NSR Query Results
Output year order : Descending NSR database version of April 11, 2024. Search: Author = Z.X.Ren Found 17 matches. 2024XU01 Phys.Rev. C 109, 014311 (2024) F.F.Xu, B.Li, Z.X.Ren, P.W.Zhao Tetrahedral shape of ^{110}Zr from covariant density functional theory in 3D lattice space
doi: 10.1103/PhysRevC.109.014311
2024ZH07 Phys.Rev. C 109, 024316 (2024) D.D.Zhang, B.Li, D.Vretenar, T.Niksic, Z.X.Ren, P.W.Zhao, J.Meng Ternary quasifission in collisions of actinide nuclei
doi: 10.1103/PhysRevC.109.024316
2023LI04 Phys.Rev. C 107, 014303 (2023) B.Li, D.Vretenar, Z.X.Ren, T.Niksic, J.Zhao, P.W.Zhao, J.Meng Fission dynamics, dissipation, and clustering at finite temperature NUCLEAR STRUCTURE ^{240}Pu, ^{234}U, ^{244}Cm, ^{250}Cf; calculated self-consistent deformation energy surface for the process of induced fission, induced fission trajectories evolution, proton localization functions, density profile immediately prior to the scission event. Microscopic finite-temperature model based on time dependent nuclear density functional theory (TDDFT).
doi: 10.1103/PhysRevC.107.014303
2022RE01 Phys.Rev. C 105, L011301 (2022) Dynamics of rotation in chiral nuclei NUCLEAR STRUCTURE ^{135}Nd; calculated total energy and Routhian surfaces, trajectories of the tilted angles for the total angular momenta in the body-fixed frame, excitation energies of the two pairs of chiral doublet bands, and compared with experimental data; deduced a new mechanism of chiral precession from the microscopic dynamics of the total angular momentum in the body-fixed frame (illustrations as movies given in the Supplemental Material of the paper). Self-consistent microscopic calculations based on time-dependent and tilted axis cranking covariant density functional theory (TAC-CDFT).
doi: 10.1103/PhysRevC.105.L011301
2022RE04 Phys.Rev. C 105, 044313 (2022) Z.X.Ren, J.Zhao, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng Microscopic analysis of induced nuclear fission dynamics NUCLEAR STRUCTURE ^{240}Pu; calculated deformation energy surface in the plane of quadrupole-octupole axially symmetric deformation parameters, induced fission charge yields and fragments distributions, fission trajectories on the the self-consistent deformation energy surface, total kinetic energies of the fragments from induced fission. Framework that combines the time-dependent generator coordinate method (TDGCM) and time-dependent nuclear density functional theory (TDDFT). Comparison to available experimental data.
doi: 10.1103/PhysRevC.105.044313
2022RE05 Phys.Rev.Lett. 128, 172501 (2022) Z.X.Ren, D.Vretenar, T.Niksic, P.W.Zhao, J.Zhao, J.Meng Dynamical Synthesis of ^{4}He in the Scission Phase of Nuclear Fission RADIOACTIVITY ^{240}Pu(SF); analyzed available data. ^{4,6}He, ^{3}H; deduced light cluster emission. Time-dependent density functional theory, based on a relativistic energy density functional including pairing correlations.
doi: 10.1103/PhysRevLett.128.172501
2022WU07 Phys.Rev. C 105, L031303 (2022) Nuclear energy density functionals from machine learning NUCLEAR STRUCTURE ^{4}He, ^{16}O, ^{40}Ca; calculated rms radii, total energies, kinetic energies, ground-state densities. Self-consistent Kohn-Sham and machine-learning approaches. Comparison to available experimental data.
doi: 10.1103/PhysRevC.105.L031303
2022ZH06 Phys.Rev. C 105, 024322 (2022) D.D.Zhang, Z.X.Ren, P.W.Zhao, D.Vretenar, T.Niksic, J.Meng Effects of rotation and valence nucleons in molecular α-chain nuclei NUCLEAR STRUCTURE ^{12,16}C, ^{16}Ne; calculated Routhians, proton and neutron density distributions, location of the peak and the width of α-like cluster in the nuclei. ^{16}C, ^{16}Ne, ^{20}O, ^{20}Mg; calculated angular momentaand quadrupole deformation as functions of rotational frequency. 3D lattice Cranking covariant density functional theory (CDFT) calculations.
doi: 10.1103/PhysRevC.105.024322
2021RA31 Phys.Rev. C 104, 064316 (2021) S.Rajbanshi, R.Palit, R.Raut, Y.Y.Wang, Z.X.Ren, J.Meng, Q.B.Chen, S.Ali, H.Pai, F.S.Babra, R.Banik, S.Bhattacharya, S.Bhattacharyya, P.Dey, S.Malik, G.Mukherjee, Md.S.R.Laskar, S.Nandi, R.Santra, T.Trivedi, S.S.Ghugre, A.Goswami Evidence of octupole correlation in ^{79}Se NUCLEAR REACTIONS ^{76}Ge(^{9}Be, 2nα)^{79}Se, E≈31 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(θ)(ADO ratios), γγ(linear polarization), T_{1/2} of levels by DSAM using INGA array of 14 Compton-suppressed clover detectors at the TIFR Pelletron Linac Facility. ^{79}Se; deduced high-spin levels, J, π, multipolarities, multipole mixing ratios, B(M1), B(E2), B(E1)/B(E2) ratios, intrinsic dipole moments, octupole correlation; calculated potential energy surface in (β_{20}, β_{30}) plane based on the covariant density functional theory. Comparison of measured transition probabilities with reflection asymmetric triaxial particle rotor model (RAT-PRM) calculations.
doi: 10.1103/PhysRevC.104.064316
2020LI41 Phys.Rev. C 102, 044307 (2020) Efficient solution for the Dirac equation in 3D lattice space with the conjugate gradient method NUCLEAR STRUCTURE ^{48}Ca; calculated total density of the lowest 28 levels in the spherical Woods-Saxon potential as a function of the radial coordinate using the conjugate gradient method with a filtering function (PCG-F) for solving iteratively the Dirac equation in three-dimensional (3D) lattice space for nuclear systems.
doi: 10.1103/PhysRevC.102.044307
2020RE02 Nucl.Phys. A996, 121696 (2020) Z.X.Ren, P.W.Zhao, S.Q.Zhang, J.Meng Toroidal states in ^{28}Si with covariant density functional theory in 3D lattice space
doi: 10.1016/j.nuclphysa.2020.121696
2020RE10 Phys.Rev. C 102, 021301 (2020) Toward a bridge between relativistic and nonrelativistic density functional theories for nuclei NUCLEAR STRUCTURE ^{208}Pb; calculated total energy, total vector and scalar densities, rms radius, single-particle spectrum for neutrons. ^{16}O, ^{40,48}Ca, ^{100,120,132}Sn, ^{208}Pb; calculated total energies per particle, traces of scalar densities per particle, and rms radii. Nonrelativistic reduction of the self-consistent covariant density functional theory (CDFT), with the similarity renormalization group (SRG) method.
doi: 10.1103/PhysRevC.102.021301
2020RE13 Phys.Rev. C 102, 044603 (2020) Time-dependent covariant density functional theory in three-dimensional lattice space: Benchmark calculation for the ^{16}O + ^{16}O reaction NUCLEAR REACTIONS ^{16}O(^{16}O, X), E(cm)=50, 5-200 MeV; calculated collective kinetic energy of a boosted ^{16}O, relative momentum, energy and particle number deviations for E(cm)=50 MeV, time evolution of total energy and quadrupole deformation β_{20} for E(cm)=50 MeV, energy dissipation as a function of beam energy for E(cm)=80-200 MeV, density distribution contours of the separating ions at E(cm)=90, 130, 170 MeV, total density evolutions for E(cm)=26.7, 26.8 MeV, above-barrier fusion σ(E) for E(cm)=5-40 MeV. Time-dependent covariant density functional theory (CDFT) with density functional PC-PK1. Comparison with experimental data.
doi: 10.1103/PhysRevC.102.044603
2019CA04 Phys.Rev. C 99, 014606 (2019) X.G.Cao, E.J.Kim, K.Schmidt, K.Hagel, M.Barbui, J.Gauthier, S.Wuenschel, G.Giuliani, M.R.D.Rodriguez, S.Kowalski, H.Zheng, M.Huang, A.Bonasera, R.Wada, N.Blando, G.Q.Zhang, C.Y.Wong, A.Staszczak, Z.X.Ren, Y.K.Wang, S.Q.Zhang, J.Meng, J.B.Natowitz Examination of evidence for resonances at high excitation energy in the 7 α disassembly of ^{28}Si NUCLEAR REACTIONS ^{12}C(^{28}Si, X), (^{28}Si, 7α), E=35 MeV/nucleon; measured Eα, Iα, excitation functions for the α-conjugate exit channels using the 4π NIMROD-ISiS array for charged particle detection at the K500 superconducting cyclotron facility of Texas A and M. ^{28}Si; deduced resonances at high excitation energies, shapes of 7α events in the de-excitation of projectile-like nuclei; calculated energies, J, π, configurations, quadrupole deformation of toroidal high-spin isomers using covariant functional PC-PK1 and DD-ME2.
doi: 10.1103/PhysRevC.99.014606
2019RE09 Phys.Rev. C 100, 044322 (2019) Hamiltonian flow equations for a Dirac particle in large scalar and vector potentials NUCLEAR STRUCTURE ^{208}Pb; calculated total density of the lowest 126 levels as a function of the radial coordinate using SRG method through a novel expansion with the inverse of the Dirac effective mass, and compared with exact results.
doi: 10.1103/PhysRevC.100.044322
2018PE07 Phys.Rev. C 97, 041304 (2018) C.M.Petrache, B.F.Lv, A.Astier, E.Dupont, Y.K.Wang, S.Q.Zhang, P.W.Zhao, Z.X.Ren, J.Meng, P.T.Greenlees, H.Badran, D.M.Cox, T.Grahn, R.Julin, S.Juutinen, J.Konki, J.Pakarinen, P.Papadakis, J.Partanen, P.Rahkila, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, B.Cederwall, O.Aktas, A.Ertoprak, H.Liu, S.Matta, P.Subramaniam, S.Guo, M.L.Liu, X.H.Zhou, K.L.Wang, I.Kuti, J.Timar, A.Tucholski, J.Srebrny, C.Andreoiu Evidence of chiral bands in even-even nuclei NUCLEAR REACTIONS ^{100}Mo(^{40}Ar, 4n), E=152 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO) using JUROGAM II array at the K130 Cyclotron facility of the University of Jyvaskyla. ^{136}Nd; deduced high-spin levels, J, π, bands, five pairs of nearly degenerate chiral doublet bands, B(M1)/B(E2), configurations, quasiparticle alignments. Comparison with theoretical calculations using three-dimensional tilted axis cranking covariant density functional theory (3D TAC-CDFT), TAC-CDFT, and multi-quasiparticle particle-rotor model (MQ-PRM). Complete level scheme and bands to appear in a forthcoming paper.
doi: 10.1103/PhysRevC.97.041304
2017RE02 Phys.Rev. C 95, 024313 (2017) Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
doi: 10.1103/PhysRevC.95.024313
Back to query form |