NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = G.B.King

Found 10 matches.

Back to query form

2023KI04      Phys.Rev. C 107, 015503 (2023)

G.B.King, A.Baroni, V.Cirigliano, S.Gandolfi, L.Hayen, E.Mereghetti, S.Pastore, M.Piarulli

Ab initio calculation of the β-decay spectrum of 6He

RADIOACTIVITY 6He(β-); calculated T1/2, β-decay energy spectrum, corrections to the β-decay spectrum induced by beyond-standard-model charged-current interactions in the standard model effective field theory, with and without sterile neutrinos. Quantum Monte Carlo methods with nuclear interactionsderived from chiral effective field theory and consistent weak vector and axial currents. Comparison to available experimental data.

doi: 10.1103/PhysRevC.107.015503
Citations: PlumX Metrics

2022KI11      Phys.Rev. C 105, L042501 (2022)

G.B.King, S.Pastore, M.Piarulli, R.Schiavilla

Partial muon capture rates in A=3 and A=6 nuclei with chiral effective field theory

NUCLEAR REACTIONS 3He, 6Li(μ-, ν); E at rest; calculated partial muon capture rates. Ab-initio calculations - variational and Green’s function Monte Carlo methods. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.L042501
Citations: PlumX Metrics

2022SC13      Phys.Rev. C 106, 054323 (2022)

J.Schmitt, G.B.King, R.G.T.Zegers, Y.Ayyad, D.Bazin, B.A.Brown, A.Carls, J.Chen, A.Davis, M.DeNudt, J.Droste, B.Gao, C.Hultquist, H.Iwasaki, S.Noji, S.Pastore, J.Pereira, M.Piarulli, H.Sakai, A.Stolz, R.Titus, R.B.Wiringa, J.C.Zamora

Probing spin-isospin excitations in proton-rich nuclei via the 11C(p, n)11N reaction

NUCLEAR REACTIONS 1H(11C, n), E=95 MeV/nucleon; measured reaction products, time-of-flight, En, In, (particle)n-coin, angular distribution; deduced σ(θ), σ(θ, E), cumulative Gamow-Teller transition strengths, B(GT) values to the 1/2- state at 0.73 MeV and the 3/2- state at 2.86 MeV in 11N. Multipole decomposition analysis. Comparison to shell-model calculations with wbp interaction and to experimental data on the 11B(n, p), (d, 2He), (t, 3He) reactions. Ursinus liquid hydrogen target coupled to Low Energy Neutron Detector Array (LENDA) and S800 spectrograph. 11C beam produced from Be(16O, X) reaction and purified with A1900 fragment separator at Coupled Cyclotron Facility (CCF) at the NSCL.

doi: 10.1103/PhysRevC.106.054323
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021CA29      Phys.Rev. C 104, 064611 (2021)

M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes

Statistical tools for a better optical model

NUCLEAR REACTIONS 48Ca(p, p), E=9, 65 MeV; analyzed experimental data for parameter posterior distributions, σ(θ, E), parameter sensitivities using surface and volume models; deduced depth, radius, and diffuseness of the real part of the optical potential. 48Ca(polarized p, p), E=12, 21 MeV; analyzed experimental data for differential σ(E), analyzing powers iT11, sensitivity matrix. 48Ca(n, n), (polarized n, n), E=12 MeV; 48Ca(p, p), (polarized p, p), E=12, 14, 21 MeV; 208Pb(p, p), (polarized p, p), E=30, 61 MeV; 208Pb(n, n), (polarized n, n), E=30 MeV; analyzed experimental data for ratio between the Bayesian evidence using polarization data over that with cross section data. Analysis of experimental data used three statistical tools: the principal component analysis, the sensitivity analysis based on derivatives, and the Bayesian evidence for optical potential parameters. Relevance to the goal of constraining the optical potential.

doi: 10.1103/PhysRevC.104.064611
Citations: PlumX Metrics

2021LO01      J.Phys.(London) G48, 014001 (2021)

A.E.Lovell, F.M.Nunes, M.Catacora-Rios, G.B.King

Recent advances in the quantification of uncertainties in reaction theory

NUCLEAR REACTIONS 40Ca(n, n), (n, p), (p, p), (d, d), E=11.9-30 MeV; analyzed available data; deduced different optimization schemes used to constrain the optical potential from σ(θ), uncertainties propagation.

doi: 10.1088/1361-6471/abba72
Citations: PlumX Metrics

2020KI08      Phys.Rev. C 101, 065502 (2020)

G.B.King, K.Mahn, L.Pickering, N.Rocco

Comparing event generator predictions and ab initio calculations of ν-12C neutral-current quasielastic scattering at 1 GeV

NUCLEAR REACTIONS 12C(ν, ν), (ν-bar, ν-bar), E=1 GeV; calculated quasielastic differential σ(θ) for neutral-current quasielastic (NCQE) scattering events using event generator (EG) NEUT code (used in analysis of data from T2K experiment at Super-Kamiokande) with two different models on nuclear spectral functions: the relativistic Fermi gas (RFG) and the correlated basis spectral function (CBF). Comparison with analytic calculations using the same two models. Relevance to measurement of neutrino oscillations and exotic physics searches.

doi: 10.1103/PhysRevC.101.065502
Citations: PlumX Metrics

2020KI13      Phys.Rev. C 102, 025501 (2020)

G.B.King, L.Andreoli, S.Pastore, M.Piarulli, R.Schiavilla, R.B.Wiringa, J.Carlson, S.Gandolfi

Chiral effective field theory calculations of weak transitions in light nuclei

NUCLEAR STRUCTURE 3H, 4,6,8He, 6,7,8Li, 7,8Be, 8,10B, 10C; calculated energies of ground and excited states, point-proton radii using Green's function Monte Carlo (GFMC) calculations, and compared with experimental data.

RADIOACTIVITY 6,8He, 8Li(β-); 7Be(EC); 8B, 10C(β+); calculated Gamow-Teller reduced matrix elements (RMEs), two-body transition densities and pair densities using chiral axial currents and GFMC (VMC) wave functions, with NV2+3-Ia and NV2+3-Ia* Hamiltonian models, and RMEs compared to experimental data.

doi: 10.1103/PhysRevC.102.025501
Citations: PlumX Metrics

2019CA29      Phys.Rev. C 100, 064615 (2019)

M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes

Exploring experimental conditions to reduce uncertainties in the optical potential

NUCLEAR REACTIONS 48Ca(n, n), E=12, 14 MeV; 48Ca(p, p), E=12, 14, 21, 24, MeV; 48Ca(d, p), E=21 MeV; 208Pb(n, n), E=30, 32 MeV; 208Pb(p, p), E=30, 32, 35, 61, 65 MeV; 208Pb(d, p), E=61 MeV; analyzed mock data generated from a global optical potential, and real experimental data for differential σ(θ, E) and total σ(E) using Markov-chain Monte Carlo Bayesian approach and the three-body model ADWA for the reaction with the selection of different experimental conditions such as ranges of angular distributions, neighboring incident energies, and reducing the experimental uncertainties to investigate effects on the uncertainties of the optical model parameters. Relevance to uncertainty quantification (UQ) in the design of future experiments.

doi: 10.1103/PhysRevC.100.064615
Citations: PlumX Metrics

2019KI05      Phys.Rev.Lett. 122, 232502 (2019)

G.B.King, A.E.Lovell, L.Neufcourt, F.M.Nunes

Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions

NUCLEAR REACTIONS 48Ca, 90Zr, 208Pb(p, p), (n, n), E<35 MeV; analyzed available data; deduced σ(θ).

doi: 10.1103/PhysRevLett.122.232502
Citations: PlumX Metrics

2018KI14      Phys.Rev. C 98, 044623 (2018)

G.B.King, A.E.Lovell, F.M.Nunes

Uncertainty quantification due to optical potentials in models for (d, p) reactions

NUCLEAR REACTIONS 48Ca(p, p), E=12, 25 MeV; 90Zr(p, p), E=9.018, 12.7, 22.5 MeV; 208Pb(p, p), E=16, 35 MeV; 48Ca, 90Zr(d, d), E=23.2 MeV; 208Pb(d, d), E=28.8 MeV; 48Ca(n, n), E=12 MeV; 90Zr(n, n), E=10, 24 MeV; 208Pb(n, n)=16.9 MeV; analyzed experimental differential σ(E, θ) with uncorrelated and correlated χ2. 90Zr(d, p), E=22.7 MeV; 48Ca(d, p), E=19.3 MeV; 208Pb(d, p), E=32.9 MeV; analyzed differential σ(θ) data with confidence bands using distorted wave Born approximation (DWBA) and adiabatic wave approximation (ADWA) methods; deduced best-fit parameters, and that the uncertainties arising from the optical potentials, constrained by all relevant elastic-scattering channels are large.

doi: 10.1103/PhysRevC.98.044623
Citations: PlumX Metrics

Back to query form