NSR Query Results
Output year order : Descending NSR database version of May 20, 2024. Search: Author = G.B.King Found 10 matches. 2023KI04 Phys.Rev. C 107, 015503 (2023) G.B.King, A.Baroni, V.Cirigliano, S.Gandolfi, L.Hayen, E.Mereghetti, S.Pastore, M.Piarulli Ab initio calculation of the β-decay spectrum of ^{6}He RADIOACTIVITY ^{6}He(β^{-}); calculated T_{1/2}, β-decay energy spectrum, corrections to the β-decay spectrum induced by beyond-standard-model charged-current interactions in the standard model effective field theory, with and without sterile neutrinos. Quantum Monte Carlo methods with nuclear interactionsderived from chiral effective field theory and consistent weak vector and axial currents. Comparison to available experimental data.
doi: 10.1103/PhysRevC.107.015503
2022KI11 Phys.Rev. C 105, L042501 (2022) G.B.King, S.Pastore, M.Piarulli, R.Schiavilla Partial muon capture rates in A=3 and A=6 nuclei with chiral effective field theory NUCLEAR REACTIONS ^{3}He, ^{6}Li(μ^{-}, ν); E at rest; calculated partial muon capture rates. Ab-initio calculations - variational and Greenâ€™s function Monte Carlo methods. Comparison to experimental data.
doi: 10.1103/PhysRevC.105.L042501
2022SC13 Phys.Rev. C 106, 054323 (2022) J.Schmitt, G.B.King, R.G.T.Zegers, Y.Ayyad, D.Bazin, B.A.Brown, A.Carls, J.Chen, A.Davis, M.DeNudt, J.Droste, B.Gao, C.Hultquist, H.Iwasaki, S.Noji, S.Pastore, J.Pereira, M.Piarulli, H.Sakai, A.Stolz, R.Titus, R.B.Wiringa, J.C.Zamora Probing spin-isospin excitations in proton-rich nuclei via the ^{11}C(p, n)^{11}N reaction NUCLEAR REACTIONS ^{1}H(^{11}C, n), E=95 MeV/nucleon; measured reaction products, time-of-flight, En, In, (particle)n-coin, angular distribution; deduced σ(θ), σ(θ, E), cumulative Gamow-Teller transition strengths, B(GT) values to the 1/2^{-} state at 0.73 MeV and the 3/2^{-} state at 2.86 MeV in ^{11}N. Multipole decomposition analysis. Comparison to shell-model calculations with wbp interaction and to experimental data on the ^{11}B(n, p), (d, ^{2}He), (t, ^{3}He) reactions. Ursinus liquid hydrogen target coupled to Low Energy Neutron Detector Array (LENDA) and S800 spectrograph. ^{11}C beam produced from Be(^{16}O, X) reaction and purified with A1900 fragment separator at Coupled Cyclotron Facility (CCF) at the NSCL.
doi: 10.1103/PhysRevC.106.054323
2021CA29 Phys.Rev. C 104, 064611 (2021) M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes Statistical tools for a better optical model NUCLEAR REACTIONS ^{48}Ca(p, p), E=9, 65 MeV; analyzed experimental data for parameter posterior distributions, σ(θ, E), parameter sensitivities using surface and volume models; deduced depth, radius, and diffuseness of the real part of the optical potential. ^{48}Ca(polarized p, p), E=12, 21 MeV; analyzed experimental data for differential σ(E), analyzing powers iT_{11}, sensitivity matrix. ^{48}Ca(n, n), (polarized n, n), E=12 MeV; ^{48}Ca(p, p), (polarized p, p), E=12, 14, 21 MeV; ^{208}Pb(p, p), (polarized p, p), E=30, 61 MeV; ^{208}Pb(n, n), (polarized n, n), E=30 MeV; analyzed experimental data for ratio between the Bayesian evidence using polarization data over that with cross section data. Analysis of experimental data used three statistical tools: the principal component analysis, the sensitivity analysis based on derivatives, and the Bayesian evidence for optical potential parameters. Relevance to the goal of constraining the optical potential.
doi: 10.1103/PhysRevC.104.064611
2021LO01 J.Phys.(London) G48, 014001 (2021) A.E.Lovell, F.M.Nunes, M.Catacora-Rios, G.B.King Recent advances in the quantification of uncertainties in reaction theory NUCLEAR REACTIONS ^{40}Ca(n, n), (n, p), (p, p), (d, d), E=11.9-30 MeV; analyzed available data; deduced different optimization schemes used to constrain the optical potential from σ(θ), uncertainties propagation.
doi: 10.1088/1361-6471/abba72
2020KI08 Phys.Rev. C 101, 065502 (2020) G.B.King, K.Mahn, L.Pickering, N.Rocco Comparing event generator predictions and ab initio calculations of ν-^{12}C neutral-current quasielastic scattering at 1 GeV NUCLEAR REACTIONS ^{12}C(ν, ν), (ν-bar, ν-bar), E=1 GeV; calculated quasielastic differential σ(θ) for neutral-current quasielastic (NCQE) scattering events using event generator (EG) NEUT code (used in analysis of data from T2K experiment at Super-Kamiokande) with two different models on nuclear spectral functions: the relativistic Fermi gas (RFG) and the correlated basis spectral function (CBF). Comparison with analytic calculations using the same two models. Relevance to measurement of neutrino oscillations and exotic physics searches.
doi: 10.1103/PhysRevC.101.065502
2020KI13 Phys.Rev. C 102, 025501 (2020) G.B.King, L.Andreoli, S.Pastore, M.Piarulli, R.Schiavilla, R.B.Wiringa, J.Carlson, S.Gandolfi Chiral effective field theory calculations of weak transitions in light nuclei NUCLEAR STRUCTURE ^{3}H, ^{4,6,8}He, ^{6,7,8}Li, ^{7,8}Be, ^{8,10}B, ^{10}C; calculated energies of ground and excited states, point-proton radii using Green's function Monte Carlo (GFMC) calculations, and compared with experimental data. RADIOACTIVITY ^{6,8}He, ^{8}Li(β^{-}); ^{7}Be(EC); ^{8}B, ^{10}C(β^{+}); calculated Gamow-Teller reduced matrix elements (RMEs), two-body transition densities and pair densities using chiral axial currents and GFMC (VMC) wave functions, with NV2+3-Ia and NV2+3-Ia* Hamiltonian models, and RMEs compared to experimental data.
doi: 10.1103/PhysRevC.102.025501
2019CA29 Phys.Rev. C 100, 064615 (2019) M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes Exploring experimental conditions to reduce uncertainties in the optical potential NUCLEAR REACTIONS ^{48}Ca(n, n), E=12, 14 MeV; ^{48}Ca(p, p), E=12, 14, 21, 24, MeV; ^{48}Ca(d, p), E=21 MeV; ^{208}Pb(n, n), E=30, 32 MeV; ^{208}Pb(p, p), E=30, 32, 35, 61, 65 MeV; ^{208}Pb(d, p), E=61 MeV; analyzed mock data generated from a global optical potential, and real experimental data for differential σ(θ, E) and total σ(E) using Markov-chain Monte Carlo Bayesian approach and the three-body model ADWA for the reaction with the selection of different experimental conditions such as ranges of angular distributions, neighboring incident energies, and reducing the experimental uncertainties to investigate effects on the uncertainties of the optical model parameters. Relevance to uncertainty quantification (UQ) in the design of future experiments.
doi: 10.1103/PhysRevC.100.064615
2019KI05 Phys.Rev.Lett. 122, 232502 (2019) G.B.King, A.E.Lovell, L.Neufcourt, F.M.Nunes Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions NUCLEAR REACTIONS ^{48}Ca, ^{90}Zr, ^{208}Pb(p, p), (n, n), E<35 MeV; analyzed available data; deduced σ(θ).
doi: 10.1103/PhysRevLett.122.232502
2018KI14 Phys.Rev. C 98, 044623 (2018) G.B.King, A.E.Lovell, F.M.Nunes Uncertainty quantification due to optical potentials in models for (d, p) reactions NUCLEAR REACTIONS ^{48}Ca(p, p), E=12, 25 MeV; ^{90}Zr(p, p), E=9.018, 12.7, 22.5 MeV; ^{208}Pb(p, p), E=16, 35 MeV; ^{48}Ca, ^{90}Zr(d, d), E=23.2 MeV; ^{208}Pb(d, d), E=28.8 MeV; ^{48}Ca(n, n), E=12 MeV; ^{90}Zr(n, n), E=10, 24 MeV; ^{208}Pb(n, n)=16.9 MeV; analyzed experimental differential σ(E, θ) with uncorrelated and correlated χ^{2}. ^{90}Zr(d, p), E=22.7 MeV; ^{48}Ca(d, p), E=19.3 MeV; ^{208}Pb(d, p), E=32.9 MeV; analyzed differential σ(θ) data with confidence bands using distorted wave Born approximation (DWBA) and adiabatic wave approximation (ADWA) methods; deduced best-fit parameters, and that the uncertainties arising from the optical potentials, constrained by all relevant elastic-scattering channels are large.
doi: 10.1103/PhysRevC.98.044623
Back to query form |