NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = D.A.Nesterenko

Found 41 matches.

Back to query form



2024DE01      Phys.Lett. B 848, 138352 (2024)

R.P.de Groote, D.A.Nesterenko, A.Kankainen, M.L.Bissell, O.Beliuskina, J.Bonnard, P.Campbell, L.Canete, B.Cheal, C.Delafosse, A.de Roubin, C.S.Devlin, J.Dobaczewski, T.Eronen, R.F.Garcia Ruiz, S.Geldhof, W.Gins, M.Hukkanen, P.Imgram, R.Mathieson, A.Koszorus, I.D.Moore, I.Pohjalainen, M.Reponen, B.van den Borne, M.Vilen, S.Zadvornaya

Measurements of binding energies and electromagnetic moments of silver isotopes – A complementary benchmark of density functional theory

NUCLEAR MOMENTS 113,113m,115,115m,117,117m,119,119m,121,121m,123,123mAg; measured frequencies. 107,109Ag, 133Cs; deduced nuclear binding and excitation energies, J, magnetic dipole and electric quadrupole moments, the crucial role of the spin-orbit strength and time-odd mean fields play in the simultaneous description of electromagnetic moments and nuclear binding. Comparison with calculations performed with density functional theory (DFT). The JYFLTRAP mass spectrometer and the collinear laser spectroscopy beamline at the Ion Guide Isotope Separator On-Line (IGISOL) facility.

doi: 10.1016/j.physletb.2023.138352
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023GA20      Eur.Phys.J. A 59, 169 (2023)

Z.Gao, A.Solders, A.Al-Adili, O.Beliuskina, T.Eronen, A.Kankainen, M.Lantz, I.D.Moore, D.A.Nesterenko, H.Penttila, S.Pomp, H.Sjostrand, for the IGISOL Collaboration

Applying machine learning methods for the analysis of two-dimensional mass spectra

ATOMIC MASSES 129In, 129Sn, 129Sb; measured frequencies; deduced the isomeric yield ratios. Comparison with available data. The Phase-Imaging Ion-Cyclotron-Resonance technique, the Penning trap (JYFLTRAP).

doi: 10.1140/epja/s10050-023-01080-x
Citations: PlumX Metrics


2023GE04      Phys.Rev. C 108, 045502 (2023)

Z.Ge, T.Eronen, A.de Roubin, M.Ramalho, J.Kostensalo, J.Kotila, J.Suhonen, D.A.Nesterenko, A.Kankainen, P.Ascher, O.Beliuskina, M.Flayol, M.Gerbaux, S.Grevy, M.Hukkanen, A.Husson, A.Jaries, A.Jokinen, I.D.Moore, P.Pirinen, J.Romero, M.Stryjczyk, V.Virtanen, A.Zadvornaya

β- decay Q-value measurement of 136Cs and its implications for neutrino studies

doi: 10.1103/PhysRevC.108.045502
Citations: PlumX Metrics


2023HU01      Phys.Rev. C 107, 014306 (2023)

M.Hukkanen, W.Ryssens, P.Ascher, M.Bender, T.Eronen, S.Grevy, A.Kankainen, M.Stryjczyk, L.Al Ayoubi, S.Ayet, O.Beliuskina, C.Delafosse, W.Gins, M.Gerbaux, A.Husson, A.Jokinen, D.A.Nesterenko, I.Pohjalainen, M.Reponen, S.Rinta-Antila, A.de Roubin, A.P.Weaver

Odd-odd neutron-rich rhodium isotopes studied with the double Penning trap JYFLTRAP

ATOMIC MASSES 110,110m,112,112m,114,114m,116,116m,118,118m,120Rh; measured cyclotron frequency; deduced mass excess. 112Rh; calculated potential energy surfaces, singe particle neutron and proton states. Systematics of deformation parameter, triaxiality angle and neutron gaps for Ru, Rh and Pd isotopes. Comparison to AME2020, other experimental data and to theoretical predictions using the BSkG1 mass model. Phase-imaging ion-cyclotron-resonance (PI-ICR) technique. Isotopes produced in U(p, F), E=25 MeV at K-130 cyclotron. JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility.

RADIOACTIVITY 112,112mRh(β-)[from U(p, F), E=25 MeV]; measured Iβ; deduced T1/2. 112Rh; deduced the correct placement of ground and isomeric state and assigned J, π accordingly. Silicon detector placed after the JYFLTRAP Penning trap at IGISOL.

doi: 10.1103/PhysRevC.107.014306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023HU25      Phys.Rev. C 108, 064315 (2023)

M.Hukkanen, W.Ryssens, P.Ascher, M.Bender, T.Eronen, S.Grevy, A.Kankainen, M.Stryjczyk, L.Al Ayoubi, S.Ayet, O.Beliuskina, C.Delafosse, Z.Ge, M.Gerbaux, W.Gins, A.Husson, A.Jaries, S.Kujanpaa, M.Mougeot, D.A.Nesterenko, S.Nikas, H.Penttila, I.Pohjalainen, A.Raggio, M.Reponen, S.Rinta-Antila, A.de Roubin, J.Ruotsalainen, V.Virtanen, A.P.Weaver

Binding energies of ground and isomeric states in neutron-rich ruthenium isotopes: Measurements at JYFLTRAP and comparison to theory

doi: 10.1103/PhysRevC.108.064315
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023JA11      Phys.Rev. C 108, 064302 (2023)

A.Jaries, M.Stryjczyk, A.Kankainen, L.Al Ayoubi, O.Beliuskina, P.Delahaye, T.Eronen, M.Flayol, Z.Ge, W.Gins, M.Hukkanen, D.Kahl, S.Kujanpaa, D.Kumar, I.D.Moore, M.Mougeot, D.A.Nesterenko, S.Nikas, H.Penttila, D.Pitman-Weymouth, I.Pohjalainen, A.Raggio, W.Rattanasakuldilok, A.de Roubin, J.Ruotsalainen, V.Virtanen

High-precision Penning-trap mass measurements of Cd and In isotopes at JYFLTRAP remove the fluctuations in the two-neutron separation energies

doi: 10.1103/PhysRevC.108.064302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023NE13      Phys.Rev. C 108, 054301 (2023)

D.A.Nesterenko, J.Ruotsalainen, M.Stryjczyk, A.Kankainen, L.Al Ayoubi, O.Beliuskina, P.Delahaye, T.Eronen, M.Flayol, Z.Ge, W.Gins, M.Hukkanen, A.Jaries, D.Kahl, D.Kumar, S.Nikas, A.Ortiz-Cortes, H.Penttila, D.Pitman-Weymouth, A.Raggio, M.Ramalho, M.Reponen, S.Rinta-Antila, J.Romero, A.de Roubin, P.C.Srivastava, J.Suhonen, V.Virtanen, A.Zadvornaya

High-precision measurements of low-lying isomeric states in 120-124In with the JYFLTRAP double Penning trap

doi: 10.1103/PhysRevC.108.054301
Citations: PlumX Metrics


2023NI10      Phys.Rev.Lett. 131, 222503 (2023)

L.Nies, L.Canete, D.D.Dao, S.Giraud, A.Kankainen, D.Lunney, F.Nowacki, B.Bastin, M.Stryjczyk, P.Ascher, K.Blaum, R.B.Cakirli, T.Eronen, P.Fischer, M.Flayol, V.Girard Alcindor, A.Herlert, A.Jokinen, A.Khanam, U.Koster, D.Lange, I.D.Moore, M.Muller, M.Mougeot, D.A.Nesterenko, H.Penttila, C.Petrone, I.Pohjalainen, A.de Roubin, V.Rubchenya, Ch.Schweiger, L.Schweikhard, M.Vilen, J.Aysto

Further Evidence for Shape Coexistence in 79Znm near Doubly Magic 78Ni

ATOMIC MASSES 79Zn; measured frequencies, TOF; deduced the excitation energy of the 1/2+ isomer, the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band, shape coexistence. Comparison with state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations. The time-of-flight ion cyclotron resonance (TOF-ICR) method, the JYFLTRAP double Penning trap at the ion guide isotope separator on-line (IGISOL) facility in Jyvaskyla (Finland), and the multi-reflection time-of-flight mass spectrometer (MR-TOF MS) of ISOLTRAP at ISOLDE at CERN (Switzerland).

doi: 10.1103/PhysRevLett.131.222503
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022ER01      Phys.Lett. B 830, 137135 (2022)

T.Eronen, Z.Ge, A.de Roubin, M.Ramalho, J.Kostensalo, J.Kotila, O.Beliushkina, C.Delafosse, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, I.D.Moore, D.A.Nesterenko, M.Stryjczyk, J.Suhonen

High-precision measurement of a low Q value for allowed β-decay of 131I related to neutrino mass determination

RADIOACTIVITY 131I(β-) [from U(p, X), E=30 MeV]; measured cyclotron frequency ratios; deduced Q-value, partial T1/2 for the transition. Comparison with the Atomic Mass Evaluation 2020, theoretical calculations. The double Penning trap mass spectrometer JYFLTRAP at the IGISOL facility, the K-130 cyclotron.

doi: 10.1016/j.physletb.2022.137135
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022GA10      Eur.Phys.J. A 58, 27 (2022)

Z.Gao, A.Al-Adili, L.Canete, T.Eronen, D.Gorelov, A.Kankainen, M.Lantz, A.Mattera, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, S.Pomp, V.Rakopoulos, S.Rinta-Antila, M.Vilen, J.Aysto, A.Solders

Benchmark of a multi-physics Monte Carlo simulation of an ion guide for neutron-induced fission products

NUCLEAR REACTIONS U(n, F), Ti(n, X), E<30 MeV; measured reaction products, Eγ, Iγ. 95Zr, 95Nb, 99Mo, 103Ru, 127Sb, 131,132I, 140Ba, 140La, 141Ce, 143Ce, 147Nd, 46Sc, 47Ca, 48Sc, 237U; deduced R values for each observed γ-ray transition belonging to fission products. Comparison with GEF, MCNPX and Geant4 calculations. The University of Jyvaskyla, the Ion Guide Isotope Separator On-Line (IGISOL) technique.

doi: 10.1140/epja/s10050-022-00676-z
Citations: PlumX Metrics


2022GE07      Phys.Rev. C 106, 015502 (2022)

Z.Ge, T.Eronen, A.de Roubin, J.Kostensalo, J.Suhonen, D.A.Nesterenko, O.Beliuskina, R.de Groote, C.Delafosse, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, J.Kotila, A.Koszorus, I.D.Moore, A.Raggio, S.Rinta-Antila, V.Virtanen, A.P.Weaver, A.Zadvornaya

Direct determination of the atomic mass difference of the pairs 76As-76Se and 155Tb-155Gd rules out 76As and 155Tb as possible candidates for electron (anti)neutrino mass measurements

ATOMIC MASSES 76As, 76Se; 155Tb, 155Gd; measured cyclotron frequency ratios using phase-imaging ion-cyclotron-resonance technique (PI-ICR) and high-precision Penning-trap mass spectrometry (PTMS) with a double Penning trap mass spectrometer (JYFLTRAP) at the IGISOL facility of the University of Jyvaskyla; deduced precise Q(β) values for 76As β- decay to 76Se and 155Tb ϵ decay to 155Gd. Comparison with evaluated data in AME2020.

RADIOACTIVITY 76As(β-); 155Tb(EC); deduced precise Q(β) values from measurements of difference in mass excesses of 76As, 76Se, and 155Tb, 155Gd pairs; excluded these two cases as potential candidates for the search of ultra-low Q values for determination of electron-(anti)neutrino mass. Comparison with evaluated data in AME2020.

doi: 10.1103/PhysRevC.106.015502
Citations: PlumX Metrics


2022GE11      Phys.Lett. B 832, 137226 (2022)

Z.Ge, T.Eronen, A.de Roubin, K.S.Tyrin, L.Canete, S.Geldhof, A.Jokinen, A.Kankainen, J.Kostensalo, J.Kotila, M.I.Krivoruchenko, I.D.Moore, D.A.Nesterenko, J.Suhonen, M.Vilen

High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination

RADIOACTIVITY 111In(EC) [from In(p, X), E=130 MeV]; measured Ramsey time-of-flight ion-cyclotron resonance (TOF-ICR), cyclotron frequency ratios; deduced Q-values to the ground and excited states. Comparison with AME2020 and the microscopic interacting boson-fermion model (IBFM-2) calculations. Ion Guide Isotope Separator On-Line facility (IGISOL) utilizing the JYFLTRAP double Penning trap mass spectrometer.

doi: 10.1016/j.physletb.2022.137226
Citations: PlumX Metrics


2022GI08      Phys.Lett. B 833, 137309 (2022)

S.Giraud, L.Canete, B.Bastin, A.Kankainen, A.F.Fantina, F.Gulminelli, P.Ascher, T.Eronen, V.Girard Alcindor, A.Jokinen, A.Khanam, I.D.Moore, D.A.Nesterenko, F.de Oliveira Santos, H.Penttila, C.Petrone, I.Pohjalainen, A.De Roubin, V.A.Rubchenya, M.Vilen, J.Aysto

Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae

ATOMIC MASSES 74,75Ni, 76,76m,77,78Cu, 79,79mZn; measured cyclotron resonance frequencies using time-of-flight ion-cyclotron-resonance (TOF-ICR) technique at the ISISOL-JYFLTRAP facility of the University of Jyvaskyla; deduced mass excesses, and compared with previously available experimental values and with AME2020 evaluation. Isotopes produced in U(p, F), E=35 MeV at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in Jyvaskyla, followed by mass separation of fission fragments. Z=26-39, N=44-51; systematics of experimental and theoretical values of two-neutron shell-gap energies.

doi: 10.1016/j.physletb.2022.137309
Citations: PlumX Metrics


2022KU09      Phys.Rev. C 105, 034316 (2022)

J.Kurpeta, A.Abramuk, T.Rzaca-Urban, W.Urban, L.Canete, T.Eronen, S.Geldhof, M.Gierlik, J.P.Greene, A.Jokinen, A.Kankainen, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, M.Reponen, S.Rinta-Antila, A.de Roubin, G.S.Simpson, A.G.Smith, M.Vilen

β- and γ-spectroscopy study of 119Pd and 119Ag

RADIOACTIVITY 119,119mPd(β-)[from 253U(p, F), E=25 MeV]; measured Eβ, Iβ, Eγ, Iγ, βγ-coin, γγ-coin, γγ∓coin; deduced β-branching ratios, logft, T1/2. 252Cf(SF); measured Eγ, Iγ, γ(θ), γγγ-coin. 119Pd; levels, J, π, T1/2 for ground state and proposed 11/2- isomer. 119Ag; deduced levels, J, π, multipolarities, ICC, δ, structure of rotational band. Discovered 2 separate bands in 119Ag possibly feeded by 2 different β-decaying states in 119Pd. Systematics of low-energy excitations in odd-A isotopes of Rh, Ag, In, and selected low-energy levels in odd-A nuclei of cadmium (109Cd, 111Cd, 113Cd, 115Cd, 117Cd, 119Cd, 121Cd, 123Cd), the isotones of palladium. Isotopes of 119Pd were separated and purified using IGISOL technique and JYFLTRAP Penning trap. Gammas from 252Cf spontaneous fission were measured with Gammasphere array at ANL.

doi: 10.1103/PhysRevC.105.034316
Citations: PlumX Metrics


2022NE04      Eur.Phys.J. A 58, 44 (2022)

D.A.Nesterenko, L.Jokiniemi, J.Kotila, A.Kankainen, Z.Ge, T.Eronen, S.Rinta-Antila, J.Suhonen

High-precision Q-value measurement and nuclear matrix element calculations for the double-β decay of 98Mo

ATOMIC MASSES 98Mo; measured cyclotron frequencies; deduced double-beta decay Q-value; calculated nuclear matrix elements using the proton-neutron quasiparticle random-phase approximation (pnQRPA) and the microscopic interacting boson model (IBM-2) frameworks. The JYFLTRAP Penning trap mass spectrometer.

doi: 10.1140/epja/s10050-022-00695-w
Citations: PlumX Metrics


2022NE10      Phys.Rev. C 106, 024310 (2022)

D.A.Nesterenko, K.Blaum, P.Delahaye, S.Eliseev, T.Eronen, P.Filianin, Z.Ge, M.Hukkanen, A.Kankainen, Yu.N.Novikov, A.V.Popov, A.Raggio, M.Stryjczyk, V.Virtanen

Direct determination of the excitation energy of the quasistable isomer 180mTa

ATOMIC MASSES 180,180mTa; measured cyclotron frequency with the phase-imaging ion-cyclotron-resonance (PI-ICR) technique using Penning-trap mass spectrometer (JYFLTRAP) at the Ion Guide Isotope Separator On-Line (IGISOL) facility of University of Jyvaskyla; deduced mass excesses, first direct precise determination of the excitation energy of naturally-occurring low-energy isomer of 180Ta. 180,180m produced in Ta(p, X), E=40 MeV reaction. Comparison with AME2020 evaluation. Relevance to search for dark matter, astrophysics, and development of a γ laser.

doi: 10.1103/PhysRevC.106.024310
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022RA20      Phys.Rev. C 106, 015501 (2022)

M.Ramalho, Z.Ge, T.Eronen, D.A.Nesterenko, J.Jaatinen, A.Jokinen, A.Kankainen, J.Kostensalo, J.Kotila, M.I.Krivoruchenko, J.Suhonen, K.S.Tyrin, V.Virtanen

Observation of an ultralow-Q-value electron-capture channel decaying to 75As via a high-precision mass measurement

ATOMIC MASSES 75As, 76Ge; 77Se, 76Se; 94Mo, 95Mo; measured cyclotron frequency ratios using phase-imaging ion-cyclotron-resonance technique (PI-ICR) and high-precision Penning-trap mass spectrometry (PTMS) with a double Penning trap mass spectrometer (JYFLTRAP) at the IGISOL facility of the University of Jyvaskyla; deduced precise Q(β) values for decays of 75Se and 75Ge to 75As, with three ultra-low Q-value energetically valid β transitions, one of which as a possible candidate for antineutrino mass determination. Comparison with evaluated data in AME2020.

RADIOACTIVITY 75Se(EC); 75Ge(β-); deduced precise Q(β) values from measurements of difference in mass excesses of 75As and 76Ge, and three ultra-low Q-value energetically valid β transitions, with one as a possible candidate for antineutrino mass determination. Comparison with evaluated data in AME2020.

NUCLEAR STRUCTURE 75As; calculated levels, J, π using shell-model code NUSHELLX in a single-particle model space consisting of 1f5/2, 2p3/2, 2p1/2, and 1g9/2 neutron and proton orbitals, with jun45pn and jj44bpn interactions, and compared results with experimental data.

doi: 10.1103/PhysRevC.106.015501
Citations: PlumX Metrics


2021GE04      Phys.Rev. C 103, 065502 (2021)

Z.Ge, T.Eronen, A.de Roubin, D.A.Nesterenko, M.Hukkanen, O.Beliuskina, R.de Groote, S.Geldhof, W.Gins, A.Kankainen, A.Koszorus, J.Kotila, J.Kostensalo, I.D.Moore, A.Raggio, S.Rinta-Antila, J.Suhonen, V.Virtanen, A.P.Weaver, A.Zadvornaya, A.Jokinen

Direct measurement of the mass difference of 72As - 72Ge rules out 72As as a promising β-decay candidate to determine the neutrino mass

ATOMIC MASSES 72As; measured cyclotron frequency and mass excess by phase-imaging ion-cyclotron-resonance (PI-ICR) technique using IGISOL facility and JYFLTRAP double Penning trap mass spectrometer at the K-130 cyclotron of the University of Jyvaskyla, with the production of 72As in Ge(d, X), E=9 MeV reaction. 72As, 72Ge; deduced precise Q values for ϵ decay between the ground state of 72As and ground as well as excited states of 72Ge. Relevance to electron neutrino mass determination through precise mass measurements.

doi: 10.1103/PhysRevC.103.065502
Citations: PlumX Metrics


2021GE11      Phys.Rev.Lett. 127, 272301 (2021)

Z.Ge, T.Eronen, K.S.Tyrin, J.Kotila, J.Kostensalo, D.A.Nesterenko, O.Beliuskina, R.de Groote, A.de Roubin, S.Geldhof, W.Gins, M.Hukkanen, A.Jokinen, A.Kankainen, A.Koszorus, M.I.Krivoruchenko, S.Kujanpaa, I.D.Moore, A.Raggio, S.Rinta-Antila, J.Suhonen, V.Virtanen, A.P.Weaver, A.Zadvornaya

159Dy Electron-Capture: A New Candidate for Neutrino Mass Determination

RADIOACTIVITY 159Dy(EC); measured frequencies; deduced Q-values for allowed Gamow-Teller transition, J, π, total decay constant. The Ion Guide Isotope Separator On-Line facility (IGISOL) using the double Penning trap mass spectrometer JYFLTRAP in the accelerator laboratory of the University of Jyvaskyla.

doi: 10.1103/physrevlett.127.272301
Citations: PlumX Metrics


2021NE08      Eur.Phys.J. A 57, 302 (2021)

D.A.Nesterenko, T.Eronen, Z.Ge, A.Kankainen, M.Vilen

Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer

doi: 10.1140/epja/s10050-021-00608-3
Citations: PlumX Metrics


2021NE09      Eur.Phys.J. A 57, 302 (2021)

D.A.Nesterenko, T.Eronen, Z.Ge, A.Kankainen, M.Vilen

Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer

doi: 10.1140/epja/s10050-021-00608-3
Citations: PlumX Metrics


2020CA08      Phys.Rev. C 101, 041304 (2020), Erratum Phys.Rev. C 103, 029901 (2021)

L.Canete, S.Giraud, A.Kankainen, B.Bastin, F.Nowacki, A.Poves, P.Ascher, T.Eronen, V.Alcindor, A.Jokinen, A.Khanam, I.D.Moore, D.A.Nesterenko, F.De Oliveira Santos, H.Penttila, C.Petrone, I.Pohjalainen, A.de Roubin, V.A.Rubchenya, M.Vilen, J.Aysto

Precision mass measurements of 67Fe and 69, 70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates

ATOMIC MASSES 67Fe, 69,69m,70Co; measured mass excesses using time of flight-ion cyclotron resonance technique with the JYFLTRAP double Penning trap mass spectrometer. 69mCo; deduced level energy of 1/2- intruder state. Comparison with evaluated data in AME2016. Systematics of S(2n) values and two-neutron shell gap parameter for Z=25-28, N=35-45 nuclei.

NUCLEAR STRUCTURE 67,69,71Co; calculated levels, J, π using shell-model for the spherical and 1/2- intruder bands. Comparison with experimental data.

NUCLEAR REACTIONS 68Fe, 69Co(γ, n), T=0.5-5 GK; calculated astrophysical reaction rates, and mass-related uncertainties for the astrophysical r process calculations.

doi: 10.1103/PhysRevC.101.041304
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020DE20      Phys.Rev.Lett. 124, 222503 (2020)

A.de Roubin, J.Kostensalo, T.Eronen, L.Canete, R.P.de Groote, A.Jokinen, A.Kankainen, D.A.Nesterenko, I.D.Moore, S.Rinta-Antila, J.Suhonen, M.Vilen

High-Precision Q-Value Measurement Confirms the Potential of 135Cs for Absolute Antineutrino Mass Scale Determination

RADIOACTIVITY 135Cs(β-); measured decay products, frequencies; deduced ground-state-to-ground-state β-decay Q-value. Comparison with AME 2016 data.

doi: 10.1103/PhysRevLett.124.222503
Citations: PlumX Metrics


2020NE06      Phys.Lett. B 808, 135642 (2020)

D.A.Nesterenko, A.Kankainen, J.Kostensalo, C.R.Nobs, A.M.Bruce, O.Beliuskina, L.Canete, T.Eronen, E.R.Gamba, S.Geldhof, R.de Groote, A.Jokinen, J.Kurpeta, I.D.Moore, L.Morrison, Zs.Podolyak, I.Pohjalainen, S.Rinta-Antila, A.de Roubin, M.Rudigier, J.Suhonen, M.Vilen, V.Virtanen, J.Aysto

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

ATOMIC MASSES 128,128m,130,130mIn; measured time-of-flight ion cyclotron resonance (TOF-ICR) frequencies for the ground states and two isomers each in 128In and 128In using the JYFLTRAP Penning trap at the IGISOL facility at the University of Jyvaskyla; deduced mass excesses of three beta-decaying states each in 128In and 130In, and energies of respective isomers, configurations. Activities of 128,130In produced as fission products in U(p, F), E=30 MeV at the Ion Guide Isotope Separator On-Line (IGISOL) facility. Comparison with literature values. 128Sn, 128In, 130In; calculated levels, J, π, configurations using shell-model with the effective interaction jj45pna, and compared with experimental data.

RADIOACTIVITY 128mIn(β-)[from U(p, F), E=30 MeV at the IGISOL facility]; measured Eγ, Iγ, βγ-coin, half-life of the new (16+) isomer of 128In. 128Sn; deduced levels, J, π.

COMPILATION 130,131,132,133,134Te, 129,130,131,132,133Sb, 128,129,130,131,132Sn, 127,128,129,130,131In, 126,127,128,129,130Cd; compiled ground and isomeric states using data from the ENSDF and XUNDL databases, together with results for In isomers in the present work.

doi: 10.1016/j.physletb.2020.135642
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020VI04      Phys.Rev. C 101, 034312 (2020)

M.Vilen, J.M.Kelly, A.Kankainen, M.Brodeur, A.Aprahamian, L.Canete, R.P.de Groote, A.de Roubin, T.Eronen, A.Jokinen, I.D.Moore, M.R.Mumpower, D.A.Nesterenko, J.O'Brien, A.Pardo Perdomo, H.Penttila, M.Reponen, S.Rinta-Antila, R.Surman

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

ATOMIC MASSES 154Nd, 161Pm, 163Sm, 162,162m,163,164,165Eu, 163,163m,167Gd, 165,166,167,168Tb; measured time-of-flight ion-cyclotron-resonances (TOF-ICR) and phase-imaging ion-cyclotron-resonances (PI-ICR), frequency ratios, mass excesses using the JYFLTRAP double penning trap at the IGISOL facility of University of Jyvaskyla; deduced S(n), S(2n), pairing-gap energies, and average proton neutron interaction of valence nucleons. 162mEu, 163mGd; deduced absolute energies of the isomers. Comparison with previous experimental measurements, and with evaluated data in AME2016. Isotopes formed in U(p, F), E=25 MeV reaction. Discussed impact on solar r-process abundances as a function of the mass number.

doi: 10.1103/PhysRevC.101.034312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019LO04      Phys.Rev. C 99, 044310 (2019)

Ch.Lorenz, L.G.Sarmiento, D.Rudolph, P.Golubev, T.Eronen, D.A.Nesterenko, A.Kankainen, L.Canete, D.M.Cox, A.Fernandez, U.Forsberg, A.Jungclaus, I.Kojouharov, N.Kurz, N.Lalovic, J.Partanen, M.Reponen, S.Rinta-Antila, A.de Roubin, A.Saamark-Roth, V.Vaquero, M.Vilen

β decay of 127Cd and excited states in 127In

RADIOACTIVITY 127,127mCd(β-)[from 238U(p, F) followed by high-resolution mass separation in JYFL Penning trap]; measured β, Eγ, Iγ, βγγ- and γγ-coin, half-lives of 127Cd g.s. and isomer, isomeric ratios using double-sided-silicon-strip detectors and HPGe detectors of the TASISpec decay station at IGISOL, University of Jyvaskyla. 127In; deduced levels, J, π, β feedings, logft values, Gamow-Teller strength distributions, configurations. Comparison with large-scale shell model calculations, and with previous experimental results.

NUCLEAR STRUCTURE 125,127,129Cd, 125,127,129In; calculated levels, J, π, sums of partitions of selected wave functions using large-scale shell-model with jj45 and NA-14 interactions, and compared with experimental data.

doi: 10.1103/PhysRevC.99.044310
Citations: PlumX Metrics


2019NE08      Int.J. Mass Spectrom. 435, 204 (2019)

D.A.Nesterenko, L.Canete, T.Eronen, A.Jokinen, A.Kankainen, Yu.N.Novikov, S.Rinta-Antila, A.de Roubin, M.Vilen

High-precision measurement of the mass difference between 102Pd and 102Ru

ATOMIC MASSES 102Pd, 102Ru; measured TOF and cyclotron resonance frequencies; deduced Q-value, mass difference. Penning-trap mass spectrometer JYFLTRAP.

doi: 10.1016/j.ijms.2018.10.038
Citations: PlumX Metrics


2019RA01      Phys.Rev. C 99, 014617 (2019)

V.Rakopoulos, M.Lantz, S.Pomp, A.Solders, A.Al-Adili, L.Canete, T.Eronen, A.Jokinen, A.Kankainen, A.Mattera, I.D.Moore, D.A.Nesterenko, M.Reponen, S.Rinta-Antila, A.de Roubin, M.Vilen, M.Osterlund, H.Penttila

Isomeric fission yield ratios for odd-mass Cd and In isotopes using the phase-imaging ion-cyclotron-resonance technique

NUCLEAR REACTIONS U(p, F)81Ge/81mGe/119Cd/119mCd/121Cd/121mCd/123Cd/123mCd/125Cd/125mCd/127Cd/127mCd/119In/119mIn/121In/121mIn/123In/123mIn/125In/125mIn/127In/127mIn/129Sb/129mSb, E=25 MeV; measured isomeric yield ratios of fission products using the JYFLTRAP double Penning trap, and phase-imaging ion cyclotron-resonance (PI-ICR) technique at IGISOL facility of University of Jyvaskyla; deduced average rms angular momentum using TALYS code, and correlation between electric quadrupole moments and average angular momentum for In and Cd isotopes.

doi: 10.1103/PhysRevC.99.014617
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2395.


2019VI05      Phys.Rev. C 100, 054333 (2019)

M.Vilen, A.Kankainen, P.Baczyk, L.Canete, J.Dobaczewski, T.Eronen, S.Geldhof, A.Jokinen, M.Konieczka, J.Kostensalo, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, M.Reponen, S.Rinta-Antila, A.de Roubin, W.Satula, J.Suhonen

High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL

ATOMIC MASSES 82Zr, 84Nb, 86Mo, 88Tc, 88mTc, 89Ru; measured cyclotron frequencies, time-of-flight, and mass excesses using time-of-flight ion-cyclotron resonance (TOF-ICR), and phase-imaging ion-cyclotron resonance (PI-ICR) techniques at the University of Jyvaskyla accelerator laboratory; deduced S(2n), S(2p) and neutron-pairing gap energies. 82Mo, 86Ru; predicted mass excesses using the measured masses of their mirror partners and theoretical mirror displacement energies. Comparison with AME-2016 values, and with other recent measurements. 88Tc; deduced levels, J, π of the ground state and isomer, and compared with shell-model predictions.

NUCLEAR REACTIONS Ni(36Ar, X)82Zr/84Nb/86Mo/88Tc/88mTc/89Ru, E=222 MeV; measured reaction products and yields using the HIGISOL system, mass separated using a radio-frequency sextupole ion guide (SPIG), and injected into the double-Penning-trap mass spectrometer JYFLTRAP at Jyvaskyla.

doi: 10.1103/PhysRevC.100.054333
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019WI11      Phys.Rev. C 100, 054331 (2019)

J.Wisniewski, W.Urban, M.Czerwinski, J.Kurpeta, A.Plochocki, M.Pomorski, T.Rzaca-Urban, K.Sieja, L.Canete, T.Eronen, S.Geldhof, A.Jokinen, A.Kankainen, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, S.Rinta-Antila, A.de Roubin, M.Vilen

Excited states in 87Br populated in β decay of 87Se

RADIOACTIVITY 87Se(β-)[from Th(p, F), E=25 MeV using the IGISOL technique, then separated on a dipole magnet and JYFLTRAP Penning trap setup]; measured Eγ, Iγ, γγ-coin using an array of six high-resolution Ge detectors with thin carbon windows at the University of Jyvaskyla. 87Br; deduced levels, J, π, β feedings, logft values, configurations. 87Se; deduced ground-state Jπ. Comparison with large-scale shell-model calculations, and with previous experimental results.

doi: 10.1103/PhysRevC.100.054331
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018NE09      Eur.Phys.J. A 54, 154 (2018)

D.A.Nesterenko, T.Eronen, A.Kankainen, L.Canete, A.Jokinen, I.D.Moore, H.Penttila, S.Rinta-Antila, A.de Roubin, M.Vilen

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer


2018RA19      Phys.Rev. C 98, 024612 (2018)

V.Rakopoulos, M.Lantz, A.Solders, A.Al-Adili, A.Mattera, L.Canete, T.Eronen, D.Gorelov, A.Jokinen, A.Kankainen, V.S.Kolhinen, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, S.Rinta-Antila, V.Simutkin, M.Vilen, A.Voss, S.Pomp

First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments

NUCLEAR REACTIONS U, 232Th(p, F)81Ge/81mGe/96Y/96mY/97Y/97mY/128Sn/128mSn/130Sn/130mSn/129Sb/129mSb, E=25 MeV; measured fission fragment time of flight, mass, isomeric yield ratios using JYFLTRAP for fragment separation and microchannel plate for particle detection at IGISOL-Jyvaskyla facility. Comparison with theoretical calculations of fission fragment isomeric yield ratios and rms spin of fragments using GEF code and TALYS code with constant temperature Fermi gas model, back-shifted Fermi gas model (BSFG), and the microscopic level densities of Goriely. Comparison with previous experimental values.

doi: 10.1103/PhysRevC.98.024612
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2429.


2018VI02      Phys.Rev.Lett. 120, 262701 (2018)

M.Vilen, J.M.Kelly, A.Kankainen, M.Brodeur, A.Aprahamian, L.Canete, T.Eronen, A.Jokinen, T.Kuta, I.D.Moore, M.R.Mumpower, D.A.Nesterenko, H.Penttila, I.Pohjalainen, W.S.Porter, S.Rinta-Antila, R.Surman, A.Voss, J.Aysto

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations

ATOMIC MASSES 156,158Nd, 158,160Pm, 162Sm, 162,163Eu, 163,164,165,166Gd, 164Tb; measured time-of-flight spectra, frequency ratios; deduced mass-excess values. Comparison with AME16 evaluation.

doi: 10.1103/PhysRevLett.120.262701
Citations: PlumX Metrics


2017NE05      J.Phys.(London) G44, 065103 (2017)

D.A.Nesterenko, A.Kankainen, L.Canete, M.Block, D.Cox, T.Eronen, C.Fahlander, U.Forsberg, J.Gerl, P.Golubev, J.Hakala, A.Jokinen, V.S.Kolhinen, J.Koponen, N.Lalovic, C.Lorenz, I.D.Moore, P.Papadakis, J.Reinikainen, S.Rinta-Antila, D.Rudolph, L.G.Sarmiento, A.Voss, J.Aysto

High-precision mass measurements for the isobaric multiplet mass equation at A = 52

ATOMIC MASSES 52Co, 52mCo, 52Fe, 52mFe, 52Mn; measured time-of-flight ion cyclotron resonance spectrum, average cyclotron frequency ratios; deduced mass-excess values. Comparison with Nubase2012 mass values.

doi: 10.1088/1361-6471/aa67ae
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016AL03      Phys.Rev.Lett. 116, 072501 (2016)

M.Alanssari, D.Frekers, T.Eronen, L.Canete, J.Dilling, M.Haaranen, J.Hakala, M.Holl, M.Jeskovsky, A.Jokinen, A.Kankainen, J.Koponen, A.J.Mayer, I.D.Moore, D.A.Nesterenko, I.Pohjalainen, P.Povinec, J.Reinikainen, S.Rinta-Antila, P.C.Srivastava, J.Suhonen, R.I.Thompson, A.Voss, M.E.Wieser

Single and Double Beta-Decay Q Values among the Triplet96Zr, 96Nb, and 96Mo

ATOMIC MASSES 96Zr, 96Nb, 96Mo; measured time-of-flight spectra using a Ramsey excitation pattern, cyclotron-frequency ratios; deduced Q-values for β and 2β-decays. Comparison with AME2012, IGISOL-JYFLTRAP facility.

doi: 10.1103/PhysRevLett.116.072501
Citations: PlumX Metrics


2016AL30      Int.J. Mass Spectrom. 406, 1 (2016)

M.Alanssari, D.Frekers, T.Eronen, L.Canete, J.Hakala, M.Holl, A.Jokinen, A.Kankainen, J.Koponen, I.D.Moore, D.A.Nesterenko, I.Pohjalainen, J.Reinikainen, S.Rinta-Antila, A.Voss

Precision 71Ga-71Ge mass-difference measurement

ATOMIC MASSES 71Ga, 71Ge; measured frequencies, TOF; deduced Q-values, solar neutrino flux.

doi: 10.1016/j.ijms.2016.05.019
Citations: PlumX Metrics


2016KO45      Nat. Commun. 7, 10246 (2016)

F.Kohler, K.Blaum, M.Block, S.Chenmarev, S.Eliseev, D.A.Glazov, M.Goncharov, J.Hou, A.Kracke, D.A.Nesterenko, Y.N.Novikov, W.Quint, E.Minaya Ramirez, V.M.Shabaev, S.Sturm, A.V.Volotka, G.Werth

Isotope dependence of the Zeeman effect in lithium-like calcium

ATOMIC MASSES 40,48Ca; measured cyclotron frequency ratio. 48Ca; deduced masses, g-factors. Comparison with theoretical calculations.

doi: 10.1038/ncomms10246
Citations: PlumX Metrics


2014NE15      Phys.Rev. C 90, 042501 (2014)

D.A.Nesterenko, S.Eliseev, K.Blaum, M.Block, S.Chenmarev, A.Dorr, C.Droese, P.E.Filianin, M.Goncharov, E.Minaya Ramirez, Yu.N.Novikov, L.Schweikhard, V.V.Simon

Direct determination of the atomic mass difference of 187Re and 187Os for neutrino physics and cosmochronology

ATOMIC MASSES 187Re, 187Os; measured cyclotron-frequency ratio of 187Re and 187Os ions, mass difference using Penning-trap mass spectrometer SUIPTRAP at GSI facility; deduced Q value for 187Re decay. Comparison with previous experimental results. Possibility of electron capture by 187Os ions in hot stellar conditions.

RADIOACTIVITY 187Re(β-); measured precise Q value from mass difference of 187Re and 187Os ions using SHIPTRAP at GSI. Comparison with other results. Relevance to cosmochronology.

doi: 10.1103/PhysRevC.90.042501
Citations: PlumX Metrics


2013EL01      Phys.Rev.Lett. 110, 082501 (2013)

S.Eliseev, K.Blaum, M.Block, C.Droese, M.Goncharov, E.Minaya Ramirez, D.A.Nesterenko, Yu.N.Novikov, L.Schweikhard

Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides

ATOMIC MASSES 129,130Xe; measured cyclotron frequency via the projection of the ion motion; deduced mass difference for xenon nuclei. Phase-imaging ion-cyclotron-resonance technique.

doi: 10.1103/PhysRevLett.110.082501
Citations: PlumX Metrics


2013RO19      Eur.Phys.J. D 67, 146 (2013)

C.Roux, K.Blaum, M.Block, C.Droese, S.Eliseev, M.Goncharov, F.Herfurth, E.Minaya Ramirez, D.A.Nesterenko, Y.N.Novikov, L.Schweikhard

Data analysis of Q-value measurements for double-electron capture with SHIPTRAP

RADIOACTIVITY 152Gd(2EC); measured cyclotron frequency ratio; deduced Q-value. Comparison with available data.

doi: 10.1140/epjd/e2013-40110-x
Citations: PlumX Metrics


2012NE10      Phys.Rev. C 86, 044313 (2012)

D.A.Nesterenko, K.Blaum, M.Block, C.Droese, S.Eliseev, F.Herfurth, E.Minaya Ramirez, Yu.N.Novikov, L.Schweikhard, V.M.Shabaev, M.V.Smirnov, I.I.Tupitsyn, K.Zuber, N.A.Zubova

Double-β transformations in isobaric triplets with mass numbers A=124, 130, and 136

ATOMIC MASSES 124Sn, 124Xe, 124Te, 130Te, 130Xe, 130Ba, 136Ce; measured time-of-flight ion cyclotron resonances, cyclotron frequencies ratios of 130Xe to 130Ba and 130Te, 124Te to 124Xe and 124Sn, 136Ba to 136Ce using Penning-trap mass spectrometer SHIPTRAP. Isobaric mass triplets.

RADIOACTIVITY 124Xe, 130Ba, 136Ce(2EC); measured masses, deduced Q values.

doi: 10.1103/PhysRevC.86.044313
Citations: PlumX Metrics


Back to query form