NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = P.Capel

Found 48 matches.

Back to query form

2024HE02      Phys.Lett. B 848, 138413 (2024)

C.Hebborn, P.Capel

Sensitivity of one-neutron knockout observables of loosely- to more deeply-bound nuclei

doi: 10.1016/j.physletb.2023.138413
Citations: PlumX Metrics

2023CA17      Eur.Phys.J. A 59, 273 (2023)

P.Capel, D.R.Phillips, A.Andis, M.Bagnarol, B.Behzadmoghaddam, F.Bonaiti, R.Bubna, Y.Capitani, P.-Y.Duerinck, V.Durant, N.Dopper, A.El Boustani, R.Farrell, M.Geiger, M.Gennari, N.Goldberg, J.Herko, T.Kirchner, L.-P.Kubushishi, Z.Li, S.S.Li Muli, A.Long, B.Martin, K.Mohseni, I.Moumene, N.Paracone, E.Parnes, B.Romeo, V.Springer, I.Svensson, O.Thim, N.Yapa

Effective field theory analysis of the Coulomb breakup of the one-neutron halo nucleus 19C

NUCLEAR REACTIONS 208Pb(19C, X)18C, E=67 MeV/nucleon; analyzed available data; deduced σ(θ), σ(E) using NLO Halo-EFT 18C-n potentials. A Halo-EFT description of the projectile within the Coulomb Corrected Eikonal approximation (CCE).

doi: 10.1140/epja/s10050-023-01181-7
Citations: PlumX Metrics

2022CA01      Phys.Lett. B 825, 136847 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force

NUCLEAR REACTIONS 12C(11Be, X)10Be, E=67 MeV/nucleon; analyzed available data; deduced breakup σ(E), σ(θ), resonances using Halo Effective Field Theory and the Dynamical Eikonal Approximation to include an effective 10Be-n-target force.

doi: 10.1016/j.physletb.2021.136847
Citations: PlumX Metrics

2022CA05      Few-Body Systems 63, 14 (2022)


Combining Halo-EFT Descriptions of Nuclei and Precise Models of Nuclear Reactions

NUCLEAR STRUCTURE C(10Be, X), (11Be, X), E<67 MeV/nucleon; Pb(11Be, X), E<520 MeV/nucleon; 10Be(d, p), E=12 MeV; 9Be(11Be, 10Be), E=60 MeV/nucleon; calculated breakup σ(E) within the DEA with NLO 10Be-n effective potentials, one-neutron removal σ; deduced Halo-EFT descriptions within precise models of reactions.

doi: 10.1007/s00601-021-01718-w
Citations: PlumX Metrics

2022CO09      Phys.Rev. C 106, 044318 (2022)

F.Colomer, P.Capel, M.Ferretti, J.Piekarewicz, C.Sfienti, M.Thiel, V.Tsaran, M.Vanderhaeghen

Theoretical analysis of the extraction of neutron skin thickness from coherent π0 photoproduction off nuclei

NUCLEAR REACTIONS 12C, 40Ca, 116Sn, 124Sn, 208Pb(γ, π0), E=200 MeV; calculated σ(θ). Plane-wave (PWIA) and distorted-wave (DWIA) impulse approximation using the density profiles obtained with Sao Paulo parametrization and the prediction of the FSU relativistic mean-field model. Comparison to experimental data. Concluded that photoproduction of a neutral pion on a nucleus is largely insensitive to the nuclear density and thus is not a good tool for neutron skin thickness study.

doi: 10.1103/PhysRevC.106.044318
Citations: PlumX Metrics

2022DU02      Phys.Rev. C 105, 014606 (2022)

V.Durant, P.Capel

α-nucleus optical potentials from chiral effective field theory NN interactions

NUCLEAR REACTIONS 4He(α, α), E=198.8, 280 MeV; 12C, 16O, 40,48Ca(α, α), E=104, 240 MeV; 120Sn(α, α), E=386 MeV; calculated elastic σ(E), σ(θ, E), σ(momentum transfer). 4He, 40Ca; calculated proton and charge density profiles. Double-folding method, with the chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with state-of-the-art nucleonic densities, and the imaginary part of the optical potential obtained from the real double folding interaction either through a proportionality constant or applying Kramers-Kronig dispersion relations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.014606
Citations: PlumX Metrics

2022DU12      Phys.Rev. C 106, 044608 (2022)

V.Durant, P.Capel

10Be-nucleus optical potentials developed from chiral effective field theory NN interactions

NUCLEAR REACTIONS 208Pb(10Be, 10Be), E=127 MeV;64Zn(10Be, 10Be), E=28.3 MeV;12C(10Be, 10Be), E=595 MeV; calculated σ(θ). Calculations based on NN interactions developed within a chiral EFT framework with imaginary part of the optical potential constructed with the Kramers-Kronig relations (dispersion relations). Comparison to experimental data.

doi: 10.1103/PhysRevC.106.044608
Citations: PlumX Metrics

2021HE19      Phys.Rev. C 103, 064614 (2021)

C.Hebborn, P.Capel

Detailed study of the eikonal reaction theory for the breakup of one-neutron halo nuclei

NUCLEAR REACTIONS 12C(11Be, X), E=67 MeV/nucleon; 208Pb(11Be, X), E=69 MeV/nucleon; calculated breakup cross section of 11Be as a function of the 10Be-n relative energy, cross sections as a function of the 10Be-n parallel-momentum for the diffractive breakup of 11Be using dynamical eikonal approximation (DEA), and eikonal reaction theory (ERT); discussed role of different interactions in the dynamics of breakup reactions of one-neutron halo nuclei.

doi: 10.1103/PhysRevC.103.064614
Citations: PlumX Metrics

2021HE22      Phys.Rev. C 104, 024616 (2021)

C.Hebborn, P.Capel

Halo effective field theory analysis of one-neutron knockout reactions of 11Be and 15C

NUCLEAR REACTIONS 9Be(11Be, 10Be), (15C, 14C), E≈60 MeV/nucleon; analyzed experimental data for parallel-momentum distributions for one-neutron knockout reactions; calculated integrated diffractive-breakup σ, stripping σ, and one-neutron knockout σ using eikonal-based model of the reaction with halo effective field theory (halo-EFT) description of the projectile, and optical model potentials.

doi: 10.1103/PhysRevC.104.024616
Citations: PlumX Metrics

2020CA32      Eur.Phys.J. A 56, 300 (2020)

P.Capel, R.C.Johnson, F.M.Nunes

Study of cluster structures in nuclei through the ratio method

NUCLEAR REACTIONS Pb(11Be, X), E=69 MeV/nucleon; 12C(11Be, X), E=67 MeV/nucleon; analyzed available data; deduced σ(θ), the ratio of angulardistributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism, in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction using Recoil Excitation and Breakup (REB) model.

doi: 10.1140/epja/s10050-020-00310-w
Citations: PlumX Metrics

2020DU09      Phys.Rev. C 102, 014622 (2020)

V.Durant, P.Capel, A.Schwenk

Dispersion relations applied to double-folding potentials from chiral effective field theory

NUCLEAR REACTIONS 16O(16O, 16O), E=124, 250, 350, 480, 704 MeV; 12C(12C, 12C), E=159, 240, 300, 360, 1016 MeV; 16O(12C, 12C), E=76.4, 130, 230, 300, 608 MeV; calculated optical potentials, elastic scattering σ(E) as a function of momentum transfer, influence of nucleonic density on elastic scattering σ, and astrophysical S factors using double-folding method based on chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading (N2LO) order combined with dispersion relation constraints. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.014622
Citations: PlumX Metrics

2019HE16      Phys.Rev. C 100, 054607 (2019)

C.Hebborn, P.Capel

Sensitivity of one-neutron knockout to the nuclear structure of halo nuclei

NUCLEAR REACTIONS 12C(11Be, n10Be)12C, E=68 MeV/nucleon; calculated radial wave functions of the 1s1/2 ground state of 11Be and for different interactions in the p1/2 waves, parallel-momentum distribution of 10Be from the diffractive breakup and the stripping of 11Be on 12C, influence of the presence of a subthreshold bound state p1/2 in the projectile spectrum on breakup observables for 11Be, diffractive breakup cross section as a function of the 10Be-neutron relative energy and of the parallel-momentum of 10Be, total diffractive breakup and inelastic cross sections, influence of a d5/2 resonance on breakup observables, integrated breakup cross sections using a Halo-EFT description of 11Be and eikonal model of reaction. Discussed possibility of using one-neutron knockout cross section to extract information about the tail of the ground-state wave function namely its asymptotic normalization coefficient (ANC), and comparing that with the results from available experimental data.

doi: 10.1103/PhysRevC.100.054607
Citations: PlumX Metrics

2019MO10      Phys.Lett. B 790, 367 (2019)

L.Moschini, P.Capel

Reliable extraction of the dB(E1)/dE for 11Be from its breakup at 520 MeV/nucleon

NUCLEAR REACTIONS Pb, C(11Be, X), E=520 MeV/nucleon; analyzed available data; deduced resolution on the apparent discrepancy between the dB(E1)/dE estimations from GSI and RIKEN for this nucleus.

doi: 10.1016/j.physletb.2019.01.041
Citations: PlumX Metrics

2019MO32      Phys.Rev. C 100, 044615 (2019)

L.Moschini, J.Yang, P.Capel

15C: From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

NUCLEAR REACTIONS 14C(d, p)15C, E=14, 17.06 MeV; analyzed experimental data for differential σ(θ, E) using leading-order (LO) halo-EFT description of 15C with a finite-range adiabatic distorted wave approximation (FR-ADWA) model; deduced asymptotic normalization coefficient (ANC) of 15C ground state. 208Pb(15C, X), E=68, 605 MeV/nucleon; analyzed experimental data from GSI and RIKEN for differential breakup σ(E) using NLO eikonal-based model. 14C(n, γ)15C, E=10-1000 keV; calculated σ(E) using ANC extracted from (d, p) data. 15C; calculated E1 strength from the 1/2+ ground state to its 14C-n continuum based on the halo-EFT structure of 15C at NLO, and compared to experimental data. Relevance of 14C(n, γ)15C reaction in production of heavy elements in inhomogeneous big-bang nucleosynthesis.

doi: 10.1103/PhysRevC.100.044615
Citations: PlumX Metrics

2019YU07      J.Phys.(London) G46, 105111 (2019)

X.Y.Yun, F.Colomer, D.Y.Pang, P.Capel

Extension of the ratio method to proton-rich nuclei

NUCLEAR REACTIONS 208Pb, 58Ni, 12C(8B, X), E=44 MeV/nucleon; 12C, 58Ni(17F, X), (25Al, X), (27P, X), E=60 MeV/nucleon; analyzed available data. 7Be; deduced σ(θ, E), ratio observables as a tool to study the structure of loosely-bound systems like halo nuclei.

doi: 10.1088/1361-6471/ab355e
Citations: PlumX Metrics

2018CA23      Phys.Rev. C 98, 034610 (2018) Erratum Phys.Rev. C 105, 019901 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Dissecting reaction calculations using halo effective field theory and ab initio input

NUCLEAR REACTIONS 208Pb, 12C(11Be, n), E=67, 69 MeV/nucleon; calculated radial wave functions of 11Be g.s. and 1/2- excited state, 11Be projectile partial wave phase shifts, and break-up σ(E) with contributions from the p3/2, s1/2, p1/2, and d partial waves of 11Be. No-core shell model with continuum (NCSMC) for structure calculations of 11Be. Dynamical eikonal approximation with halo effective field theory (EFT) and ab initio input for reaction mechanism. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034610
Citations: PlumX Metrics

2018HE16      Phys.Rev. C 98, 044610 (2018)

C.Hebborn, P.Capel

Low-energy corrections to the eikonal description of elastic scattering and breakup of one-neutron halo nuclei in nuclear-dominated reactions

NUCLEAR REACTIONS 12C(11Be, 11Be), (11Be, X), E=10, 20 MeV/nucleon; calculated elastic scattering σ(E), differential σ(E, θ), breakup σ(E) of halo nuclei using semiclassical and S-matrix correction to eikonal approximation. Comparison with other theoretical predictions. Relevance to experiments using HIE-ISOLDE facility at CERN and future ReA12 facility at NSCL-MSU.

doi: 10.1103/PhysRevC.98.044610
Citations: PlumX Metrics

2018YA22      Phys.Rev. C 98, 054602 (2018)

J.Yang, P.Capel

Systematic analysis of the peripherality of the 10Be (d, p) 11Be transfer reaction and extraction of the asymptotic normalization coefficient of 11Be bound states

NUCLEAR REACTIONS 10Be(d, p), E=12, 15, 18, 21.4 MeV; analyzed experimental data differential σ(θ, E) populating the g.s. of 11Be using adiabatic distorted wave approximation (ADWA) and a Halo-EFT description of 11Be at leading order; deduced asymptotic normalization coefficients (ANCs). 11Be; calculated parameters of the Gaussian 10Be-neutron potentials, and reduced radial wave function.

doi: 10.1103/PhysRevC.98.054602
Citations: PlumX Metrics

2017CA14      Phys.Rev. C 96, 015801 (2017); Erratum Phys.Rev. C 98, 019906 (2018)

P.Capel, Y.Nollet

Reconciling Coulomb breakup and neutron radiative capture

NUCLEAR REACTIONS 14C(n, γ)15C, E=10-1000 keV; calculated capture σ(E) using twelve different descriptions of 15C, and compared with experimental data; calculated theoretical radiative-capture σ(E), multiplied by the scaling factor extracted from 15C Coulomb-breakup measurements; deduced radiative-capture σ for 14C(n, γ) at 23.3 keV from the RIKEN breakup experiment. Pb(15C, 15C'), E=68 MeV/nucleon; calculated differential σ(E) for Coulomb breakup of 15C into 14C+n using twelve different descriptions of 15C, and compared with experimental data. Proposed Coulomb breakup as an indirect technique to infer radiative-capture cross sections of astrophysical interest.

doi: 10.1103/PhysRevC.96.015801
Citations: PlumX Metrics

2017HE20      Phys.Rev. C 96, 054607 (2017)

C.Hebborn, P.Capel

Analysis of corrections to the eikonal approximation

NUCLEAR REACTIONS 12C(10Be, 10Be), (11Be, 11Be), E=10, 20 MeV/nucleon; calculated σ(θ, E) normalized to Rutherford cross section for halo nuclei using partial-wave expansion, standard eikonal approximation, its nuclear corrections at the first order with and without the semiclassical Coulomb correction, and complex semiclassical correction.

doi: 10.1103/PhysRevC.96.054607
Citations: PlumX Metrics

2017LO16      Phys.Rev. C 96, 051601 (2017)

A.E.Lovell, P.-L.Bacq, P.Capel, F.M.Nunes, L.J.Titus

Energy dependence of nonlocal optical potentials

NUCLEAR REACTIONS 208Pb(n, n), E=7.0, 9.0, 11.0, 14.6, 16.9, 20.0, 22.0, 26.0, 30.3, 40.0 MeV; 40Ca(n, n), E=9.9, 11.9, 13.9, 16.9, 21.7, 25.5, 30.1, 40.1 MeV; 90Zr(n, n), E=5.9, 7.0, 8.0, 10.0, 11.0, 24.0 MeV; 27Al(n, n), E=10.159, 18, 26 MeV; 118Sn(n, n), E=11, 14, 18, 24 MeV; analyzed differential σ(θ, E) data; deduced two new parametrizations by including energy dependence in the original nonlocal Perey and Buck (PB) and Tian, Pang, and Ma (TPM) potentials.

doi: 10.1103/PhysRevC.96.051601
Citations: PlumX Metrics

2016CO06      Phys.Rev. C 93, 054621 (2016)

F.Colomer, P.Capel, F.M.Nunes, R.C.Johnson

Extension of the ratio method to low energy

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(11Be, X), E=20 MeV/nucleon; analyzed ratio method at low energies by calculating ratio of the breakup angular distribution and the summed angular distribution (includes elastic, inelastic, and breakup). Continuum discretized coupled channel method and Coulomb corrected dynamical eikonal approximation. Relevance to features of the original halo wave function from the Ratio method.

doi: 10.1103/PhysRevC.93.054621
Citations: PlumX Metrics

2014FU06      Phys.Rev. C 90, 034617 (2014)

T.Fukui, K.Ogata, P.Capel

Analysis of a low-energy correction to the eikonal approximation

NUCLEAR REACTIONS 208Pb(15C, X), E=20 MeV/nucleon; calculated energy spectrum of the 15C breakup cross section with and without the Coulomb interaction, σ(θ), total breakup cross section as function of projectile-target angular momentum using coupled-channel representation of dynamical eikonal approximation (DEA) equations. Correction to the eikonal approximation. Discussed relation between the dynamical eikonal approximation (DEA) and the continuum-discretized coupled-channels method with the eikonal approximation (E-CDCC).

doi: 10.1103/PhysRevC.90.034617
Citations: PlumX Metrics

2013CA21      Phys.Rev. C 88, 044602 (2013)

P.Capel, R.C.Johnson, F.M.Nunes

The ratio method: A new tool to study one-neutron halo nuclei

NUCLEAR REACTIONS 12C(11Be, X), E=67 MeV/nucleon; 208Pb(11Be, X), E=69 MeV/nucleon; Pb(19C, X), E=67 MeV/nucleon; analyzed ratio of breakup σ(θ) and summed σ(θ) from elastic, inelastic and breakup channels; investigated new σ ratio method to analyze structure of one-neutron halo nuclei. Recoil excitation and breakup model (REB) with dynamical eikonal approximation (DEA).

doi: 10.1103/PhysRevC.88.044602
Citations: PlumX Metrics

2012CA18      Phys.Rev. C 85, 044604 (2012)

P.Capel, H.Esbensen, F.M.Nunes

Comparing nonperturbative models of the breakup of neutron-halo nuclei

NUCLEAR REACTIONS 208Pb(15C, n14C), E=20, 68 MeV/nucleon; calculated differential σ(E, θ) from breakup modes: continuum discretized coupled channel (CDCC), time-dependent method, semiclassical approximation, and dynamical eikonal approximation. Halo nuclei. Comparison with experimental data. Relevance to 14C(n, γ)15C reaction.

doi: 10.1103/PhysRevC.85.044604
Citations: PlumX Metrics

2011CA16      Int.J.Mod.Phys. E20, 934 (2011)

P.Capel, P.Danielewicz, F.M.Nunes

Coupling effects in the extraction of spectroscopic factors

doi: 10.1142/S0218301311019003
Citations: PlumX Metrics

2011CA32      J.Phys.:Conf.Ser. 312, 082015 (2011)

P.Capel, F.M.Nunes

Benchmarking models of breakup reactions

NUCLEAR REACTIONS Pb(15C, X), E=68 MeV/nucleon; calculated breakup σ(E), σ(θ) using CDCC (continuum discretized CC), DEA (dynamical eikonal approximation) for halo nuclei breakup

doi: 10.1088/1742-6596/312/4/082015
Citations: PlumX Metrics

2011SF01      Int.J.Mod.Phys. E20, 831 (2011)

C.Sfienti, G.Raciti, P.Capel, D.Baye, M.De Napoli, F.Giacoppo, E.Rapisarda, G.Cardella, P.Descouvemont, J.-M.Sparenberg, C.Mazzocchi

17F breakup reactions: A touchstone for indirect measurements

doi: 10.1142/S0218301311018782
Citations: PlumX Metrics

2011SF02      J.Phys.:Conf.Ser. 312, 042022 (2011)

C.Sfienti, G.Raciti, P.Capel, D.Baye, M.De Napoli, F.Giacoppo, E.Rapisarda, G.Cardella, P.Descouvemont, C.Mazzocchi, J.-M.Sparenberg

17F breakup reactions: A touchstone for indirect measurements

NUCLEAR REACTIONS Pb(17F, p16O), E=40 MeV/nucleon;measured reaction fragments using Si-strip detector; deduced breakup unnormalized σ(Erelative); calculated breakup σ(Erelative).

doi: 10.1088/1742-6596/312/4/042022
Citations: PlumX Metrics

2011SP03      J.Phys.:Conf.Ser. 312, 082040 (2011)

J.-M.Sparenberg, P.Capel, D.Baye

Deducing physical properties of weakly bound states from low-energy scattering data. Application to 16O and 12C+α

NUCLEAR REACTIONS 12C(α, α'), E=low; calculated d-wave inversion potentials, effective-range function using published data close to 245 keV 2+ state of 16O; deduced ANC (asymptotic normalization constant).

doi: 10.1088/1742-6596/312/4/082040
Citations: PlumX Metrics

2011TI09      Phys.Rev. C 84, 035805 (2011)

L.J.Titus, P.Capel, F.M.Nunes

Asymptotic normalization of mirror states and the effect of couplings

NUCLEAR STRUCTURE 8Li, 8B, 13C, 13N, 17O, 17F, 23Ne, 23Al, 27Mg, 27P; calculated depths Vws of the central potential, Ratio of proton to neutron asymptotic normalization coefficients (ANCs) for the dominant component, spectroscopic factors for mirror nuclei, effect of the strength and multipolarity of the couplings induced. Astrophysically relevant proton capture reactions on proton-rich nuclei. Microscopic cluster model. Implications for novae.

doi: 10.1103/PhysRevC.84.035805
Citations: PlumX Metrics

2010CA25      Phys.Rev. C 82, 054612 (2010)

P.Capel, P.Danielewicz, F.M.Nunes

Deducing spectroscopic factors from wave-function asymptotics

doi: 10.1103/PhysRevC.82.054612
Citations: PlumX Metrics

2010HO03      Phys.Rev. C 81, 024606 (2010)

W.Horiuchi, Y.Suzuki, P.Capel, D.Baye

Probing the weakly-bound neutron orbit of 31Ne with total reaction and one-neutron removal cross sections

NUCLEAR REACTIONS 12C, 208Pb(31Ne, 30Ne), E=40-1000 MeV/nucleon; calculated total σ and one-neutron removal σ, matter density, E1 strengths, parallel-momentum distribution for the elastic breakup of 31Ne using Glauber and eikonal models.

NUCLEAR STRUCTURE 31Ne; calculated single-particle energies and discussed halo structure in the context of one-neutron removal reactions on 31Ne.

doi: 10.1103/PhysRevC.81.024606
Citations: PlumX Metrics

2010SP01      Phys.Rev. C 81, 011601 (2010)

J.-M.Sparenberg, P.Capel, D.Baye

Influence of low-energy scattering on loosely bound states

NUCLEAR REACTIONS 16O(n, γ), (p, γ), E not given; 12C(α, γ), E not given; calculated asymptotic normalization constants (ANC) as a function of binding energy for subthreshold bound states using the analytic continuation of the scattering (S) matrix in the complex wave-number plane.

doi: 10.1103/PhysRevC.81.011601
Citations: PlumX Metrics

2009BA07      Phys.Rev. C 79, 024607 (2009)

D.Baye, P.Capel, P.Descouvemont, Y.Suzuki

Four-body calculation of 6He breakup with the Coulomb-corrected eikonal method

NUCLEAR REACTIONS 208Pb(6He, X), E=70, 240 MeV/nucleon; calculated E1 strength functions, total and partial cross section using Coulomb corrected eikonal method and breakup of 6He halo nucleus treated as 3 body α+n+n model. $Comparison with experimental data.

doi: 10.1103/PhysRevC.79.024607
Citations: PlumX Metrics

2008CA26      Phys.Rev. C 78, 054602 (2008)

P.Capel, D.Baye, Y.Suzuki

Coulomb-corrected eikonal description of the breakup of halo nuclei

NUCLEAR REACTIONS 12C, 208Pb(11Be, X), E=67, 69 MeV/nucleon; calculated σ. Coulomb-corrected eikonal approximation.

doi: 10.1103/PhysRevC.78.054602
Citations: PlumX Metrics

2008CA30      Int.J.Mod.Phys. E17, 2315 (2008)

P.Capel, G.Goldstein, D.Baye, Y.Suzuki

Breakup of halo nuclei within a Dynamical Eikonal Approximation

NUCLEAR REACTIONS C, Pb(11Be, X), E=67, 69 MeV; calculated break-up σ, σ(E), σ(p). Coulomb Corrected Eikonal (CCE) model.

doi: 10.1142/S0218301308011537
Citations: PlumX Metrics

2008RA23      Phys.Rev.Lett. 101, 212501 (2008)

R.Raabe, A.Andreyev, M.J.G.Borge, L.Buchmann, P.Capel, H.O.U.Fynbo, M.Huyse, R.Kanungo, T.Kirchner, C.Mattoon, A.C.Morton, I.Mukha, J.Pearson, J.Ponsaers, J.J.Ressler, K.Riisager, C.Ruiz, G.Ruprecht, F.Sarazin, O.Tengblad, P.Van Duppen, P.Walden

β-Delayed Deuteron Emission from 11Li: Decay of the Halo

RADIOACTIVITY 11Li(β-); measured β-delayed deuteron spectrum. Deduced transition probability.

doi: 10.1103/PhysRevLett.101.212501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2007CA22      Phys.Rev. C 75, 054609 (2007)

P.Capel, F.M.Nunes

Peripherality of breakup reactions

NUCLEAR REACTIONS Pb, C(11Be, X), (8B, X), E=40-70 MeV/nucleon; Ni(11Be, X), (8B, X), E=26 MeV; calculated breakup cross sections.

doi: 10.1103/PhysRevC.75.054609
Citations: PlumX Metrics

2007GO26      Phys.Rev. C 76, 024608 (2007)

G.Goldstein, P.Capel, D.Baye

Analysis of Coulomb breakup experiments of 8B with a dynamical eikonal approximation

NUCLEAR REACTIONS Pb(8B, p), E=44, 52, 81, 83 MeV/nucleon; analyzed σ and angular distributions within the dynamical eikonal approximation. Analyzed the accuracy of the astrophysical S-factor extracted from coulomb breakup measurements.

doi: 10.1103/PhysRevC.76.024608
Citations: PlumX Metrics

2006CA06      Phys.Rev. C 73, 014615 (2006)

P.Capel, F.M.Nunes

Influence of the projectile description on breakup calculations

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=25.75 MeV; 208Pb(11Be, n10Be), E=69 MeV/nucleon; calculated σ(E), relative energy spectra, partial wave contributions; deduced sensitivity to projectile description.

doi: 10.1103/PhysRevC.73.014615
Citations: PlumX Metrics

2006GO05      Phys.Rev. C 73, 024602 (2006)

G.Goldstein, D.Baye, P.Capel

Dynamical eikonal approximation in breakup reactions of 11Be

NUCLEAR REACTIONS 12C, 208Pb(11Be, X), E ≈ 68 MeV/nucleon; calculated breakup σ(E, θ), σ. Dynamical eikonal approximation, comparison with data.

doi: 10.1103/PhysRevC.73.024602
Citations: PlumX Metrics

2005BA72      Phys.Rev.Lett. 95, 082502 (2005)

D.Baye, P.Capel, G.Goldstein

Collisions of Halo Nuclei within a Dynamical Eikonal Approximation

NUCLEAR REACTIONS 12C(11Be, 11Be), E=49.3 MeV/nucleon; 208Pb(11Be, 11Be), E=20 MeV/nucleon; calculated elastic σ(θ). 208Pb(11Be, X), E=20, 69 MeV/nucleon; calculated breakup σ(θ). Dynamical eikonal approximation, comparison with data.

doi: 10.1103/PhysRevLett.95.082502
Citations: PlumX Metrics

2005CA22      Phys.Rev. C 71, 044609 (2005)

P.Capel, D.Baye

Coupling-in-the-continuum effects in Coulomb dissociation of halo nuclei

NUCLEAR REACTIONS 208Pb(11Be, n10Be), (8B, p7Be), E ≈ 50 MeV/nucleon; calculated Coulomb breakup, partial wave components, continuum effects, resonance contributions.

doi: 10.1103/PhysRevC.71.044609
Citations: PlumX Metrics

2004CA50      Phys.Rev. C 70, 064605 (2004)

P.Capel, G.Goldstein, D.Baye

Time-dependent analysis of the breakup of 11Be on 12C at 67 MeV/nucleon

NUCLEAR REACTIONS 12C(11Be, n10Be), E=67 MeV/nucleon; analyzed breakup σ(E); deduced resonance contribution, other reaction mechanism features. Semiclassical framework, time-dependent Schrodinger equation.

doi: 10.1103/PhysRevC.70.064605
Citations: PlumX Metrics

2003BA97      Nucl.Phys. A722, 328c (2003)

D.Baye, P.Capel, V.S.Melezhik

Time-dependent analysis of the Coulomb breakup of weakly-bound nuclei

doi: 10.1016/S0375-9474(03)01385-X
Citations: PlumX Metrics

2003CA01      Phys.Lett. 552B, 145 (2003)

P.Capel, D.Baye, V.S.Melezhik

Supersymmetric elimination of forbidden states in the Coulomb breakup of the 11Be halo nucleus

NUCLEAR REACTIONS Pb(11Be, 10Be), E=72 MeV/nucleon; calculated Coulomb breakup σ vs fragment relative energy. Time-dependent calculations, phase-equivalent potentials, comparison with data.

doi: 10.1016/S0370-2693(02)03128-3
Citations: PlumX Metrics

2003CA25      Phys.Rev. C 68, 014612 (2003)

P.Capel, D.Baye, V.S.Melezhik

Time-dependent analysis of the breakup of halo nuclei

NUCLEAR REACTIONS 208Pb(11Be, n10Be), (15C, n14C), (11Be, 11Be'), (15C, 15C'), E ≈ 70 MeV/nucleon; calculated breakup and inelastic σ. Semiclassical time-dependent Schrodinger equation.

doi: 10.1103/PhysRevC.68.014612
Citations: PlumX Metrics

Back to query form