021)

S.Khadkikar, A.R.Raduta, M.Oertel, A.Sedrakian

Maximum mass of compact stars from gravitational wave events with finite-temperature equations of state

doi: 10.1103/PhysRevC.103.055811
Citations: PlumX Metrics

2021RA33      Eur.Phys.J. A 57, 329 (2021)

A.R.Raduta, F.Nacu, M.Oertel

Equations of state for hot neutron stars

doi: 10.1140/epja/s10050-021-00628-z
Citations: PlumX Metrics

2021WE15      Phys.Rev. C 104, 065806 (2021)

J.-B.Wei, G.F.Burgio, Ad.R.Raduta, H.-J.Schulze

Hot neutron stars and their equation of state

doi: 10.1103/PhysRevC.104.065806
Citations: PlumX Metrics

2020PA01      Phys.Rev. C 101, 015803 (2020)

A.Pascal, S.Giraud, A.F.Fantina, F.Gulminelli, J.Novak, M.Oertel, A.R.Raduta

Impact of electron capture rates for nuclei far from stability on core-collapse supernovae

NUCLEAR STRUCTURE Z=10-60, N=20-114; Z=15-55, N-16-90; calculated electron-capture (EC) rates for ≈170 different nuclear species around 86Kr using self-consistent numerical simulations of core-collapse supernovae (CCSN), with hydrodynamic codes COCONUT and ACCEPT.

doi: 10.1103/PhysRevC.101.015803
Citations: PlumX Metrics

2019RA05      Nucl.Phys. A983, 252 (2019)

Ad.R.Raduta, F.Gulminelli

Nuclear Statistical Equilibrium equation of state for core collapse

doi: 10.1016/j.nuclphysa.2018.11.003
Citations: PlumX Metrics

2018RA12      Phys.Rev. C 97, 064309 (2018)

Ad.R.Raduta, F.Gulminelli

Nuclear skin and the curvature of the symmetry energy

NUCLEAR STRUCTURE Z=82, A=162-234; calculated binding energies, rms radii of neutron and charge distributions, neutron skin thickness of ground states as a function of total isospin asymmetry, EoS parameters. 208Pb; 48Ca, 48Ni; 50Ni, 50Ti; 52Ni, 52Cr; 54Ni, 54Fe; calculated correlations between neutron skin thickness in 208Pb and differences in the proton radii of mirror nuclei in A=48-54 region. 208Pb; calculated electric dipole polarizability, isovector giant dipole resonance (IVGDR) energy constant, slope of symmetry energy at saturation (Lsym). Extended Thomas-Fermi approximation (ETF) calculations with 17 different Skyrme interactions. Comparison to available experimental results.

doi: 10.1103/PhysRevC.97.064309
Citations: PlumX Metrics

2017CH54      Phys.Rev. C 96, 065805 (2017)

D.Chatterjee, F.Gulminelli, Ad.R.Raduta, J.Margueron

Constraints on the nuclear equation of state from nuclear masses and radii in a Thomas-Fermi meta-modeling approach

NUCLEAR STRUCTURE A=20-100; calculated difference between theoretical and experimental energy per particle of symmetric nuclei. Z=20, 28, 50, 82; calculated difference between theoretical and experimental energy per particle vs asymmetry, rms charge radii and neutron skins vs (N-Z)/A; developed a meta-modeling analysis of the correlations of empirical parameters among themselves and with nuclear observables such as masses, radii, and neutron skins using extended Thomas-Fermi approximation.

doi: 10.1103/PhysRevC.96.065805
Citations: PlumX Metrics

2017RA02      Phys.Rev. C 95, 025805 (2017)

Ad.R.Raduta, F.Gulminelli, M.Oertel

Stellar electron capture rates on neutron-rich nuclei and their impact on stellar core collapse

doi: 10.1103/PhysRevC.95.025805
Citations: PlumX Metrics

2016AL25      Phys.Rev. C 94, 052801 (2016)

N.Alam, B.K.Agrawal, M.Fortin, H.Pais, C.Providencia, Ad.R.Raduta, A.Sulaksono

Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

doi: 10.1103/PhysRevC.94.052801
Citations: PlumX Metrics

2016BO06      Phys.Lett. B 755, 475 (2016)

B.Borderie, Ad.R.Raduta, G.Ademard, M.F.Rivet, E.De Filippo, E.Geraci, N.Le Neindre, R.Alba, F.Amorini, G.Cardella, M.Chatterjee, D.Guinet, P.Lautesse, E.La Guidara, G.Lanzalone, G.Lanzano, I.Lombardo, O.Lopez, C.Maiolino, A.Pagano, M.Papa, S.Pirrone, G.Politi, F.Porto, F.Rizzo, P.Russotto, J.P.Wieleczko

Probing clustering in excited alpha-conjugate nuclei

NUCLEAR REACTIONS 12C(40Ca, X)4He, E=25 MeV/nucleon; measured reaction products, Eα, Iα; deduced yields, evidence in favor of α-particle clustering from excited 16O, 20Ne, 24Mg. Comparison with GEMINI++ code calculations.

doi: 10.1016/j.physletb.2016.02.061
Citations: PlumX Metrics

2016FO18      Phys.Rev. C 94, 035804 (2016)

M.Fortin, C.Providencia, Ad.R.Raduta, F.Gulminelli, J.L.Zdunik, P.Haensel, M.Bejger

Neutron star radii and crusts: Uncertainties and unified equations of state

doi: 10.1103/PhysRevC.94.035804
Citations: PlumX Metrics

2016OE01      Eur.Phys.J. A 52, 50 (2016)

M.Oertel, F.Gulminelli, C.Providencia, A.R.Raduta

Hyperons in neutron stars and supernova cores

doi: 10.1140/epja/i2016-16050-1
Citations: PlumX Metrics

2016RA05      Phys.Rev. C 93, 025803 (2016)

Ad.R.Raduta, F.Gulminelli, M.Oertel

Modification of magicity toward the dripline and its impact on electron-capture rates for stellar core collapse

NUCLEAR STRUCTURE A=17-80; calculated electron capture rates in stellar environment using extended nuclear statistical equilibrium (NSE) model, possible quenching of N=50 and N=82 shell closures on the electron-capture rates during core collapse. Z=27-68, N=28-98; calculated S(2n) using different mass models and compared with experimental data. Z=10-70, N=10-70; calculated proton and neutron numbers of A≥20 nuclei produced in core-collapsing solar systems as a function of baryonic density. Z<80, N<100; calculated nuclear abundances and compared with experimental mass measurements. Z=22, N=5-65; Z=26, N=10-80; Z=30, N=20-95; Z=36, N=20-100; Z=40, N=20-110; Z=44, N=30-120; calculated LDM-shifted binding energies as function of neutron number for isotopes strongly populated during stellar core collapse. Discussed impact of nuclear binding energies on nuclear abundances, and effect of nuclear structure far from stability on electron-capture probabilities.

doi: 10.1103/PhysRevC.93.025803
Citations: PlumX Metrics

2015BU14      Phys.Rev. C 92, 055804 (2015)

S.Burrello, F.Gulminelli, F.Aymard, M.Colonna, Ad.R.Raduta

Heat capacity of the neutron star inner crust within an extended nuclear statistical equilibrium model

doi: 10.1103/PhysRevC.92.055804
Citations: PlumX Metrics

2015GU25      Phys.Rev. C 92, 055803 (2015)

F.Gulminelli, Ad.R.Raduta

Unified treatment of subsaturation stellar matter at zero and finite temperature

doi: 10.1103/PhysRevC.92.055803
Citations: PlumX Metrics

2015KH07      Phys.Rev. C 92, 044313 (2015)

E.Khan, J.Margueron, F.Gulminelli, Ad.R.Raduta

Microscopic evaluation of the hypernuclear chart with Λ hyperons

NUCLEAR STRUCTURE 5,6He, 38Si, 144Ce, 210,216,228,248,278Pb; calculated density profiles of hypernuclei. Z≤120; calculated binding energies and the Λ-hypernuclear chart of even-even hypernuclei for Λ=2, 8, 20, 40, 70. 62,68Ni, 110Zr, 144Ce, 278Pb; calculated binding energies of hypernucleons with Λ=2, 6 for Ni, Λ=20 for Zr, Λ=40 for Ce and Λ=70 for Pb. Density-functional approach with microscopic Bruckner-Hartree-Fock calculations and the ΛΛ term treated in a phenomenological way. First microscopic evaluation of the Λ-hypernuclear landscape. Predicted a large number of bound even-even Λ-hypernuclei.

doi: 10.1103/PhysRevC.92.044313
Citations: PlumX Metrics

2014MO12      J.Phys.(London) G41, 075107 (2014)

L.Morelli, G.Baiocco, M.D'Agostino, F.Gulminelli, M.Bruno, U.Abbondanno, S.Appannababu, S.Barlini, M.Bini, G.Casini, M.Cinausero, M.Degerlier, D.Fabris, N.Gelli, F.Gramegna, V.L.Kravchuk, T.Marchi, A.Olmi, G.Pasquali, S.Piantelli, S.Valdre, A.R.Raduta

Thermal properties of light nuclei from 12C + 12C fusion-evaporation reactions

NUCLEAR REACTIONS 12C(12C, X)24Mg, E=95 MeV/nucleon; measured reaction products, Ep, Ip, Eα, Iα; deduced charged-particles multiplicity distributions, σ(θ), σ(E) for isotopes, branching ratios.

doi: 10.1088/0954-3899/41/7/075107
Citations: PlumX Metrics

2014MO13      J.Phys.(London) G41, 075108 (2014)

L.Morelli, G.Baiocco, M.D'Agostino, F.Gulminelli, M.Bruno, U.Abbondanno, S.Appannababu, S.Barlini, M.Bini, G.Casini, M.Cinausero, M.Degerlier, D.Fabris, N.Gelli, F.Gramegna, V.L.Kravchuk, T.Marchi, A.Olmi, G.Pasquali, S.Piantelli, S.Valdre, A.R.Raduta

Non-statistical decay and α-correlations in the 12C+12C fusion-evaporation reaction at 95 MeV

NUCLEAR REACTIONS 12C(12C, X)24Mg, E=95 MeV/nucleon; measured reaction products, Ep, Ip, Eα, Iα, α-α-coin.; deduced α-particles multiplicity distributions, α-α-energy, σ(θ), σ(E) for isotopes, branching ratios. Comparison with Hauser-Feshbach calculations.

doi: 10.1088/0954-3899/41/7/075108
Citations: PlumX Metrics

2014RA05      Eur.Phys.J. A 50, 24 (2014)

Ad.R.Raduta, F.Aymard, F.Gulminelli

Clusterized nuclear matter in the (proto-)neutron star crust and the symmetry energy

doi: 10.1140/epja/i2014-14024-y
Citations: PlumX Metrics

2013BA17      Phys.Rev. C 87, 054614 (2013)

G.Baiocco, L.Morelli, F.Gulminelli, M.D'Agostino, M.Bruno, U.Abbondanno, S.Barlini, M.Bini, S.Carboni, G.Casini, M.Cinausero, M.Degerlier, F.Gramegna, V.L.Kravchuk, T.Marchi, A.Olmi, G.Pasquali, S.Piantelli, Ad.R.Raduta

α-clustering effects in dissipative 12C + 12C reactions at 95 MeV

NUCLEAR REACTIONS 12C(12C, X), E=95 MeV; measured Ep, Ip, Eα, Iα, (residues)p-, (residues)α-coin, yields as function of Eα, yield of oxygen isotopes, transmission coefficients using GARFIELD and RCo systems at LNL, Legnaro facility; deduced isotopic, charge, and velocity distributions. Dissipative collision. Cluster correlations. Comparison with Hauser-Feshbach calculation.

doi: 10.1103/PhysRevC.87.054614
Citations: PlumX Metrics

2013GU18      Phys.Rev. C 87, 055809 (2013)

F.Gulminelli, Ad.R.Raduta, M.Oertel, J.Margueron

Strangeness-driven phase transition in (proto-)neutron star matter

doi: 10.1103/PhysRevC.87.055809
Citations: PlumX Metrics

2013PA31      Phys.Rev. C 88, 045805 (2013)

P.Papakonstantinou, J.Margueron, F.Gulminelli, Ad.R.Raduta

Densities and energies of nuclei in dilute matter at zero temperature

NUCLEAR STRUCTURE Z=20, N=15-3000; Z=28, N=40-3000; Z=40, N=40-4000; Z=50, N=40-4000; Z=82, N=80-4000; calculated ground-state density profiles, energies of medium-mass and heavy clusters in a dilute nucleon gas such as in stellar matter in the cores of supernovae and in the crust of neutron stars.

doi: 10.1103/PhysRevC.88.045805
Citations: PlumX Metrics

2012DA01      Nucl.Phys. A875, 139 (2012)

M.D'Agostino, M.Bruno, F.Gulminelli, L.Morelli, G.Baiocco, L.Bardelli, S.Barlini, F.Cannata, G.Casini, E.Geraci, F.Gramegna, V.L.Kravchuk, T.Marchi, A.Moroni, A.Ordine, Ad.R.Raduta

Towards an understanding of staggering effects in dissipative binary collisions

NUCLEAR REACTIONS 58,64Ni(32S, X), E-14.5 MeV/nucleon; measured reaction fragments using GARFILED detector array and ring counter; deduced yield, charge distribution, reaction mechanisms, even-odd effects, correlation functions; calculated yields using GEMINI code.

doi: 10.1016/j.nuclphysa.2011.11.011
Citations: PlumX Metrics

2012GU03      Phys.Rev. C 85, 025803 (2012)

F.Gulminelli, Ad.R.Raduta

Ensemble inequivalence in supernova matter within a simple model

doi: 10.1103/PhysRevC.85.025803
Citations: PlumX Metrics

2012GU17      Phys.Rev. C 86, 025805 (2012)

F.Gulminelli, Ad.R.Raduta, M.Oertel

Phase transition toward strange matter

doi: 10.1103/PhysRevC.86.025805
Citations: PlumX Metrics

2011DA11      Nucl.Phys. A861, 47 (2011)

M.D'Agostino, M.Bruno, F.Gulminelli, L.Morelli, G.Baiocco, L.Bardelli, S.Barlini, F.Cannata, G.Casini, E.Geraci, F.Gramegna, V.L.Kravchuk, T.Marchi, A.Moroni, A.Ordine, Ad.R.Raduta

Reaction mechanisms and staggering in S+Ni collisions

NUCLEAR REACTIONS 58,64Ni(32S, X), E=463 MeV; measured Z(particle), A(particle), E(particle), I(particle, θ); deduced yields, even-odd effects, flow; calculated yields, even-odd effects, fragment relative velocity using GEMINI code with different assumptions on reaction mechanism and de-excitation chain.

doi: 10.1016/j.nuclphysa.2011.06.017
Citations: PlumX Metrics

2011RA18      Int.J.Mod.Phys. E20, 902 (2011)

Ad.R.Raduta, B.Borderie, N.Le Neindre, P.Napolitani, M.F.Rivet, E.Geraci

Production of α-particle condensate states in heavy-ion collisions

doi: 10.1142/S0218301311018939
Citations: PlumX Metrics

2011RA43      Phys.Lett. B 705, 65 (2011)

Ad.R.Raduta, B.Borderie, E.Geraci, N.Le Neindre, P.Napolitani, M.F.Rivet, R.Alba, F.Amorini, G.Cardella, M.Chatterjee, E.De Filippo, D.Guinet, P.Lautesse, E.La Guidara, G.Lanzalone, G.Lanzano, I.Lombardo, O.Lopez, C.Maiolino, A.Pagano, S.Pirrone, G.Politi, F.Porto, F.Rizzo, P.Russotto, J.P.Wieleczko

Evidence for α-particle condensation in nuclei from the Hoyle state deexcitation

NUCLEAR REACTIONS 12C(40Ca, X), E=25 MeV/nucleon; measured reaction products, deuteron spectrum, Eα, Iα, α-α, α-d and 3α correlations; deduced particle decays of the Hoyle state to direct decays in three equal-energy α-particles.

doi: 10.1016/j.physletb.2011.10.008
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2010BO13      Phys.Rev.Lett. 105, 142701 (2010)

E.Bonnet, B.Borderie, N.Le Neindre, Ad.R.Raduta, M.F.Rivet, R.Bougault, A.Chbihi, J.D.Frankland, E.Galichet, F.Gagnon-Moisan, D.Guinet, P.Lautesse, J.Lukasik, P.Marini, M.Parlog, E.Rosato, R.Roy, G.Spadaccini, M.Vigilante, J.P.Wieleczko, B.Zwieglinski, for the INDRA and ALADIN Collaborations

New Scalings in Nuclear Fragmentation

doi: 10.1103/PhysRevLett.105.142701
Citations: PlumX Metrics

2010BO17      Nucl.Phys. A834, 535c (2010)

B.Borderie, E.Bonnet, F.Gulminelli, N.Le Neindre, D.Mercier, S.Piantelli, Ad.R.Raduta, M.F.Rivet, B.Tamain, R.Bougault, A.Chbihi, R.Dayras, J.D.Frankland, E.Galichet, F.Gagnon-Moisan, D.Guinet, P.Lautesse, J.Lukasik, M.Parlog, E.Rosato, R.Roy, M.Vigilante, J.P.Wieleczko, and the INDRA and ALADIN Collaboration

Multifragmentation and phase transition for hot nuclei: recent progress

doi: 10.1016/j.nuclphysa.2010.01.084
Citations: PlumX Metrics

2010RA21      Phys.Rev. C 82, 065801 (2010)

Ad.R.Raduta, F.Gulminelli

Statistical description of complex nuclear phases in supernovae and proto-neutron stars

doi: 10.1103/PhysRevC.82.065801
Citations: PlumX Metrics

2009RA13      Phys.Rev. C 80, 014602 (2009)


Break-up fragment topology in statistical multifragmentation models

doi: 10.1103/PhysRevC.80.014602
Citations: PlumX Metrics

2009RA19      Phys.Rev. C 80, 024606 (2009)

Ad.R.Raduta, F.Gulminelli

Thermodynamics of clusterized matter

doi: 10.1103/PhysRevC.80.024606
Citations: PlumX Metrics

2008PI02      Nucl.Phys. A809, 111 (2008)

S.Piantelli, B.Borderie, E.Bonnet, N.Le Neindre, Ad.R.Raduta, M.F.Rivet, R.Bougault, A.Chbihi, R.Dayras, J.D.Frankland, E.Galichet, F.Gagnon-Moisan, D.Guinet, P.Lautesse, G.Lehaut, O.Lopez, D.Mercier, J.Moisan, M.Parlog, E.Rosato, R.Roy, B.Tamain, E.Vient, M.Vigilante, J.P.Wieleczko, for the INDRA Collaboration

Freeze-out properties of multifragmentation events

NUCLEAR REACTIONS Sn(129Xe, X), E=32, 39, 45, 50 MeV/nucleon; analyzed fragment velocity distributions and charged-particle energy spectra; deduced freeze-out properties. Comparison with a microcanonical statistical model.

doi: 10.1016/j.nuclphysa.2008.06.004
Citations: PlumX Metrics

2007RA01      Phys.Rev. C 75, 024605 (2007)

Ad.R.Raduta, F.Gulminelli

Multifragmentation and the symmetry term of the nuclear equation of state

NUCLEAR STRUCTURE 190,200,210Pb; calculated symmetry energy vs fragment charge from excited source.

doi: 10.1103/PhysRevC.75.024605
Citations: PlumX Metrics

2007RA07      Phys.Rev. C 75, 044605 (2007)

Ad.R.Raduta, F.Gulminelli

Isospin dependent thermodynamics of fragmentation

doi: 10.1103/PhysRevC.75.044605
Citations: PlumX Metrics

2007RA24      Eur.Phys.J. A 32, 175 (2007)

Ad.R.Raduta, E.Bonnet, B.Borderie, N.Le Neindre, S.Piantelli, M.F.Rivet

Break-up stage restoration in multifragmentation reactions

NUCLEAR REACTIONS Sn(Xe, X), E=32 MeV/nucleon; calculated break-up and asymptotic charge and fragment average kinetic energy distributions. Compared results to available data.

doi: 10.1140/epja/i2006-10381-4
Citations: PlumX Metrics

2006RA01      Phys.Rev. C 73, 014606 (2006)


Fragment isospin distributions and the phase diagram of excited nuclear systems

NUCLEAR STRUCTURE 200Pb, 53V; calculated fragment isospin distributions for decay of excited systems. Microcanonical multifragmentation model.

doi: 10.1103/PhysRevC.73.014606
Citations: PlumX Metrics

2006TS05      Eur.Phys.J. A 30, 129 (2006); Erratum Eur.Phys.J. A 32, 243 (2007)

M.B.Tsang, R.Bougault, R.Charity, D.Durand, W.A.Friedman, F.Gulminelli, A.Le Fevre, Al.H.Raduta, Ad.R.Raduta, S.Souza, W.Trautmann, R.Wada

Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions

doi: 10.1140/epja/i2006-10111-0
Citations: PlumX Metrics

2005RA04      Eur.Phys.J. A 24, 85 (2005)


Microcanonical studies on isoscaling

NUCLEAR STRUCTURE 185,200Hg; calculated fragments isotopic yields, related features following excited nucleus fragmentation; deduced scaling parameters.

doi: 10.1140/epja/i2004-10128-3
Citations: PlumX Metrics

2005RA21      Phys.Lett. B 623, 43 (2005)

Ad.R.Raduta, B.Borderie, E.Bonnet, N.Le Neindre, S.Piantelli, M.F.Rivet

Kinetic energy spectra for fragments and break-up density in multifragmentation

NUCLEAR STRUCTURE 197Au; calculated fragments multiplicity, kinetic energy spectra for breakup of excited nucleus. Microcanonical model.

doi: 10.1016/j.physletb.2005.07.029
Citations: PlumX Metrics

2005RA31      Phys.Rev. C 72, 057603 (2005)

Ad.R.Raduta, E.Bonnet, B.Borderie, N.Le Neindre, M.F.Rivet

Break-up fragments excitation and the freeze-out volume

NUCLEAR REACTIONS Sn(Xe, X), E=32 MeV/nucleon; analyzed fragment charge distributions, excitation energy; deduced freeze-out volume. Microcanonical multifragmentation models.

doi: 10.1103/PhysRevC.72.057603
Citations: PlumX Metrics

2003GU21      Phys.Rev.Lett. 91, 202701 (2003)

F.Gulminelli, Ph.Chomaz, Al.H.Raduta, Ad.R.Raduta

Influence of the Coulomb Interaction on the Liquid-Gas Phase Transition and Nuclear Multifragmentation

doi: 10.1103/PhysRevLett.91.202701
Citations: PlumX Metrics

2003RA27      Nucl.Phys. A724, 233 (2003)

Al.H.Raduta, Ad.R.Raduta

Homogeneity and size effects on the liquid-gas coexistence curve

doi: 10.1016/S0375-9474(03)01365-4
Citations: PlumX Metrics

2002RA09      Phys.Rev. C65, 034606 (2002)

Al.H.Raduta, Ad.R.Raduta, Ph.Chomaz, F.Gulminelli

Critical Behavior in a Microcanonical Multifragmentation Model

doi: 10.1103/PhysRevC.65.034606
Citations: PlumX Metrics

2002RA18      Phys.Rev. C65, 054610 (2002)

Al.H.Raduta, Ad.R.Raduta

Searching for the Statistically Equilibrated Systems Formed in Heavy Ion Collisions

NUCLEAR REACTIONS Sn(Xe, X), E=32 MeV/nucleon; U(Gd, X), E=36 MeV/nucleon; analyzed fragments charge distributions, multiplicities, radial flow parameters; deduced equilibrated source. Microcanonical multifragmentation model.

doi: 10.1103/PhysRevC.65.054610
Citations: PlumX Metrics

2002RA20      Nucl.Phys. A703, 876 (2002)

Al.H.Raduta, As.R.Raduta

Echoes of the Liquid-Gas Phase Transition in Multifragmentation

doi: 10.1016/S0375-9474(01)01675-X
Citations: PlumX Metrics

2001RA05      Nucl.Phys. A681, 394c (2001)

Al.H.Raduta, Ad.R.Raduta

Studies of the Nuclear Caloric Curve

doi: 10.1016/S0375-9474(00)00544-3
Citations: PlumX Metrics

2001RA35      Phys.Rev.Lett. 87, 202701 (2001)

Al.H.Raduta, Ad.R.Raduta

Investigating the Phase Diagram of Finite Extensive and Nonextensive Systems

NUCLEAR STRUCTURE 200Pb, 50V; calculated caloric curves, effect of Coulomb interaction.

doi: 10.1103/PhysRevLett.87.202701
Citations: PlumX Metrics

2000RA06      Phys.Rev. C61, 034611 (2000)

Al.H.Raduta, Ad.R.Raduta

Microcanonical Studies Concerning the Recent Experimental Evaluations of the Nuclear Caloric Curve

NUCLEAR REACTIONS 197Au(197Au, X), E=600, 800, 1000 MeV/nucleon; calculated intermediate fragments mean multiplicity, charge asymmetry, isotopic temperature. Microcanonical multifragmentation model with fragment excitation. Comparison with data.

doi: 10.1103/PhysRevC.61.034611
Citations: PlumX Metrics

2000RA12      Nucl.Phys. A671, 609 (2000)

Al.H.Raduta, Ad.R.Raduta

Effects of the Secondary Decays on the Isotopic Thermometers

NUCLEAR STRUCTURE 70Ge, 130Xe, 190Au; calculated caloric curves for various isotopic thermometers; deduced effects of secondary decay. Microcanonical multifragmentation model.

doi: 10.1016/S0375-9474(99)00847-7
Citations: PlumX Metrics

1999RA01      Phys.Rev. C59, 323 (1999)

Al.H.Raduta, Ad.R.Raduta

Microcanonical Investigation of the Primary Decay Nuclear Caloric Curve

NUCLEAR STRUCTURE 70Ge, 130Xe, 190Au; calculated temperature vs excitation energy, kinetic, binding, Coulomb energies, evaporation probabilities; deduced phase transitions. Microcanonical multifragmentation model.

doi: 10.1103/PhysRevC.59.323
Citations: PlumX Metrics

1999RA07      Nucl.Phys. A647, 12 (1999)

Al.H.Raduta, Ad.R.Raduta

Interplay between Various Degrees of Freedom in Determining the Aspect of the Caloric Curve

NUCLEAR STRUCTURE 70Ge, 130Xe, 190Au; calculated temperature vs excitation energy; deduced phase transition, contributions from various degrees of freedom. Sharp microcanonical model.

doi: 10.1016/S0375-9474(99)00011-1
Citations: PlumX Metrics

1999RA09      Phys.Rev. C59, R1855 (1999)

Al.H.Raduta, Ad.R.Raduta

Microcanonical Calibration of Isotopic Thermometers

NUCLEAR STRUCTURE 70Ge, 130Xe, 197Au; calculated caloric curves for several isotopic thermometers; deduced relationship with microcanonical solution.

NUCLEAR REACTIONS 12C, 197Au(197Au, X), E=high; 58Ni(36Ar, X), E=95 MeV/nucleon; analyzed caloric curve data.

doi: 10.1103/PhysRevC.59.R1855
Citations: PlumX Metrics

1997RA03      Phys.Rev. C55, 1344 (1997)

Al.H.Raduta, Ad.R.Raduta

Simulation of Statistical Ensembles Suitable for the Description of Nuclear Multifragmentation

NUCLEAR REACTIONS 45Sc(40Ar, X), E=35-115 MeV/nucleon; 9Be(93Nb, X), E=11.4, 30.3 MeV/nucleon; analyzed fragment mass, charge distribution. Statistical ensembles simulation for nuclear multi-fragmentation description.

doi: 10.1103/PhysRevC.55.1344
Citations: PlumX Metrics

1997RA27      Phys.Rev. C56, 2059 (1997)

Al.H.Raduta, Ad.R.Raduta

Statistical View on Nuclear Multifragmentation: Primary decays

NUCLEAR REACTIONS 197Au(36Ar, X), E=110 MeV/nucleon; analyzed fragment charge distribution; 27Al(87Kr, X), E=10.6 MeV/nucleon; analyzed fragment charge distribution, isotopic yields for Z=3-20; 238U(p-bar, F), E not given; analyzed fission fragment mass distribution. Microcanonical simulation of primary decays, Monte Carlo method.

doi: 10.1103/PhysRevC.56.2059
Citations: PlumX Metrics

1997RA35      Roum.J.Phys. 42, 39 (1997)

Al.H.Raduta, A.Calboreanu, Ad.R.Raduta

Modelling Mass and Charge Distributions in Nuclear Multifragmentation

NUCLEAR REACTIONS 45Sc(40Ar, X), E=35, 70, 115 MeV/nucleon; 197Au(36Ar, X), E=110 MeV/nucleon; analyzed fragment charge, multiplicity distributions; deduced freeze-out radius dependence. Microcanonical approach, Monte Carlo procedure.

1996RA42      Roum.J.Phys. 41, 69 (1996)

Ad.R.Raduta, Al.H.Raduta, Al.Calboreanu

The Residual Interaction Effect on the Nuclear Level Densities for 40Ca

NUCLEAR STRUCTURE 40Ca; calculated level density vs excitation; deduced residual interaction effect. Thermal RPA.

Back to query form