NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = J.Bonnard

Found 13 matches.

Back to query form

2024DE01      Phys.Lett. B 848, 138352 (2024)

R.P.de Groote, D.A.Nesterenko, A.Kankainen, M.L.Bissell, O.Beliuskina, J.Bonnard, P.Campbell, L.Canete, B.Cheal, C.Delafosse, A.de Roubin, C.S.Devlin, J.Dobaczewski, T.Eronen, R.F.Garcia Ruiz, S.Geldhof, W.Gins, M.Hukkanen, P.Imgram, R.Mathieson, A.Koszorus, I.D.Moore, I.Pohjalainen, M.Reponen, B.van den Borne, M.Vilen, S.Zadvornaya

Measurements of binding energies and electromagnetic moments of silver isotopes – A complementary benchmark of density functional theory

NUCLEAR MOMENTS 113,113m,115,115m,117,117m,119,119m,121,121m,123,123mAg; measured frequencies. 107,109Ag, 133Cs; deduced nuclear binding and excitation energies, J, magnetic dipole and electric quadrupole moments, the crucial role of the spin-orbit strength and time-odd mean fields play in the simultaneous description of electromagnetic moments and nuclear binding. Comparison with calculations performed with density functional theory (DFT). The JYFLTRAP mass spectrometer and the collinear laser spectroscopy beamline at the Ion Guide Isotope Separator On-Line (IGISOL) facility.

doi: 10.1016/j.physletb.2023.138352
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2023GR07      Phys.Lett. B 847, 138268 (2023)

T.J.Gray, A.E.Stuchbery, J.Dobaczewski, A.Blazhev, H.A.Alshammari, L.J.Bignell, J.Bonnard, B.J.Coombes, J.T.H.Dowie, M.S.M.Gerathy, T.Kibedi, G.J.Lane, B.P.McCormick, A.J.Mitchell, C.Nicholls, J.G.Pope, P.-G.Reinhard, N.J.Spinks, Y.Zhong

Shape polarization in the tin isotopes near N = 60 from precision g-factor measurements on short-lived 11/2- isomers

RADIOACTIVITY 109,111Sn(IT) [from 96,98Mo(16O, 3n), E=58 MeV]; measured decay products, frequencies, Eγ, Iγ. 113Sn; deduced γ-ray energies, partial level schemes, isomeric R(t) function, g-factors, hyperfine field strength. Comparison with broken-symmetry density functional theory calculations and available data. The Time Differential Perturbed Angular Distribution (TDPAD) technique. The Heavy Ion Accelerator Facility at the Australian National University.

doi: 10.1016/j.physletb.2023.138268
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022SA46      J.Phys.(London) G49, 11LT01 (2022)

P.L.Sassarini, J.Dobaczewski, J.Bonnard, R.F.Garcia Ruiz

Nuclear DFT analysis of electromagnetic moments in odd near doubly magic nuclei

NUCLEAR MOMENTS 17O, 17F, 39,41Ca, 39K, 41,49Sc, 47,49Ca, 55,57Ni, 55,77Co, 57,79Cu, 77,79Ni, 99,101Sn, 99,131In, 131,133Sn, 133Sb, 209Pb, 209Bi; calculated electric quadrupole and magnetic dipole moments using code hfodd (v3.07h) for three Skyrme functionals, UNEDF1, SLy4, and SkO', for the Gogny functional D1S, and for the regularized functional N3LO (REG6d.190617). Comparison with available data.

doi: 10.1088/1361-6471/ac900a
Citations: PlumX Metrics

2021BU07      Phys.Rev. C 103, 064317 (2021)

S.Burrello, J.Bonnard, M.Grasso

Application of an ab-initio-inspired energy density functional to nuclei: Impact of the effective mass and the slope of the symmetry energy on bulk and surface properties

NUCLEAR STRUCTURE 12,14,16,18,20,22,24O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated S(2n) for O, Ca, Zr and Sn isotopic chains, binding energies for Ca and Zr chains, difference between neutron and proton radii for O, Ca, Zr and Pb chains, charge radii and neutron skins for 16O, 40,48Ca, 90Zr, 132Sn, 208Pb, neutron and proton density profiles for 122Zr and 266Pb, single-proton energies for 208Pb for the last occupied proton. Mean-field Hartree-Fock calculations with Yang-Grasso-Lacroix-Orsay (YGLO) density functionals. Comparison with experimental data extracted from databases at NNDC-BNL. Discussed effective masses and the slope of the symmetry energy.

doi: 10.1103/PhysRevC.103.064317
Citations: PlumX Metrics

2020BO09      Phys.Rev. C 101, 064319 (2020)

J.Bonnard, M.Grasso, D.Lacroix

Lee-Yang-inspired energy-density functional including contributions from p-wave scattering

doi: 10.1103/PhysRevC.101.064319
Citations: PlumX Metrics

2018BO17      Phys.Rev.Lett. 121, 032502 (2018)

A.Boso, S.M.Lenzi, F.Recchia, J.Bonnard, A.P.Zuker, S.Aydin, M.A.Bentley, B.Cederwall, E.Clement, G.de France, A.Di Nitto, A.Dijon, M.Doncel, F.Ghazi Moradi, A.Gadea, A.Gottardo, T.Henry, T.Huyuk, G.Jaworski, P.R.John, K.Juhasz, I.Kuti, B.Melon, D.Mengoni, C.Michelagnoli, V.Modamio, D.R.Napoli, B.M.Nyako, J.Nyberg, M.Palacz, J.Timar, J.J.Valiente-Dobon

Neutron Skin Effects in Mirror Energy Differences: The Case of 23Mg-23Na

NUCLEAR REACTIONS 12C(16O, nα), (16O, pα), E=60-70 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies, J, π, mirror energy differences, high-spin states. Comparison with available data.

doi: 10.1103/PhysRevLett.121.032502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2018BO18      Phys.Rev. C 98, 034319 (2018), Erratum Phys. Rev. C 103, 039901 (2021)

J.Bonnard, M.Grasso, D.Lacroix

Energy-density functionals inspired by effective-field theories: Applications to neutron drops

NUCLEAR STRUCTURE N=2-50; calculated energies of neutron drops, internal energies of neutron drops, maximal density at the Thomas-Fermi approximation, density profiles, Hartree-Fock potentials, mean pairing gaps of neutron drops, and effective mass of neutron drops using YGLO, KIDS, and ELYO energy density functionals. Comparison with other energy density functional model predictions and ab initio results.

doi: 10.1103/PhysRevC.98.034319
Citations: PlumX Metrics

2018LE18      Phys.Rev.Lett. 121, 262502 (2018)

S.Leblond, F.M.Marques, J.Gibelin, N.A.Orr, Y.Kondo, T.Nakamura, J.Bonnard, N.Michel, N.L.Achouri, T.Aumann, H.Baba, F.Delaunay, Q.Deshayes, P.Doornenbal, N.Fukuda, J.W.Hwang, N.Inabe, T.Isobe, D.Kameda, D.Kanno, S.Kim, N.Kobayashi, T.Kobayashi, T.Kubo, J.Lee, R.Minakata, T.Motobayashi, D.Murai, T.Murakami, K.Muto, T.Nakashima, N.Nakatsuka, A.Navin, S.Nishi, S.Ogoshi, H.Otsu, H.Sato, Y.Satou, Y.Shimizu, H.Suzuki, K.Takahashi, H.Takeda, S.Takeuchi, R.Tanaka, Y.Togano, A.G.Tuff, M.Vandebrouck, K.Yoneda

First Observation of 20B and 21B

NUCLEAR REACTIONS 12C(22N, 2p)20B, E=225 MeV/nucleon; 12C(22C, p)21B, E=233 MeV/nucleon; measured reaction products; deduced energy levels, J, π, one- and two-neutron separation energies. Comparison with shell model calculations.

doi: 10.1103/PhysRevLett.121.262502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2017BO08      Acta Phys.Pol. B48, 313 (2017)

A.Boso, S.M.Lenzi, F.Recchia, J.Bonnard, S.Aydin, M.A.Bentley, B.Cederwall, E.Clement, G.De France, A.Di Nitto, A.Dijon, M.Doncel, F.Ghazi Moradi, A.Gottardo, T.Henry, T.Huyuk, G.Jaworski, P.R.John, K.Juhasz, I.Kuti, B.Melon, D.Mengoni, C.Michelagnoli, V.Modamio, D.R.Napoli, B.M.Nyako, J.Nyberg, M.Palacz, J.J.Valiente-Dobon

Isospin Symmetry Breaking in Mirror Nuclei 23Mg-23Mg

NUCLEAR REACTIONS 12C(16O, αn), (16O, αp), E=60-70 MeV; measured charged particles by the 4π DIAMANT detector consisting of 80 CsI(Tl) scintillators, En, In using the NEUTRON WALL array of 50 liquid scintillators, Eγ, Iγ(θ), γγ-coin using γ-ray array EXOGAM of 10 Compton suppressed clovers of 4 segmented HPGe each; deduced γ transitions, levels, J, π, yrast, yrare bands, MED (Mirror Energy Differences) between 23Mg and 23Na up to high spin. 23Na, 23Mg; calculated levels, J, π; deduced MED in mirror nuclei; compared with ANTOINE shell model code calculations with two different NN interactions.

doi: 10.5506/APhysPolB.48.313
Citations: PlumX Metrics

2016BO11      Eur.Phys.J. A 52, 110 (2016)

J.Bonnard, O.Juillet

Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

NUCLEAR STRUCTURE 26Al, 27Na, 28Mg; calculated levels, J, π of the first excited states, mass excess using extended VAP (Variation-After-Projection) and phaseless QMC. Compared to data.

doi: 10.1140/epja/i2016-16110-6
Citations: PlumX Metrics

2016BO14      Phys.Rev.Lett. 116, 212501 (2016)

J.Bonnard, S.M.Lenzi, A.P.Zuker

Neutron Skins and Halo Orbits in the sd and pf Shells

NUCLEAR STRUCTURE 48Ca, 68Ni, 120Sn, 208Pb; calculated nuclear radii, neutron skin, halo orbits.

doi: 10.1103/PhysRevLett.116.212501
Citations: PlumX Metrics

2016HE14      Phys.Rev. C 94, 054321 (2016)

H.Heylen, C.Babcock, R.Beerwerth, J.Billowes, M.L.Bissell, K.Blaum, J.Bonnard, P.Campbell, B.Cheal, T.Day Goodacre, D.Fedorov, S.Fritzsche, R.F.Garcia Ruiz, W.Geithner, Ch.Geppert, W.Gins, L.K.Grob, M.Kowalska, K.Kreim, S.M.Lenzi, I.D.Moore, B.Maass, S.Malbrunot-Ettenauer, B.Marsh, R.Neugart, G.Neyens, W.Nortershauser, T.Otsuka, J.Papuga, R.Rossel, S.Rothe, R.Sanchez, Y.Tsunoda, C.Wraith, L.Xie, X.F.Yang, D.T.Yordanov

Changes in nuclear structure along the Mn isotopic chain studied via charge radii

ATOMIC PHYSICS 51,53,54,55,56,57,58,59,60,61,62,63,64Mn; measured hyperfine spectra using collinear laser spectroscopy at ISOLDE-CERN; deduced charge radii. Isotopes produced in bombardment of uranium carbide target with 1.4-GeV proton beam. Mass and field shift factors calculated in multiconfiguration Dirac-Fock framework and combined with King plot analysis. Comparison with Duflo-Zuker formula.

NUCLEAR STRUCTURE 53,55,57,59,61,63,65Mn; calculated potential energy surfaces using Monte Carlo shell-model. Systematics of S(2n) values for Z=20-28, N=24-46 nuclei.

doi: 10.1103/PhysRevC.94.054321
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2013BO15      Phys.Rev.Lett. 111, 012502 (2013)

J.Bonnard, O.Juillet

Constrained-Path Quantum Monte Carlo Approach for the Nuclear Shell Model

NUCLEAR STRUCTURE 26Al, 27Na; calculated yrast states, J, π. Quantum Monte Carlo Approach for the nuclear shell model, comparison with available data.

doi: 10.1103/PhysRevLett.111.012502
Citations: PlumX Metrics

Back to query form