NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = L.Jokiniemi

Found 13 matches.

Back to query form

2023GI07      Universe 9, 270 (2023)

P.Gimeno, L.Jokiniemi, J.Kotila, M.Ramalho, J.Suhonen

Ordinary Muon Capture on 136Ba: Comparative Study Using the Shell Model and pnQRPA

NUCLEAR REACTIONS 136Ba(μ, X)136Cs, E not given; calculated energy levels, J, π using the interacting shell model (ISM) and proton–neutron quasiparticle random-phase approximation (pnQRPA). Comparison with available data.

doi: 10.3390/universe9060270
Citations: PlumX Metrics

2023JO01      Phys.Rev. C 107, 014327 (2023)

L.Jokiniemi, T.Miyagi, S.R.Stroberg, J.D.Holt, J.Kotila, J.Suhonen

Ab initio calculation of muon capture on 24Mg

NUCLEAR REACTIONS 24Mg(μ-, ν), E at rest; calculated nuclear matrix elements, capture rates to the lowest levels of 24Na. Valence-space in-medium similarity renormalization group (VS-IMSRG) and nuclear shell model calculations. Comparison to experimental data.

NUCLEAR STRUCTURE 24Mg, 24Na; calculated levels, J, π, B(E2), B(M1), magnetic dipole moments. 24Mg; calculated electric quadrupole moments.

RADIOACTIVITY 24Na(β-); calculated log ft values for decay to excited states in 24Mg.

doi: 10.1103/PhysRevC.107.014327
Citations: PlumX Metrics

2023JO02      Phys.Lett. B 838, 137689 (2023)

L.Jokiniemi, B.Romeo, C.Brase, J.Kotila, P.Soriano, A.Schwenk, J.Menendez

Two-neutrino ββ decay of 136Xe to the first excited 0+ state in 136Ba

RADIOACTIVITY 136Xe(2β-); calculated nuclear matrix element for the two-neutrino ββ decay of 136Xe into the first excited state of 136Ba using the quasiparticle random-phase approximation (QRPA) framework, the nuclear shell model, the interacting boson model (IBM-2), and an effective field theory (EFT) for β and ββ decays; deduced T1/2.

doi: 10.1016/j.physletb.2023.137689
Citations: PlumX Metrics

2023JO04      Phys.Rev. C 107, 044305 (2023)

L.Jokiniemi, B.Romeo, P.Soriano, J.Menendez

Neutrinoless ββ-decay nuclear matrix elements from two-neutrino ββ-decay data

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128,130Te, 136Xe(2β-); calculated 0νββ-decay and ββ-decay nuclear matrix elements (NME), correlations between obtained NMEs. Calculations with nuclear shell-model and proton-neutron quasiparticle random-phase approximation (pnQRPA) model with inclusion of two-body currents and the short-range operator. Obtained 0νββ NME using the correlation found in this work and measured ββ-decay NMEs.

doi: 10.1103/PhysRevC.107.044305
Citations: PlumX Metrics

2023JO05      Phys.Rev. C 107, 044316 (2023)

L.Jokiniemi, J.Menendez

Correlations between neutrinoless double-β, double Gamow-Teller, and double-magnetic decays in the proton-neutron quasiparticle random-phase approximation framework

RADIOACTIVITY 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128,130Te, 136Xe(2β-); calculated nuclear matrix elements (NME) for 0νβ∓decay, double Gamow-Teller (DGT) NME, double-magnetic-dipole (M1M1) transitions NME, correlations between obtained NMEs. Proton-neutron quasiparticle random-phase approximation (pnQRPA) model with wide range of proton-neutron pairing strength values, covering the typical range of values that describe well ββ- and β-decay data. Present strong linear correlations between 0νββ and both DGT and M1M1 matrix elements.

2022EJ01      Phys.Rev. C 105, L022501 (2022)

H.Ejiri, L.Jokiniemi, J.Suhonen

Nuclear matrix elements for neutrinoless ββ decays and spin-dipole giant resonances

RADIOACTIVITY 76Ge, 96Zr, 100Mo, 116Cd, 128Cd, 130Te, 130Xe(2β-); calculated neutrinoless double-beta decay nuclear matrix elements. Proton-neutron quasiparticle random-phase approximation (pnQRPA) model. Discused the relation relation between the experimental spin-dipole strength distribution and nuclear matrix elements obtained with pnQRPA.

doi: 10.1103/PhysRevC.105.L022501
Citations: PlumX Metrics

2022NE04      Eur.Phys.J. A 58, 44 (2022)

D.A.Nesterenko, L.Jokiniemi, J.Kotila, A.Kankainen, Z.Ge, T.Eronen, S.Rinta-Antila, J.Suhonen

High-precision Q-value measurement and nuclear matrix element calculations for the double-β decay of 98Mo

ATOMIC MASSES 98Mo; measured cyclotron frequencies; deduced double-beta decay Q-value; calculated nuclear matrix elements using the proton-neutron quasiparticle random-phase approximation (pnQRPA) and the microscopic interacting boson model (IBM-2) frameworks. The JYFLTRAP Penning trap mass spectrometer.

doi: 10.1140/epja/s10050-022-00695-w
Citations: PlumX Metrics

2020JO05      Phys.Rev. C 102, 024303 (2020)

L.Jokiniemi, J.Suhonen

Comparative analysis of muon-capture and 0νββ-decay matrix elements

NUCLEAR REACTIONS 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128,130Xe, 136Ba(μ-, ν)76As/82Br/96Nb/100Tc/116In/128I/130I/136Cs, momentum θ=50-100 MeV; calculated average matrix elements corresponding to the ordinary muon capture (OMC) on the 0+ ground states of daughters of 0νββ-decaying parent nuclei, and populating excited states in intermediate nuclei. Comparison with NMEs for 0νββ decays. Proton-neutron quasiparticle RPA with realistic two-body interactions and modified no-core Woods-Saxon single-particle bases.

RADIOACTIVITY 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe(2β-); calculated nuclear matrix elements (NMEs) for 0νββ decay mode and compared with NMEs for ordinary muon capture (OMC) on daughter nuclei.

doi: 10.1103/PhysRevC.102.024303
Citations: PlumX Metrics

2019JO04      Phys.Lett. B 794, 143 (2019)

L.Jokiniemi, J.Suhonen, H.Ejiri, I.H.Hashim

Pinning down the strength function for ordinary muon capture on 100Mo

NUCLEAR REACTIONS 100Mo(μ-, X)100Nb, E not given; analyzed available data; calculated ordinary muon capture (OMC) strength function using the Morita-Fujii formalism of OMC by extending the original formalism beyond the leading order.

doi: 10.1016/j.physletb.2019.05.037
Citations: PlumX Metrics

2019JO06      Phys.Rev. C 100, 014619 (2019)

L.Jokiniemi, J.Suhonen

Muon-capture strength functions in intermediate nuclei of 0νββ decays

NUCLEAR REACTIONS 76Se(μ-, ν)76As, E at rest; 82Kr(μ-, ν)82Br, E at rest; 96Mo(μ-, ν)96Nb, E at rest; 100Ru(μ-, ν)100Tc, E at rest; 116Sn(μ-, ν)116In, E at rest; 128Xe(μ-, ν)128I, E at rest; 130Xe(μ-, ν)130I, E at rest; 136Ba(μ-, ν)136Cs, E at rest;calculated ordinary muon capture (OMC) transition strengths and rates to excited states in β+-daughter nuclei using the proton-neutron quasiparticle random-phase approximation. Discussed relevance to deducing 0νββ-decay nuclear matrix elements.

doi: 10.1103/PhysRevC.100.014619
Citations: PlumX Metrics

2018JO05      Phys.Rev. C 98, 024608 (2018)

L.Jokiniemi, H.Ejiri, D.Frekers, J.Suhonen

Neutrinoless ββ nuclear matrix elements using isovector spin-dipole Jπ = 2- data

RADIOACTIVITY 76Ge, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe(2β-); calculated nuclear matrix elements 0νββ and 2νββ decay modes using realistic two-body interactions with either Woods-Saxon bases or modified Woods-Saxon bases. Comparison with previous theoretical predictions. 76Ge, 76Se, 96Zr, 96,100Mo, 100Ru, 116Cd, 116Sn, 128,130Te, 128,130,136Xe, 136Ba; calculated neutron and proton pairing gaps, 2- isovector spin-dipole resonance and 1+ Gamow-Teller giant resonance data, isovector spin-dipole 2- strength functions.

doi: 10.1103/PhysRevC.98.024608
Citations: PlumX Metrics

2017JO10      Phys.Rev. C 96, 034308 (2017)

L.Jokiniemi, J.Suhonen

Isovector spin-multipole strength distributions in β-decay triplets

NUCLEAR STRUCTURE 76Ge, 76Se; 82Se, 82Kr; 96Zr, 96Mo; 100Mo, 100Ru; 116Cd, 116Sn; 128Te, 128Xe; 130Te, 130Xe; 136Xe, 136Ba; calculated pairing scaling factors and the resulting pairing gaps for double-β- decaying parent and daughter nuclei. 76As, 82Br, 96Nb, 100Tc, 116In, 128,130I, 136Cs; A=76, 82, 96, 100, 116, 128, 130, 136; calculated energy centroids of spin multipole giant resonance (SMGRs), isovector spin-dipole and isovector spin-quadrupole transition strengths from 0-, 1-, 2-, 1+, 2+, and 3+ excited states of the intermediate odd-odd nuclei. Proton-neutron quasiparticle random-phase approximation (pnQRPA) theory with the Bonn-A two-body interaction in no-core single-particle valence spaces.

doi: 10.1103/PhysRevC.96.034308
Citations: PlumX Metrics

2016GR17      Eur.Phys.J. A 52, 340 (2016)

T.Grahn, J.Pakarinen, L.Jokiniemi, M.Albers, K.Auranen, C.Bauer, C.Bernards, A.Blazhev, P.A.Butler, S.Bonig, A.Damyanova, T.De Coster, H.De Witte, J.Elseviers, L.P.Gaffney, M.Huyse, A.Herzan, U.Jakobsson, R.Julin, N.Kesteloot, J.Konki, Th.Kroll, L.Lewandowski, K.Moschner, P.Peura, M.Pfeiffer, D.Radeck, P.Rahkila, E.Rapisarda, P.Reiter, K.Reynders, M.Rudiger, M.-D.Salsac, S.Sambi, M.Scheck, M.Seidlitz, B.Siebeck, T.Steinbach, S.Stolze, J.Suhonen, P.Thoele, M.Thurauf, N.Warr, P.Van Duppen, M.Venhart, M.J.Vermeulen, V.Werner, M.Veselsky, A.Vogt, K.Wrzosek-Lipska, M.Zielinska

Collective 2+1 excitations in 206Po and 208, 210Rn

NUCLEAR REACTIONS 104Pd, 114Cd(206Po, x), E=2.85 MeV/nucleon;104Pd, 114Cd(208Rn, x), (210Rn, x), E=2.82 MeV/nucleon; measured Coulomb excitation Eγ, Iγ, γγ-coin using MINIBALL γ spectrometer, scattered projectiles and target recoils using annular double-sided Si strip detectors (CD), time difference between MINIBALL γ's and CD data; deduced γ ray energy spectra, diagonal vs transitional matrix element, B(E2); calculated B(E2) using QRPA.

doi: 10.1140/epja/i2016-16340-6
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

Back to query form