NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = S.Ebata

Found 26 matches.

Back to query form



2024AI01      Nucl.Instrum.Methods Phys.Res. B550, 165315 (2024)

M.Aikawa, Sh.Ebata, H.Haba, S.Takacs, F.Ditroi, Z.Szucs

Activation cross sections of α-particle-induced reactions on scandium in the energy range of 22-51┬áMeV

NUCLEAR REACTIONS 45Sc(α, X)48V/45Ti/43Sc/44Sc/46Sc/47Sc/42K/43K, E=22-51 MeV; measured reaction products, Eγ, Iγ; deduced activation σ. Comparison with available data, TALYS calculations. The RIKEN AVF cyclotron.

doi: 10.1016/j.nimb.2024.165315
Citations: PlumX Metrics


2024EB01      Nuovo Cim. C 47, 18 (2024)

S.Ebata, A.Umeya, N.Yoshinaga

Electric dipole strength functions of Lambda hypernuclei obtained by the time-dependent mean-field calculation

NUCLEAR STRUCTURE 10,11,12,13,14,15,16,17,18,19,20,21,22C; calculated E1 strength functions, quadrupole deformation parameter, root mean square radii of Λ hypernucleus using a time-dependent mean-field model.

doi: 10.1393/ncc/i2024-24018-y
Citations: PlumX Metrics


2024WA10      Phys.Rev. C 109, 024317 (2024)

K.Washiyama, Sh.Ebata, K.Yoshida

Evolution of the giant monopole resonance with triaxial deformation

doi: 10.1103/PhysRevC.109.024317
Citations: PlumX Metrics


2023AI03      Nucl.Instrum.Methods Phys.Res. B543, 165093 (2023)

M.Aikawa, Y.Toyoeda, D.Gantumur, N.Ukon, S.Ebata, H.Haba, S.Takacs, F.Ditroi, Z.Szucs

Activation cross sections of deuteron-induced reactions on natural rhenium up to 23 MeV

NUCLEAR REACTIONS Re(d, X)183Os/185Os/183Re/184Re/186Re/188Re, E<23 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison ith available data, TALYS calculations. The RIKEN AVF cyclotron.

doi: 10.1016/j.nimb.2023.165093
Citations: PlumX Metrics


2023EB02      Int.J.Mod.Phys. E32, 2350030 (2023)

S.Ebata, S.Okumura, C.Ishizuka, S.Chiba

The difference between charge polarizations of fission fragments deduced by the static theoretical model and in the current data library

NUCLEAR REACTIONS 235U(n, F), E low; analyzed available data; deduced a theoretical method to deduce the charge polarization (CP) and most probable charge for fission fragments for the selected range of mass numbers based on a quantum many-body framework, namely, a constrained Skyrme Hartree-Fock+BCS model.

doi: 10.1142/S0218301323500301
Citations: PlumX Metrics


2023TA21      Nucl.Instrum.Methods Phys.Res. B545, 165127 (2023)

S.Takacs, F.Ditroi, Z.Szucs, M.Aikawa, H.Haba, Y.Toyoeda, G.Damdinsuren, S.Ebata

Activation cross section measurement of alpha-particle induced nuclear reactions on tantalum

NUCLEAR REACTIONS Ta(α, X), 182Ta/178Ta/184Re/183Re/182Re/181Re/182Ta/178Ta, E<50 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with TALYS calculations, available data. The AVF cyclotron of the Nishina Center of RIKEN.

doi: 10.1016/j.nimb.2023.165127
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD4431.


2022EB01      Nucl.Instrum.Methods Phys.Res. B530, 18 (2022)

S.Ebata, M.Aikawa, D.Gantumur, H.Haba

Activation cross sections of alpha-particle-induced reactions on natural lanthanum up to 50 MeV

NUCLEAR REACTIONS La(α, X)138Pr/139Pr/142Pr/139Ce/141Ce, E<50 MeV; measured reaction products, Eγ, Iγ; deduced σ, physical yields. Comparison with TALYS calculations. RIKEN AVF cyclotron.

doi: 10.1016/j.nimb.2022.09.002
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2734.


2022GA12      Appl.Radiat.Isot. 184, 110204 (2022)

D.Gantumur, M.Aikawa, T.Khishigjargal, E.Norov, S.Ebata, H.Haba

Production cross sections of 52Mn in alpha-particle-induced reactions on natural vanadium

NUCLEAR REACTIONS V(α, X)52Mn/54Mn/51Cr/48V/47Sc/46Sc, E<50 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with TALYS calculations.

doi: 10.1016/j.apradiso.2022.110204
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2728.


2021IT01      Eur.Phys.J. A 57, 68 (2021)

M.Ito, R.Nakamoto, M.Nakao, T.Okuno, S.Ebata

Isoscalar transitions and α cluster structures in heavy nuclei

NUCLEAR STRUCTURE 44Ti, 104,106,108,110Te; calculated isoscalar monopole and dipole transitions by employing the macroscopic α cluster model.

doi: 10.1140/epja/s10050-021-00372-4
Citations: PlumX Metrics


2020TA05      Phys.Rev.Lett. 124, 102501 (2020)

M.Tanaka, M.Takechi, A.Homma, M.Fukuda, D.Nishimura, T.Suzuki, Y.Tanaka, T.Moriguchi, D.S.Ahn, A.Aimaganbetov, M.Amano, H.Arakawa, S.Bagchi, K.-H.Behr, N.Burtebayev, K.Chikaato, H.Du, S.Ebata, T.Fujii, N.Fukuda, H.Geissel, T.Hori, W.Horiuchi, S.Hoshino, R.Igosawa, A.Ikeda, N.Inabe, K.Inomata, K.Itahashi, T.Izumikawa, D.Kamioka, N.Kanda, I.Kato, I.Kenzhina, Z.Korkulu, Y.Kuk, K.Kusaka, K.Matsuta, M.Mihara, E.Miyata, D.Nagae, S.Nakamura, M.Nassurlla, K.Nishimuro, K.Nishizuka, K.Ohnishi, M.Ohtake, T.Ohtsubo, S.Omika, H.J.Ong, A.Ozawa, A.Prochazka, H.Sakurai, C.Scheidenberger, Y.Shimizu, T.Sugihara, T.Sumikama, H.Suzuki, S.Suzuki, H.Takeda, Y.K.Tanaka, I.Tanihata, T.Wada, K.Wakayama, S.Yagi, T.Yamaguchi, R.Yanagihara, Y.Yanagisawa, K.Yoshida, T.K.Zholdybayev

Swelling of Doubly Magic 48Ca Core in Ca Isotopes beyond N=28

NUCLEAR REACTIONS C(42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), E=280 MeV/nucleon; measured reaction products. 42,43,44,45,46,47,48,49,50,51Ca; deduced neutron number dependence in root-mean-square matter radii, novel growth in neutron skin thickness. Comparison with mean field calculations.

doi: 10.1103/PhysRevLett.124.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2656.


2019FU03      Phys.Rev. C 99, 034605 (2019)

T.Furumoto, K.Tsubakihara, S.Ebata, W.Horiuchi

Microscopic global optical potential for nucleon-nucleus systems in the energy range 50-400 MeV

NUCLEAR STRUCTURE Z=10, A=17-34; Z=20, A=34-60; Z=40, A=80-120; Z=50, A=100-150; Z=70, A=150-210; Z=82, A=180-245; calculated charge radii using relativistic mean field (RMF) and Hartree-Fock (HF)+BCS densities, and compared with available experimental values. 32,36,40,44,48S, 80,90,100,110Sn; calculated point-neutron, proton, and matter density distributions using RMF and HF+BCS models.

NUCLEAR REACTIONS 10C, 276U(n, X), E=50 MeV; 12C, 242U(p, X), E=400 MeV; calculated real and imaginary parts of central and spin-orbit components of the SF potentials using the HF+BCS densities. 12C, 40Ca, 56Fe, 90Zr, 208Pb(p, X), E=50-400 MeV; calculated total reaction σ(E) using the RMF and HF+BCS densities to construct the SF potential. 12C, 16O, 24Mg, 28Si, 40Ca, 48,50Ti, 52Cr, 56Fe, 58Ni, 64,68Zn, 90Zr, 98Mo, 106Pd, 114Cd, 120Sn, 142Nd, 158Gd, 164Dy, 180Hf, 184W, 194Pt, 208Pb, 238U(p, X), E=60, 65.5, 99 MeV; 12C, 40Ca, 56Fe, 90Zr, 114Cd, 184W, 208Pb, 238U(n, X), E=50-400 MeV; Ni(p, X), E=60 MeV for A=50-80 Ni nuclei; Sn(p, X), E=65.5 MeV for A=100-150 Sn nuclei; 12C, 16O, 28Si, 40Ca, 56Fe, 58Ni, 64Zn, 90Zr, 114Cd, 120Sn, 208Pb, 238U(n, X), E=50, 379 MeV; analyzed total reaction σ(E) using microscopic global optical potential (MGOP1 and MGOP2) models. 12C, 40Ca, 208Pb(n, n), E=65-225; 28Si, 56Fe, 90Zr(n, n), E=55, 65, 75 MeV; 16O, 40Ca, 56Fe, Cd, 120Sn(n, n), E=65-351.5 MeV; 238U(n, n), E=52.5-120 MeV; analyzed σ(E, θ). 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ar, 40,42,44,48Ca, 46,48,50Ti, 50,52,54Cr, 54,56Fe, 58,60,62,64Ni, 90Zr, 98,100Mo, 144,148,150,152,154Sm, 160Gd, 164Dy, 166,168Er, 172,174,176Yb, 178,180Hf, 182,184W, 192Os, 208Pb, 232Th, 238U(p, p), (polarized p, p), E=65 MeV; 12C(p, p), (polarized p, p), E=51.93-340 MeV; 16O(p, p), (polarized p, p), E=61-317.4 MeV; 24Mg, 28,30Si, 32,34S, 40,48Ca(p, p), (polarized p, p), E=51.9-400 MeV; 46,48,50Ti, 50Cr, 54,56Fe, 58,60,62Ni, 66,68Zn, 74,76,78,80,82Se(p, p), (polarized p, p), E=51.9-333 MeV; 88Sr, 90,92Zr(p, p), (polarized p, p), E=57.5-200 MeV; 106,108,110Pd, 112Cd, 116Sn(p, p), E=51-61.4 MeV; 116,118,120,122,124Sn(p, p), (polarized p, p), E=61.5-300 MeV; 148,154Sm, 192Os, 194,198Pt, 204,206,208Pb(p, p), (polarized p, p), E=61.4-400 MeV; 22,24O, 56Ni(p, p), E=46.6-285 MeV; 48S(p, p), E=100-400 MeV; 100,110Zr(p, p), (polarized p, p), E=100-400 MeV; analyzed σ(θ, E), analyzing powers Ay(θ, E), and spin-rotation functions; deduced microscopic global optical potential (MGOP) for nucleon-nucleus systems in a wide range of nuclear mass numbers (A=10-276) and incident energies of 50-400 MeV. Microscopic global optical potential (MGOP1 and MGOP2) models, based on a single-folding (SF) model with the complex G-matrix interaction, with nuclear densities generated from mean-field calculations using relativistic-mean-field (RMF) and Skyrme-Hartree-Fock+BCS approaches.

doi: 10.1103/PhysRevC.99.034605
Citations: PlumX Metrics


2018AI03      Nucl.Instrum.Methods Phys.Res. B427, 91 (2018)

M.Aikawa, M.Saito, S.Ebata, Y.Komori, H.Haba

Activation cross sections of α-induced reactions on natZn for Ge and Ga production

NUCLEAR REACTIONS Zn(α, X)68Ge/69Ge/66Ga/67Ga, E<50.7 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with TALYS nuclear model code calculations, experimental data.

doi: 10.1016/j.nimb.2018.05.006
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2578.


2018NA26      Phys.Rev. C 98, 054318 (2018)

M.Nakao, H.Umehara, S.Ebata, M.Ito

Cluster Thomas-Ehrman effect in mirror nuclei

NUCLEAR STRUCTURE 18O, 18Ne; calculated bound and resonant 0+ levels, decay widths, monopole transition strengths, and Coulomb shifts for the mirror cluster (α+14C and α+14O) systems using the orthogonality condition model (OCM). Results interpreted in terms of the extension of the Thomas-Ehrman shift (TES). Comparison with experimental values. Proposed combination of the cluster TES and the monopole transitions as experimental probe for cluster structure in mirror systems.

doi: 10.1103/PhysRevC.98.054318
Citations: PlumX Metrics


2017EB01      Phys.Scr. 92, 064005 (2017)

S.Ebata, T.Nakatsukasa

Octupole deformation in the nuclear chart based on the 3D Skyrme Hartree-Fock plus BCS model

NUCLEAR STRUCTURE 142,144Xe, 144,146Ba, 144,146Ce, 150Sm, 150Gd, 196,198Dy, 200,202,204Er, 200,202,204Yb, 216,218,220Pb, 220,222,224Ra, 220,222Th, 220,224,226U; analyzed available data; deduced octupole-deformed nuclei.

doi: 10.1088/1402-4896/aa6c4c
Citations: PlumX Metrics


2017HO17      Phys.Rev. C 96, 024605 (2017)

W.Horiuchi, S.Hatakeyama, S.Ebata, Y.Suzuki

Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

NUCLEAR REACTIONS 40Ca, 120Sn, 208Pb(100Sn, X), (102Sn, X), (104Sn, X), (106Sn, X), (108Sn, X), (110Sn, X), (112Sn, X), (114Sn, X), (116Sn, X), (118Sn, X), (120Sn, X), (122Sn, X), (124Sn, X), (126Sn, X), (128Sn, X), (130Sn, X), (132Sn, X), (134Sn, X), (136Sn, X), (138Sn, X), (140Sn, X), E=100, 200, 550, 1000 MeV/nucleon; calculated total reaction σ(E), nuclear breakup σ(E), and Coulomb breakup σ(E), percentages of the Coulomb breakup cross sections with electric multipoles E1, E2, and E3, contributions of the electric-multipole strengths of 134Sn to the Coulomb breakup cross section by 208Pb target, comparison of the electric-dipole (E1) contributions of 100,110,120,132,134Sn isotopes to the Coulomb breakup cross sections by 208Pb target. 208Pb(40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), E=100, 200, 550, 1000 MeV/nucleon; calculated total reaction σ(E), nuclear breakup σ(E), and Coulomb breakup σ(E). Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods using SkM*, SLy4, and SkI3 Skyrme-type effective interactions, with nuclear and Coulomb breakup processes described within the Glauber mode.

doi: 10.1103/PhysRevC.96.024605
Citations: PlumX Metrics


2017HO20      Phys.Rev. C 96, 035804 (2017)

W.Horiuchi, S.Ebata, K.Iida

Neutron-skin thickness determines the surface tension of a compressible nuclear droplet

NUCLEAR STRUCTURE Z=50, N=50-90; Z=82, N=100-164; calculated charge radii, and compared with experimental data. Z=50, N=50-90; Z=82, N=100-164; Z=20, N=20-40; Z=28, N=28-58; Z=40, N=38-80; Z=50, N=50-90; Z=70, N=80-120; Z=82, N=100-164; calculated surface widths from the neutron and proton density distributions using SkM*, SLy4, and SkI3 interactions, neutron-skin thicknesses as a function of the asymmetry parameter using SkM*, SLy4, and SkI3 interactions for HF+BCS theory. 116,118,120,122,124Sn, 204,206,208Pb; calculated neutron-skin thicknesses within the compressible droplet model using empirical density distributions. Equation of state (EOS) parameters deduced from nine Skyrme-EDF models.

doi: 10.1103/PhysRevC.96.035804
Citations: PlumX Metrics


2016HO05      Phys.Rev. C 93, 044611 (2016)

W.Horiuchi, S.Hatakeyama, S.Ebata, Y.Suzuki

Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated neutron and proton rms radii. 40,42,44,46,48,50,52,54,56,58,60Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Yb, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated matter radius of even-even nuclei using SkM*, SLy4, and SkI3 interactions. HF+BCS and HF theory with different interactions.

NUCLEAR REACTIONS 1,2H, 4He, 12C(40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), (80Zr, X), (82Zr, X), (84Zr, X), (86Zr, X), (88Zr, X), (90Zr, X), (92Zr, X), (94Zr, X), (96Zr, X), (98Zr, X), (100Zr, X), (102Zr, X), (104Zr, X), (106Zr, X), (108Zr, X), (110Zr, X), (112Zr, X), (114Zr, X), (116Zr, X), (118Zr, X), (120Zr, X), (122Zr, X), (100Sn, X), (102Sn, X), (104Sn, X), (106Sn, X), (108Sn, X), (110Sn, X), (112Sn, X), (114Sn, X), (116Sn, X), (118Sn, X), (120Sn, X), (122Sn, X), (124Sn, X), (126Sn, X), (128Sn, X), (130Sn, X), (132Sn, X), (134Sn, X), (136Sn, X), (138Sn, X), (140Sn, X), (156Yb, X), (158Yb, X), (160Yb, X), (162Yb, X), (164Yb, X), (166Yb, X), (168Yb, X), (170Yb, X), (172Yb, X), (174Yb, X), (176Yb, X), (178Yb, X), (180Yb, X), (182Yb, X), (184Yb, X), (186Yb, X), (188Yb, X), (190Yb, X), (192Yb, X), (194Yb, X), (196Yb, X), (190Pb, X), (192Pb, X), (194Pb, X), (196Pb, X), (198Pb, X), (200Pb, X), (202Pb, X), (204Pb, X), (206Pb, X), (208Pb, X), (210Pb, X), (212Pb, X), (214Pb, X), E=1000 MeV, also 200 MeV for proton target; calculated Coulomb breakup cross sections by equivalent-photon method (EPM) with projectile density from SkM*, SLy4, and SkI3 Skyrme interactions, total reaction and Coulomb breakup probabilities, reaction radii versus point matter rms radii. Glauber model with densities from Skyrme-Hartree-Fock+BCS model. 12C(208Pb, 12C), E=200, 1000 MeV; 1H(208Pb, p), E=45-1000 MeV; calculated elastic σ(θ, E) using SkM* interaction, and compared with experimental data. 1H(40Ca, X), (58Ni, X), (90Zr, X), (120Sn, X), (208Pb, X), E=40-1000 MeV; calculated total reaction σ(E) and compared with experimental data.

doi: 10.1103/PhysRevC.93.044611
Citations: PlumX Metrics


2015EB01      Phys.Rev. C 91, 014309 (2015)

S.Ebata, M.Kimura

Low-lying 2+ states generated by pn-quadrupole correlation and N = 28 shell quenching

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si; calculated quadrupole vibrational strength functions S(E:Q20) in the isovector and isoscalar channels, and in neutron and proton channels, B(E2), single-particle levels. Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) with several energy density functionals, including nuclear pairing correlation.

doi: 10.1103/PhysRevC.91.014309
Citations: PlumX Metrics


2014EB02      Phys.Rev. C 90, 024303 (2014); Erratum Phys.Rev. C 92, 069902 (2015)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 8,10,12,14,16,18,20,22C, 14,16,18,20,22,24,26O, 20,22,24,26,28,30,32Ne, 18,20,22,24,26,28,30,32,34,36,38,40Mg, 24,26,28,30,32,34,36,38,40,42,44,46Si, 26,28,30,32,34,36,38,40,42,44,46,48,50S, 32,34,36,38,40,42,44,46,48,50,52,54,56Ar, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 60,62,64,66,68,70,72,74,76,78,80,82,84,86,88Zn, 64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ge, 68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104Se, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Zr, 84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Mo, 88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Ru, 92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Pd, 96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated low-lying electric dipole (E1) strengths of pygmy dipole resonances (PDR), the PDR fraction as functions of the neutron number and neutron skin thickness, proton number dependence of the PDR fraction, shell structure, neutron skin thickness, neutron and proton pairing gaps and chemical potentials, quadrupole deformation parameters β2 and γ. 128,130,132,134,136,138,140,142Te; calculated Proton number dependence of the PDR fraction. Canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1103/PhysRevC.90.024303
Citations: PlumX Metrics


2013EB03      J.Phys.:Conf.Ser. 445, 012021 (2013)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of El strength for the isotopes from Z = 28 to 50

NUCLEAR STRUCTURE Ge, Se, Kr, Sr, Zr, Mo, Ru, Pd, Cd, Sn; calculated radius, neutron skin, electric dipole polarizability, pygmy-dipole-ratio using canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1088/1742-6596/445/1/012021
Citations: PlumX Metrics


2012EB01      Prog.Theor.Phys.(Kyoto), Suppl. 196, 316 (2012)

S.Ebata, T.Nakatsukasa, Ts.Inakura

Cb-TDHFB Calculation for the Low-Lying E1 Strength of Heavy Nuclei around the r-Process Path

doi: 10.1143/PTPS.196.316
Citations: PlumX Metrics


2012EB02      J.Phys.:Conf.Ser. 381, 012104 (2012)

S.Ebata, T.Nakatsukasa, T.Inakura

Study of pygmy dipole resonance with a new time-dependent mean field theory

NUCLEAR STRUCTURE O, Ne, Mg, S, Ar, Ca, Sr, Zr, Mo, Ru, Pd, Cd, Sn, Te, Xe; calculated ratio of pygmy dipole resonance strength using Cb-TDHFB (canonical basis TDHFB).

doi: 10.1088/1742-6596/381/1/012104
Citations: PlumX Metrics


2012NA28      J.Phys.:Conf.Ser. 387, 012015 (2012)

T.Nakatsukasa, S.Ebata, P.Avogadro, L.Guo, T.Inakura, K.Yoshida

Density functional approaches to nuclear dynamics

NUCLEAR STRUCTURE 120Sn; calculated isoscalar monopole γ strength function. 132,134,136,138,140Xe; calculated B(E1) strength distribution. Density functional approach.

doi: 10.1088/1742-6596/387/1/012015
Citations: PlumX Metrics


2011EB04      J.Phys.:Conf.Ser. 312, 092023 (2011)

S.Ebata, T.Nakatsukasa, K.Yabana

Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

NUCLEAR STRUCTURE 18,20,22,24,26,28Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 strength distribution.

doi: 10.1088/1742-6596/312/9/092023
Citations: PlumX Metrics


2011NA03      Acta Phys.Pol. B42, 609 (2011)

T.Nakatsukasa, P.Avogadro, S.Ebata, T.Inakura, K.Yoshida

Self-consistent Description of Nuclear Photoabsorption Cross-sections

NUCLEAR REACTIONS 154Sm(γ, X), E<40 MeV; calculated σ. QRPA and FAM calculations, comparison with experimental data.

NUCLEAR STRUCTURE 50Ca; calculated isoscalar monopole strength distribution. QRPA and FAM calculations.

doi: 10.5506/APhysPolB.42.609
Citations: PlumX Metrics


2010EB01      Phys.Rev. C 82, 034306 (2010)

S.Ebata, T.Nakatsukasa, T.Inakura, K.Yoshida, Y.Hashimoto, K.Yabana

Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34,36,38,40Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 and isoscalar quadrupole strength distributions, photoabsorption cross sections from equations derived from canonical-basis (Cb) formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.

doi: 10.1103/PhysRevC.82.034306
Citations: PlumX Metrics


Back to query form