ADOPTED LEVELS, GAMMAS for 17O

Authors: C.G. Sheu,J.H. Kelley,J. Purcell  Citation: ENSDF  Cutoff date: 5-Aug-2021

Full ENSDF file

Q(β-)=-2760.47 keV 25S(n)= 4143.08 keV S(p)= 13781.6 keV 23Q(α)= -6358.69 keV
Reference: 2021Wa16

References:
  A  17N β- decay  B  17F β+ decay
  C  18N β-n decay  D  2H(16O,p)
  E  6Li(13C,d)  F  6Li(18O,17O)
  G  7Li(18O,17O)  H  9Be(13C,A13C)
  I  9Be(16O,17O),16O(9Be,17O)  J  12C(6Li,p)
  K  12C(7Li,d)  L  12C(9Be,α),(11B,6Li)
  M  13C(α,γ)  N  13C(α,n)
  O  13C(α,n),(α,α)  P  13C(6Li,d)
  Q  13C(7Li,t)  R  13C(9Be,AN),(9Be,5He)
  S  13C(11B,7Li)  T  13C(13C,9Be)
  U  13C(17O,17O)  V  14C(3He,X): RES
  W  14C(α,n)  X  14C(6Li,t)
  Y  14N(t,γ)  Z  14N(α,p),4He(14N,G17O)
  a  14N(6Li,3He)  b  15N(d,p),(d,d),(d,γ)
  c  15N(d,α)  d  15N(3He,p)
  e  15N(α,d)  f  15N(11B,9Be)
  g  16O(n,γ),(n,n)  h  16O(n,γ):E=THERMAL
  i  16O(n,γ):EN=10-80 KEV  j  16O(n,n),(n,n’)
  k  16O(n,α)  l  16O(p,π+)
  m  16O(d,p),(d,pγ)  n  16O(α,3He),(α,N3HE)
  o  16O(7Li,6Li)  p  16O(13C,12C)
  q  16O(14N,13N)  r  16O(18O,17O)
  s  17O(γ,γ’)  t  17O(γ,n),17O(γ,p)
  u  17O(E,E’)  v  17O(π++’),(π--’)
  w  17O(p,p’)  x  17O(3He,3He)
  y  17O(16O,16O),(16O,16O’)  z  18O(γ,n)
  0  18O(p,d)  1  18O(d,t)
  2  18O(3He,α)  3  19F(n,t),(d,α),(α,6Li)
  4  19F(p,3He)  5  20Ne(n,α)
  6  181Ta(18O,17O)  7  208Pb(17O,17O’):CoulEx

E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final level
       0ABCDEFG IJKL   PQRS UVWXYZa  defghi  lmnopqr    wxyz01 34 67 5/2+ STABLE      
     870.756 20 AB DEFG IJKLM  PQRS  VWXYZa  defghi  lmnopqr  uvwxyz01 34567 1/2+ 179.6 ps 27 
% IT = 100
    870.732 20 
  100
E2
       0
5/2+
    3055.40 6 A   EFG  JKL   PQRS   WX Za  d f hi  lmno  r  uvw  z01 3456  1/2- 110 fs +24-21 
% IT = 100
   2184.49 5 
  100
E1
     870.756
1/2+
    3842.8 4 A   EFG IJKL   PQRSTU WX Za  def     lmno   s uv   z01 3456  5/2- 92×10-3 eV 6 
% IT = 100
   3842.3 4 
  100

       0
5/2+
    4143.27 13 S                                 h                           1/2+      1087.89 4 
   3272.02 8 
   4142.6 6 
  100.00 62 
   20.15 50 
    4.18 30 
E1
M1
E2
    3055.40
     870.756
       0
1/2-
1/2+
5/2+
    4551.8 7 A   EFG  JKL   PQ S    X Za  de g  j lm o    tuv    01 3 5   3/2- 38.7 keV 28 
% IT = 9.5E-3
% n = 99.9905
   3680.6 7 
   4551.1 7 
  100
  100
E1
E1
     870.756
       0
1/2+
5/2+
    5086.8 9 A  DEF  IJKL   PQ        Za  d     j lmn  q  tu     01       3/2+ 90 keV 3 
% IT = 1.1E-3
% n = 99.9988
     
    5216.18 40     E    JKL   PQ  T   X Za  defg    lmn   r  uv    0  3 5   9/2- < 0.1 keV
% n ≈ 100
% IT > 0
     
    5387.1 22 A   EFG  JKL             Za  d f   j  m o    tuv    01 3 5   3/2- 37.1 keV 24 
% IT = 1.9E-3
% n = 99.9981
     
    5697.32 33    DE   IJK    PQ      X Za  defg  j  mn     tuv       3 5   7/2- 3.4 keV 3 
% IT = 3.2E-2
% n = 99.968
     
    5732.07 42 A   E    JK    PQ  T     Za     g  j lm      tuv       3     (5/2-) < 1 keV
% n ≤ 100
     
    5869.62 40 A   E    JKL   PQ  T     Za  d  g  j  mn      u        3 5   3/2+ 6.6 keV 7 
% n ≤ 100
     
    5931.6 15 A   E    JK    PQ        Za  d  g  j  m       u      1 3     1/2- 32 keV 3 
% n ≤ 100
     
    6361.5 71 A   E     KL   PQ S U  X Za  d  g  j lm      tu        3     1/2+ 126 keV 14 
% n ≈ 100
     
    6860.6 4     E    JKL N PQ        Za  d  g  j  m       uv     1 3     5/2+ < 1 keV
% n ≈ 100
% α > 1E-5
     
    6972.5 4          JKL N PQ        Za  d  g  j l n     tu        3     (7/2-) < 1 keV
% n ≈ 100
% α > 8E-6
     
    7165.86 17          JKL N PQ      X Z   d  g  j          u        3     5/2- 1.38 keV 5 
% α = 0.19
% n ≈ 100
     
    7214 5              N PQ  T            g  j         tu        3     3/2+ 263 keV 7 
% n = 99.957
% α = 0.043
     
    7379.23 19          JKL N PQ      X Z    e g  j l n     tu      1 3     5/2+ 0.61 keV +14-11 
% IT = 0.13
% n ≈ 98
% α ≈ 1.9
     
    7382.37 14          JKL N PQ        Z   d  g  j          u      1 3     5/2- 0.90 keV +17-14 
% n = 99.73
% α = 0.27
     
    7543 20 A  DE   I  L   P         Z     fg  j  m   q   u        3     3/2- 500 keV 50 
% n = 99.984
% α = 0.016
     
    7573.5 6     E    JK  N PQ  T         d  g      n      uv       3     7/2+ < 0.1 keV
% α > 0.073
% n < 99.93
     
    7689.21 22          J   N PQ            d  g  j   n     tu        3     7/2- 14.4 keV 3 
% IT = 0.01
% n = 90.27
% α = 9.72
     
    7763.6 4          JK    PQ      X     def     l n     tuv       3 5   11/2- < 4 keV      
    7955 8              N                  g  j         tu              1/2+ 85 keV 9 
% n = 92.61
% α = 7.39
     
    7992 50 A             O              d  g  j                         1/2- 270 keV 27 
% n ≈ 94.7
% α ≈ 5.3
     
    8070 10              NO              d  g  j           v             3/2+ 77 keV 8 
% n ≈ 83
% α ≈ 17
     
    8181 20 ?                                g  j                         1/2- 69 keV 7 
% n = 98.8
% α = 1.2
     
    8200 8 A        J   NOP       X     de g  j l       tu      1       3/2- 61 keV 10 
% IT ≈ 0.002
% n ≈ 92.305
% α ≈ 7.692
     
    8343.94 39              NO              d     j          u              1/2+ 11.4 keV 5 
% n = 71
% α = 29
     
    8403.90 7          J L NO Q  T         d     j   n      uv             5/2+ 6.17 keV 13 
% n = 77
% α = 23
     
   ≈8467         JK     Q                            tu              9/2+ < 10 keV      
    8467.63 9              NOP       X Za   e    j                         7/2+ 2.13 keV 18 
% IT = 0.3
% n = 55.2
% α = 44.5
     
    8502.40 12              NOPQ            d     j          u              5/2- 6.89 keV 22 
% n = 42
% α = 58
     
    8688.9 4          JK  NOPQ            d     j         tu      1       3/2- 55.3 keV 6 
% IT = 0.002
% n = 88.4
% α = 11.5
     
    8880 20     E         OPQ        Z   d     j   n     tu              (7/2-,9/2-) 6 keV
% IT = 0.068
% α ≈ 99.93
     
    8900 8          JK  NOPQ  T   X      e    jk                        3/2+ 101 keV 3 
% α > 22
% n < 78
     
    8968.7 16          J   NOPQ            d f   jkl        u              7/2- 24.8 keV 24 
% n = 89
% α = 11
     
    9146 4     E       MNOPQ                   k        tu      1       1/2- 4 keV 3 
% IT = 0.025
% n = 55
% α = 45
   8273 4 
  100
E1
     870.756
1/2+
    9158 10     E           Q            def              u              9/2-        
    9181 9          J   NOPQ      X Z         j         tu              7/2- 3 keV
% α ≈ 98
     
    9196.16 9           K  NO                    jk         u              5/2+ 3.53 keV 13 
% n = 67
% α = 33
     
    9423                                   j          u              3/2- 120 keV
% n = 100
     
    9491 4          JK  NO Q            d      k  n      u              5/2- 8 keV 3 
% n = 15
% α = 85
     
    9714.53 14          JK  NO Q      X Z   d     jk         u              7/2+ 23.1 keV 3 
% n = 78
% α = 22
     
    9786.07 15              NO    T          e    j l n                     3/2+ 11.7 keV 3 
% n = 88
% α = 12
     
    9861.74 15     E    JKL NOP       X     d     jk         u              (5/2-) 4.01 keV 23 
% n = 84
% α = 16
     
    9879.4 10     E    JK  N PQ      X     d     j          u              (1/2-) 16.7 keV 17 
% n = 65
% α = 35
     
    9976 20              NOPQ                   k                        5/2+ ≈ 80 keV
% n = 22
% α = 78
     
   10045 20              N                      k                        ≈ 100 keV
% n < 100
% α < 100
     
   10136?             NOP                                             5/2+ 138 keV
% n = 15
% α = 85
     
   10170.9 5              NO                    jk                        7/2- 49.1 keV 8 
% n = 46
% α = 54
     
  ≈10240?              O              d                               7/2+ 122 keV
% n = 40
% α = 60
     
   10335 15              NO              d      k                        (5/2+,7/2-) 150 keV
% n < 100
% α < 100
     
   10421.3 20          J  MNO        X                     t               (5/2-,7/2-) 14 keV 3 
% n < 100
% α < 100
     
  ≈10500             NO                                              (5/2+,7/2-) 75 keV 30 
% n < 100
% α < 100
     
   10562.3 8          J   NO Q  T         d     jk                        (7/2-) 44.5 keV 25 
% n = 39
% α = 61
     
   10694 8          JK   O          Za  d                               (7/2+) ≤ 25 keV
% n < 100
% α < 100
     
   10777.9 20        H     NO Q            d     jk                        (1/2+,7/2-) 74 keV 3 
% n < 100
% α < 100
     
   10914.8 64          J   NO              d     jk                        (5/2+) 43.2 keV 16 
% n > 63
% α < 37
     
   11035 2     E    JKL NO              d     jk         u              31 keV 3 
% n < 100
% α < 100
     
   11082.67 18             MN               d     j          u      12      1/2- 2.4 keV 3 
% IT = 0.4
% n = 85.8
% α = 13.8
  10208.0 2 
  100
E1
     870.756
1/2+
   11238 2     E     K  NO        X            kl    q                  (3/2-,7/2+) 80.0 keV 25 
% n < 100
% α < 100
     
  ≈11519                                   jk                1       GE3/2 ≈ 190 keV
% n < 100
% α < 100
     
   11622 2              N                                               65 keV 2 
% n < 100
% α < 100
     
   11751 10              N  Q                   k         u              40 keV 25 
% n < 100
% α < 100
     
   11815 13          JKL N PQ      X                                     7/2+ 12 keV 3 
% n < 100
% α < 100
     
   11880?                                    k                        ≈ 125 keV
% n < 100
% α < 100
     
      11.95E3 5 ?    E                              j          u              GE3/2 ≈ 250 keV
% n < 100
     
   12007 10        H JK  N         X Za         k                        9/2+ < 50 keV
% n < 100
% α < 100
     
   12118 10              N     T               j                 1       150 keV 50 
% n < 100
% α < 100
     
   12229 16          JK                                   u              7/2- ≤ 20 keV      
   12274 15              N         X            kl                       (7/2+) 100 keV 30 
% n < 100
% α < 100
     
   12385 20              N PQ                  j                         130 keV
% n < 100
% α < 100
     
   12424 13          JK  N           Z                                   9/2+ < 50 keV
% n < 100
% α < 100
     
   12471.4 6              N                     j          u      12      3/2- 7.2 keV 11 
% n > 18
% α < 82
     
   12596 15              N                                               75 keV 30 
% n < 100
% α < 100
     
   12670 15              N                     j          u              (3/2-,9/2+) 75 keV
% n < 100
% α < 100
     
   12760 26          JK  N           Z                           1       < 70 keV
% n < 100
% α < 100
     
   12928 20              N                                               (1/2+,7/2-) ≥ 150 keV
% n < 100
% α < 100
     
   12946 6              N                     j          u      12      1/2+ 6 keV 2 
% n > 3.5
% α < 96.5
     
   13004.2 6              N         X           j          u       2      5/2- 2.5 keV 10 
% n > 16
% α < 84
     
   13072 15          JK  N                                               (3/2-) 16 keV 4 
% n < 100
% α < 100
     
   13485 15              N            a          l                       (9/2+) ≈ 120 keV
% n < 100
% α < 100
     
   13580 20     E  H JKL   PQ  T     Z                    u              (11/2-,13/2-) 68 keV 19       
   13610 15     E        N                                u              ≈ 200 keV
% n < 100
% α < 100
     
   13641.9 24                        X           j                 12      5/2+ 9 keV 5 
% n > 2.7
     
   13649?                                   j                         400 keV
% n ≤ 100
     
      14.15E3 10     E          P                     l        u              (9/2+,11/2+) ≈ 150 keV      
   14237.7 15                                    j          u       2      7/2- 20.5 keV 16 
% n > 10
     
   14293 3                                    j                  2      7.5 keV 4 
% n ≤ 100
     
   14458 3                                    j          u              40 keV 6 
% n ≤ 100
     
   14550 26           K                                                         
   14720 20           K                               q   u              9/2- 35 keV 11       
      14.76E3 10     E          PQ  T   X           j l        u              7/2- ≈ 340 keV
% n ≤ 100
     
   14799 3                                    j                         1/2- 36 keV 13 
% n < 100
     
   14880 26        H JK     Q         a                                  (15/2+) % α < 100
     
   14967                            c      j                         (5/2+) ≈ 155 keV
% n < 100
% α < 100
     
      15.10E3 10     E          P            c                t               (9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% p < 100
% α < 100
     
   15101 8     E     K                                   u       2             
   15208 3     E                  X   b       j          u              3/2+ 52 keV 14 
% n < 100
% p < 100
     
   15377 3                                    j                         (5/2+) 40 keV 6 
% n ≤ 100
     
   15620 26          JK                bc                                % p < 100
% α < 100
     
   15787 20           K                b         l        uv             (13/2-) < 30 keV
% p ≤ 100
     
      15.95E3 15     E          P           bc                                (9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% n < 100
% p < 100
% α < 100
     
   16253 4     E                  X           j          u              (9/2+) 21 keV 10 
% n < 100
     
   16578 12     E               U                         u      1       3/2- ≈ 300 keV      
      16.60E3 15                P                                             (11/2-,13/2-)        
   17060 20                P                     l        uv             (11/2-) < 20 keV      
   17448 11                                    j                         66 keV 20 
% n < 100
     
   17920 20                                               u              98 keV 16       
   18122 4     E           Q      X           j         t       1       3/2- 46 keV 12 
% n ≤ 100
     
   18720 20                                               u              87 keV 33       
   18830 20                    T                          u              ≤ 20 keV      
      19.28E3 7 ?                        Y                    t               > 0.75 MeV
% IT > 0
  18418
  19288
 
 


     870.756
       0
1/2+
5/2+
      19.60E3 15     E  H       PQ                                            (13/2+,15/2+) 250 keV      
   19820 40     E                   Y                     u              3/2- 550 keV 50 
% IT > 6E-4
  18949
  19820
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   20140 20                                               u              (11/2-) 31 keV 5       
      20.20E3 15                P                                             (13/2+,15/2+) ≈ 250 keV      
   20390 50                         Y                    t               (5/2-,7/2-) 660 keV 70 
% IT > 6.5E-4
  20390
 
E1
       0
5/2+
   20580 50     E                V  Y          j          u              1/2+ 570 keV 80 
% IT ≥ 9E-4
% n ≤ 99.999
  19709
 
M1
     870.756
1/2+
   20700 20                                               u              (9/2-) < 20 keV      
   21050 50                      V  Y                                    (3/2-) 470 keV 60 
% IT > 0.0026
  20179
  21050
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   21200    E          P                                             (13/2+,15/2+)        
   21725 82                      V                                       5/2+ 750 keV
% IT > 0
% α < 100
  20855?
  21725
 
 
E2
M1+E2
     870.756
       0
1/2+
5/2+
   22136 82     E          P     V                       tu              7/2- 750 keV
% IT > 0
% n < 100
% p < 100
% α < 100
  22136
 
E1
       0
5/2+
      22.55E3 17     E                V                        u              3/2(-) ≈ 1 MeV
% IT > 0
  21679
  22550
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   22960 82     E                V                       t               1/2+ ≈ 0.4 MeV
% IT > 0
% p < 100
  22960
 
E2
       0
5/2+
   23454 82                      V                                       % IT > 0
     
   24442 82     E                V                       t               % IT > 0
% p < 100
     
   26500 15 ?    E                                        t               % IT > 0
% p < 100
     
E(level): Decay probabilities are listed as "%n|<100, %α|<100 " for levels populated in either 16O(n,α) or 13C(α,n) and when no further information is available. Similarly, "%n|<100 " or "%α|<100 " is given for population in, for example, 16O(n,n) or 15N(d,α), respectively. Levels populated in 17O(γ,X) are listed with %IT>0 or with Γγ0 and %IT from the reported values, but the decay transitions are not given. It appears that in past evaluations several levels were associated with α decay based on their population via 18O(3He,α), and with γ decay based on their population in 17O(e,e’).
E(γ): From energy level difference, except where noted.

Additional Gamma data:

E(level)
(keV)
E(γ)
(keV)
MultipolarityAdditional Data
     870.756    870.732 20 E2B(E2)(W.u.)=2.424 37
    3055.40   2184.49 5 E1B(E1)(W.u.)=8.9E-4 +22-16
    3842.8   3842.3 4  B(E1)(W.u.)=3.6E-3 2
    4551.8   3680.6 7 E1B(E1)(W.u.)=8.3E-2 2
   4551.1 7 E1B(E1)(W.u.)=4.2E-2 8
    9146   8273 4 E1B(E1)(W.u.)=5.7E-3 10
   11082.67  10208.0 2 E1B(E1)(W.u.)=2.5E-2 4

Additional Level data and comments:

E(level)Comments
     870.756T1/2: weighted average of 170 ps 7 from 14N(α,p) (1974Sc09) and 180.4 ps 20 from 16O(d,p) (see discussion).
E(level): From recoil corrected Eγ.
Jπ(level): From 16O(d,p).
    3055.40E(level): From recoil corrected least squares fit Eγ=2184.49 5 and 870.732 20. See also 3054.98 20 from 16O(d,p) (2015Pi05).
Jπ(level): From 17N β- decay.
T1/2(level): From 80 fs +60-40 from 14C(α,n) (1964Al11) and 110 fs +28-21 from 181Ta(18O,17Oγ) (2020Zi03).
    3842.8E(level): From 3842.76 keV 42 from 16O(d,p) (1990Pi05), 3842.9 keV 4 from 19F(d,α) (2015Fa12), 3844 keV 7 from 12C(6Li,p) (1986Sm10).
Jπ(level): From 14C(6Li,t) (1981Cu11).
T1/2(level): From 17O(γ,γ’) (1994Mo18).
    4143.27E(level): From 16O(n,γ):E=thermal capture state (2016Fi04).
    4551.8Γγ0=1.80 35 (1992Ig01)
E(level): From 4551.4 keV 7 from 19F(d,α) (2015Fa12), 4553.8 keV 16 from 16O(d,p) (1990Pi05), 4551 keV 4 from 16O(n,n) (1958Hu18), 4555 keV 8 from 12C(6Li,p) (1986Sm10) and 4544 keV 10 from 16O(n,n) (1971Al09).
Jπ(level): From 16O(n,n) (1973Jo01).
    5086.8Γγ0=1.0 EV (1978Ho16)
E(level): From 5089 keV 1 from 2H(16O,p) (2013Al14), 5082 keV 8 from 16O(n,n) (1958Hu18), 5084.4 keV 9 from 16O(d,p) (1990Pi05) and 5087.7 keV 10 from 19F(d,α) (2015Fa12).
Jπ(level): From 16O(n,n) (1973Jo01).
    5216.18E(level): From average of 5217 keV 8 from 12C(6Li,p) (1986Sm10), 5216.5 keV 4 from 19F(d,α) (2015Fa12) and 5215.77 keV 45 from 16O(d,p) (1990Pi05).
Jπ(level): From 17O(e,e’) (1987Ma52).
    5387.1Γγ0=0.7 4 (1979Jo05)
XREF: t(5430)5(5.55×103).
E(level): From discrepant values of 5380 keV 9 from 12C(6Li,p) (1986Sm10), 5377.9 keV 35 from 16O(n,n) (see discussion), 5379.2 keV 14 from 16O(d,p) (1990Pi05) and 5388.8 keV 6 from 19F(d,α) (2015Fa12).
Jπ(level): From 16O(n,n) (1973Jo01).
    5697.32Γγ0=1.1 4 (1979Jo05)
XREF: J(5719)t(5710).
E(level): From 5697 keV 2 from 16O(n,n) (1973Fo11) 5697.5 keV 5 from 19F(d,α) (2015Fa12) and 5697.26 keV 33 from 16O(d,p) (1990Pi05).
Jπ(level): From 16O(d,p) (1956Gr37,1961Ke02,1963Ya03,1964Sc12).
    5732.07XREF: J(5719)t(5.8×103)t(5729).
E(level): From 5732.79 keV 52 from 16O(d,p) (1990Pi05), 5731.6 keV 4 from 19F(d,α) (2015Fa12) and 5733 keV 2 from 16O(n,n) (1973Fo11).
Jπ(level): From 17O(e,e’) (1987Ma52).
    5869.62XREF: K(5900)t(5.8×103).
E(level): From 5869.7 keV 6 19F(d,α) (2015Fa13), 5869.07 keV 55 from 16O(d,p) (1990Pi05). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): From 16O(n,n) (1973Jo01). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    5931.6XREF: K(5900).
E(level): From 5931.0 keV 11 from 19F(d,α) (2015Fa12) and 5939 keV 4 from 16O(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1973Jo01).
    6361.5T=1/2
XREF: t(6300).
E(level): From 6356 keV 8 from 16O(n,n) (1973Fo11) and 6363.4 keV 31 from 19F(d,α) (2015Fa12).
Jπ(level): From 16O(n,n) (1973Jo01).
    6860.6Γα=0.11E-3 EV (2020Me09)
XREF: v(6.86×103).
E(level): Average of 6860.7 keV 4 from 19F(d,α) (2015Fa12) and 6860.3 keV 7 from 13C(α,n) (1993Br17). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): from 12C(6Li,p),(7Li,d) (2008Cr03). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    6972.5Γα=0.082E-3 EV (2020Me09)
E(level): From average of 6972.6 keV 4 from 19F(d,α (2015Fa12) and 6972.1 keV 8 from 13C(α,n) (1993Br17).
Jπ(level): From 17O(e,e’) (1972Ma52).
    7165.86Γα=2.7 EV
E(level): From 16O(n,n) (1980Ci03). See also 7166.5 keV 15 from 13C(α,n)) (1973Ba10) and 7165.4 keV 18 from 19F(d,α) (2015Fa12).
Jπ(level): From 16O(n,n) (1973Jo01).
    7214XREF: n(7202)p(7248).
E(level): From average of 7216 keV 4 from 19F(d,α) (2015Fa12) and 7202 keV 10 from 16O(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1973Fo11, 1973Jo01).
    7379.23Γγ0=0.8 4 (1979Jo05)
XREF: K(7380)L(7388)Q(7379)Z(7379)1(7380)3(7380.1).
E(level): Average of 7379.20 keV 19 from 16O(n,n) (1980Ci03) and 7380.9 keV 15 from 13C(α,n) (1973Ba10). See also 7379 keV 3 from 16O(n,γ),(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1970Fo03,1957Wa46). and 13C(α,n) (1973Ba10).
    7382.37XREF: K(7380)L(7388)p(7381)Q(7382)Z(7379)1(7380)3(7380.1).
E(level): From 7382.16 keV 14 16O(n,n) (1980Ci03) and 7383.9 keV 15 from 13C(α,n) (1973Ba10). See also 7382 keV 3 from 16O(n,γ),(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1970Fo03,1957Wa46). and 13C(α,n) (1973Ba10).
    7543Γn≈500 KEV, Γα=80 EV (1973Jo01)
XREF: I(7.56×103)p(7559).
E(level): Average of 7510 keV 30 from 19F(d,α) (Bu51), 7530 keV 50 from 16O(d,p) (Bu51) 7559 keV 20 from 16O(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1973Fo11).
    7573.5Γα≈7.3 EV (2020Me09)
XREF: p(7576)t(7600)v(7.58×103).
E(level): Average of 7572.9 keV 21 from 13C(α,n) (1973Ba10, 1993Br17) and 7573.5 keV 6 from 15F(d,α) (2015Fa12). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): From 12C(6Li,p)(7Li,d) (2008Cr03). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    7689.21Γγ0=1.5 5 (1979Jo05), Γn=13.0 6 (1980Ci03)
XREF: j(7689.21)t(7660).
E(level): From 16O(n,n) (1980Ci03). See also 7689.2 keV 6 from from 19F(d,α) (2015Fa12).
Jπ(level): From 16O(n,n) (1973Jo01).
    7763.6T=1/2
XREF: t(7800).
E(level): Decay mode not specified.
Jπ(level): From 12C(7Li,d) (2008Cr03).
    7955XREF: t(7910).
E(level): Average of 7952 keV 8 from 13C(α,n) (1973Ba10) and 7958 keV 8 from 16O(n,n) (1973Fo11).
Jπ(level): From 16O(n,n) (1973Fo11, 1973Jo01).
    7992Γα/Γ=0.053 From Γα=14 keV and Γn=250 keV (1973Jo01). See also Γα/Γ=0.059 7 (1973Fo11).
E(level):
    8070XREF: n(8079).
E(level): Average of 8060 keV 8 from 16O(n,n) (1973Fo11) and 8079 keV 8 from 13C(α,n) (1973Ba10).
Jπ(level): From 16O(n,n) (1973Jo01).
    8200Γγ0=1.4 5 (1979Jo05)
XREF: n(8199)d(8192)j(8209)t(8204).
E(level): From 8199 keV 8 from 13C(α,n) (1973Ba10), 8192 keV 10 from 15N(3He,p) (1972Le01), 8210 keV 25 from 12C(6Li,p) (1986Sm10), 8199 keV 10 from 16O(n,γ),(n,n) (1973Fo11) and 8209 keV 10 from 16O(n,n) (1960Ts02).
Jπ(level): From 16O(n,n) (1973Jo01).
    8343.94Γn=8.1 3
XREF: n(8350).
E(level):
Jπ(level): From 17O(e,e’) (1987Ma52).
    8403.90Γn=4.75 11
XREF: L(8400).
E(level): From 16O(n,n) (1980Ci03). See also 8408 keV 3 from 13C(α,n) (1973Ba10).
Jπ(level): From 16O(n,n) (1973Jo01).
    8467XREF: t(8480).
E(level):
Jπ(level): See comment on Ex=8467.63 keV Jπ=7/2+ state.
    8467.63Γn=1.18 4, Γγ0=6.6 18 (1979Jo05)
XREF: n(8473).
E(level): From 16O(n,n) (1980Ci03). See also 8473 keV 3 13C(α,n) (1973Ba10) and other similar values in 12C(6Li,p),(7Li,d). States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): Private communication d.J. Millener (2021). In (1993Ti03) the Jπ of this level was listed as 9/2+ with a footnote reading "private communication with d.J. Millener "; however, this message did not convey the intended communication. Prior evaluations confirmed the presence of a Jπ=7/2+ state at this energy based on, for example, 13C(α,n) (1957Wa46, 1965Ba52) and 16O(n,n) (1973Jo01). Millener had suggested the presence of an additional Jπ=9/2+ state in this region based on the 17O(e,e’) data of (1987Ma52) and 14C(6Li,t) (1981Cu11, 1983Cu02, 1983Cu04). We accept this interpretation and list a 7/2+ and 9/2+ doublet. States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    8502.40Γn=2.86 4
E(level): From 16O(n,n) (1980Ci03). See also 8507 keV 12 from 13C(α,n) (1973Ba10) and 8492 keV 10 15N(3He,p) (1972Le01).
Jπ(level): From 16O(n,n) (1973Jo01).
    8688.9Γn=48.9 11 (1980Ci03), Γγ0=1.2 6 (1979Jo05)
E(level): From 16O(n,n) (1980Ci03). See also 8702 keV 12 from 12C(6Li,p) (1986Sm10) and 8698 keV 5 from 13C(α,n) (1973Ba10).
Jπ(level): From 16O(n,n) (1973Jo01).
    8880Γγ0=4.1 8 (1979Jo05)
XREF: j(8858)t(8900)u(8.90×103).
E(level): From 8858 keV 10 16O(n,n) (1960Ts02) 8880 keV 70 14N(α,p) (1969Ba17), 8890 keV 40 16O(α,3He) 8900 keV 20 17O(e,e’) (1987Ma52) 8900 keV 10 15N(3He,p) (1972Le01).
Jπ(level): From (7/2-) in 13C(6Li,d) (1978Ar15) and (9/2-) in 17O(e,e’) (1987Ma52).
    8900T=1/2
XREF: K(8900).
E(level): From 8905 keV 8 from 12C(6Li,p) (1986Sm10), 8890 keV 30 from 15N(α,d) (1969Lu07) 8896 keV 8 from 13C(α,n) (1973Ba10).
    8968.7Γn/Γ=0.894 from Γn=23.5 keV and Γ=26.3 keV (1980Ci03). See also Γn=23 keV and Γα=2.3 keV from (1973Jo01), Γnα=35 (1957Wa46) and Γα/Γ=0.04 (1965Ba32).
E(level): From average of 8970 keV 4 from 13C(α,n) (1973Ba10) and 8968.5 keV 16 from 16O(n,n) (1980Ci03).
Jπ(level): From 16O(n,n).
    9146XREF: p(9150)u(9.15×103).
E(level):
Jπ(level): From {13C(α,γ) (1983Ra29).
    9158T=1/2
XREF: u(9.15×103).
E(level): From average of 9160 keV 10 from 15N(3He,p) (1972Le01) and 9137 keV 30 from 15N(α,d) (1969Lu07).
Jπ(level): From 15N(α,d).
    9181XREF: n(9180)Z(9140)j(9178)t(9280).
E(level): From 12C(6Li,p) (1986Sm10). See also (2008Cr03).
    9196.16Γn=2.37 8
XREF: K(9190)n(9199)j(9196.16).
E(level):
Jπ(level): From 13C(α,n) (1967Se07).
    9491Γα/Γ=0.85 (1968Ke02).
E(level): From 9491 keV 4 13C(α,n) (1973Ba10), 9487 keV 8 12C(6Li,p) (2008Cr03), and 15N(3He,p) (1972Le01).
Jπ(level): From 15N(3He,p) (1972Le01).
    9714.53Γn=18.0 6
XREF: Z(9790).
E(level):
Jπ(level): From 13C(α,n) (1971Ba06).
    9786.07Γn=10.3 3
XREF: n(9739).
E(level):
Jπ(level): From 13C(α,n) (1971Ba06).
    9861.74Γn=3.37 20
XREF: J(9866)n(9863)p(9877)X(9.87×103)d(9856).
E(level):
    9879.4Γn=10.9 12 (1980Ci03)
XREF: J(9866)n(9876)p(9877)X(9.87×103)d(9856).
E(level):
    9976XREF: k(9997).
E(level):
Jπ(level): From (1971Ba06). See also 7/2+ in 13C(α,n) (1968Ke02) and 13C(6Li,d) (1978Ar15).
   10045XREF: n(10045)k(9997).
E(level):
   10136XREF: p(10168).
E(level):
Jπ(level): From 13C(6Li,d) (1978Ar15).
   10170.9Γn=22.3 6
Jπ(level): From 13C(α,n),(α,α) (1968Ke02).
   10240Γα/Γ=0.40 (1968Ke02).
E(level):
   10421.3XREF: t(10530).
E(level): From average of 10422.3 keV 20 13C(α,n) (1975Be44) and 10419 keV 3 from 13C(α,γ) (1974Be32).
Jπ(level): From 13C(α,n) (1970Ro08).
   10500Jπ(level): From 13C(α,n) (1970Ro08).
   10562.3XREF: n(10558.5)j(10562.6).
E(level): From 10558.5 keV 2 13C(α,n) (1975Be44) and 10562.6 keV 6 16O(n,n) (1980Ci03).
Jπ(level): From 16O(n,n) (1970Lu16).
   10694E(level): From 12C(6Li,p) (1986Sm10). Note: between 1971Aj02 and 1977Aj01 this level was dropped without explanation. Since then it has been reported in (1986Sm10, 2008Cr03).
Jπ(level): From 14N(α,p) (1968Ke02).
   10777.9Jπ(level): From (1970Ro08).
   10914.8Γn0/Γ=63.3 from Γn0=26.4 keV 9 and Γ=41.7 keV 14 (1980Ci03).
E(level): From average of 10918.9 keV 13 16O(n,n) (1981Ci03) and 10905 keV 2 from 13C(α,n) (1975Be44).
Jπ(level): From 16O(n,n) (1980Ci03).
   11035T=1/2
XREF: L(11.0×103)j(10957).
E(level): From average of 11036 keV 2 13C(α,n) (1975Be44) and 11032 keV 4 15N(3He,p) (1972Le01).
   11082.67T=3/2
E(level): From 16O(n,n) (1980Ci03,1981Hi01). See also 11076 keV 5 13C(α,n) (1976Mc11) 11075 keV 4 15N(3He,p) (1972Le01) and 11082 keV 6 18O(3He,α) (1969De06).
Jπ(level): From 18O(d,t) (1981Ma14).
   11238XREF: q(11.2×103).
E(level):
Jπ(level): from 13C(α,n) (1970Ro08).
   11519XREF: 1(11410).
E(level): From 16O(n,n) (1961Fo07, 1959Ha13, 1970Lu16). See also 11410 from 18O(d,t) (1977Ma10) and 11578 keV from 16O(n,α) (1963Da12).
   11815E(level): From average of 11815 keV 13 12C(6Li,p),(7Li,d) (2008Cr03) and 11816 keV 15 13C(α,n) (1963Sp02).
Jπ(level): From (2008Cr03).
   11880XREF: k(11880).
E(level):
      11.95E3XREF: u(11.95×103).
E(level):
Jπ(level): From 16O(n,n) (1961Fo07). See also discussion on Ex=12007 keV.
   12007XREF: Z(12000).
E(level):
   12118T=1/2
E(level): From average of 12109 keV 20 13C(α,n) (1963Sp02) and 12120 keV 10 18O(d,t) (1977Ma10).
   12229E(level): From average of 12220 keV 20 17O(e,e’) (1987Ma52), 12239 keV 16 12C(6Li,p) (1986Sm10,2008Cr03), 12220 keV 26 12C(7Li,d) (2008Cr03). Decay mode not specified.
Jπ(level): From 12C(6Li,p),(7Li,d) (2008Cr03).
   12274T=1/2
Jπ(level): From 14C(6Li,t) (1983Cu02).
   12385E(level): From 13C(α,n) (1963Sp02).
   12424XREF: n(12421).
E(level): From average of 12428 keV 13 12C(6Li,p) (1986Sm10, 2008Cr03), 12420 keV 26 12C(7Li,d) (2008Cr03) and 12421 keV 15 13C(α,n) (1963Sp02).
   12471.4T=3/2
XREF: n(12458).
E(level):
Jπ(level): From 13C(α,n) (1976Mc11).
   12760T=1/2
XREF: n(12813).
E(level): From 12C(6Li,p),(7Li,d) (2008Cr03), where it is best resolved. See also 12760 keV 10 from 18O(d,t) (1977Ma10: uncertainties seem underestimated) and 12813 keV 25 from 13C(α,n) (1963Sp02: the peak is poorly resolved).
   12928XREF: n(12928).
E(level):
   12946T=3/2
XREF: n(12944).
E(level): From 12964 keV 6 16O(n,n) (1981Hi01) 12944 keV 6 13(α,n) (1976Mc11) 12950 keV 8 18O(3He,α) (1969De06).
Jπ(level): From 18O(d,t), 18O(3He,α).
   13072E(level): From weighted average of 13070 keV 26 12C(6Li,p) (2008Cr03), 13060 keV 26 12C(7Li,d) (2008Cr03) and 13077 keV 15 13C(α,n) (1963Sp02).
Jπ(level): From 17O(γ,n) (1985Ju02).
   13485Jπ(level): From 14N(6Li,3He) (1984Et01).
   13580XREF: p(13.58×103)t(13.3×103)u(13.58×103).
E(level): Decay mode not specified.
Jπ(level): The Jπ=11/2-,13/2- interfering doublet at 13.6 MeV is discussed in (1987Ca30). In 13C(6Li,d) (1978Ar15) Ex=13580 keV 20, Jπ=(13/2-) and a broader ≈200 keV width are preferred. On the other hand in 17O(e,e’) (1987Ma52) the same Ex is found with a narrower Γ=68 keV and a preference of (11/2-). With no substantially new results, we maintain the interpretation of (1993Ti07).
   13610XREF: E(13.6×103)u(13.56×103).
E(level):
   13641.9T=3/2
XREF: j(13641.9).
E(level): From 13641.9 keV 24 (1981Hi01). See also 13640 keV 5 18O(3He,α) (1969De06).
Jπ(level): From 14C(6Li,t) (1981Cu11,1983Cu02,1983Cu04), 18O(d,t) (1981Ma14).
   13649XREF: j(13649).
E(level):
      14.15E3XREF: u(14.4×103).
E(level):
Jπ(level): (11/2+) is slightly preferred.
   14237.7T=3/2
Jπ(level): From 17O(e,e’). See also (7/2-) in 16O(n,n).
   14550E(level): From 12C(7Li,d) (2008Cr03). Decay mode not specified.
   14720T=3/2
E(level): Decay mode not specified.
      14.76E3XREF: p(14760)t(14600)j(14590)u(14.76×103).
E(level): From 17O(e,e’) (1977No06).
Jπ(level): From 14C(6Li,t), see (1981Cu11,1983Cu02,1983Cu04).
   14880XREF: K(14880).
E(level): From 12C(6Li,p)(7Li,d) (2008Cr03).
Jπ(level): From 14N(6Li,3He) (1984Et01).
      15.10E3XREF: c(15149)t(15.06×103).
E(level):
   15101T=3/2
XREF: u(15.10×103).
E(level): From 15070 keV 26 12C(7Li,d) (2008Cr03) and 15101 keV 8 18O(3He,α) (1969De06). Decay mode not specified.
   15208T=3/2
XREF: u(15.24×103).
E(level):
Jπ(level): From 17O(e,e’) (1983Ra27), 14C(6Li,t) (1981Cu11,1983Cu02,1983Cu04) and 16O(n,n’) (1981Hi01). See also (5/2-,7/2-) for a broad level at 15.15 MeV reported in 15N(d,α) (1966Ti03).
   15620E(level): From (2008Cr03) 12C(6Li,p)(7Li,d).
   15787T=(1/2)
XREF: b(15722).
E(level): From average of 15780 keV 20 16O(e,e’) (1986Ma48) and 15800 keV 26 12C(7Li,d) (2008Cr03).
      15.95E3XREF: E(16.1×103)b(16164)c(15800).
E(level):
   16253T=3/2
XREF: u(16500).
E(level):
Jπ(level): From (1981Cu11,1983Cu02,1983Cu04) 14C(6Li,t).
   16578T=3/2
XREF: U(16.52×103)u(16.52×103).
E(level): From 16.52 MeV 5 17O(e,e’) (1977No06) and 16580 keV 10 (1977Ma10). Decay mode not specified.
Jπ(level): From 18O(d,t) (1981Ma14).
      16.60E3E(level): Decay mode not specified.
   17060T=(1/2)
E(level): Decay mode not specified.
   18122T=3/2
XREF: Q(18170)t(18.09×103).
E(level):
Jπ(level): From 18O(d,t) (1981Ma14).
   18720E(level): Decay mode not specified.
   18830E(level): Decay mode not specified.
      19.60E3XREF: H(19.0×103)Q(19240).
E(level): Decay mode not specified.
   19820Γγ0≥1 EV
XREF: Y(19.76×103).
E(level):
Jπ(level): From (1980Li05).
   20140T=3/2
E(level): Decay mode not specified.
      20.20E3E(level): Decay mode not specified.
   20390Jπ(level): 5/2- from (1980Li05); E1 to 17O(0:5/2+). See also (7/2-) in 17O(γ,p) (1992Zu01).
   20580T=(1/2)
XREF: j(20425)u(20.5×103).
E(level):
   20700T=(3/2)
E(level): Decay mode not specified.
   21200XREF: p(21.2×103).
E(level): Decay mode not specified.
   21725E(level): From 14C(3He,γ) (1976Ch04).
   22136XREF: p(22.1×103)t(22.17×103)u(22.0×103).
E(level): From 14C(3He,γ) (1976Ch04), see also 22.17 MeV 10 17O(γ,p) (1992Zu01).
      22.55E3XREF: u(22.0×103).
E(level): From 14C(3He,γ) (1976Ch04).
   22960XREF: t(23.1×103).
E(level): From 14C(3He,γ) (1976Ch04), see also 23.1 MeV 1 17O(γ,p) (1992Zu01).
   23454E(level): From 14C(3He,γ) (1976Ch04).
   24442XREF: t(24.4×103).
E(level): From 14C(3He,γ) (1976Ch04), see also 24.4 MeV 1 17O(γ,p) (1992Zu01).
   26500XREF: t(26.5×103).
E(level): From 17O(γ,p) (1992Zu01).

Additional Gamma comments:

E(level)E(gamma)Comments
     870.756     870.732E(γ): Precisely reported γ-ray energies are 870.76 4 from 16O(n,γ):E=thermal (2016Fi04) and 870.725 20 from 16O(d,pγ) from (1980Wa24).

General Comments:

17O was first identified by (Blackett: Proc. Roy. Soc. α 107 (1925) 349); see (2012Th01).
Past evaluations: 1959Aj76, 1971Aj02, 1977Aj02, 1982Aj01, 1986Aj04 1993Ti07. In the present evaluation, we relied heavily on keywords and descriptions provided in the Nuclear Science Reference database (2011Pr03)
We acknowledge fruitful discussions with d.J. Millener.
The atomic mass of 17O is 16.9991317566 u 9 (2010Mo29). See recent AME Mass evaluations in (2012Wa16, 2017Wa10).
Theory:
See Shell model analyses in: 1963Pa03, 1966Ar10, 1966Br04, 1968Bi07, 1969Bo37, 1969Ul03, 1971Mu23, 1973Re17, 1979Co10, 1992Ja13, 1993Po11, 1997Pr05, 2005Vo01, 2006Ma17, 2006Vo14, 2012Yu07, 2016Pa05, 2018Ji07, 2018Ti08, 2019Sm04, 2019Ti04, 2020Fo04, 2020Ma25, 2020Mi15, 2020So01
See Cluster model analyses in: 1995Ho13, 2003Ma70, 2003Mb05, 2004Mc02, 2005Wl02, 2006Go22, 2008ToZV, 2020Ca21
See other theoretical analyses in: 1962Ma23, 1963Fa03, 1963Un01, 1965Ma16, 1966De18, 1966Ma12, 1967Go04, 1969De16, 1970Ry02, 1971Au08, 1971Hs02, 1971Ka40, 1972Be22, 1972En03, 1974HsZX, 1974Ri09, 1974Sa05, 1976Ma05, 1977Ho04, 1977Po16, 1978Fo22, 1978Kr02, 1979Kr05, 1980Hy03, 1980Va05, 1981Au04, 1986Be36, 1986Ed03, 1986To13, 1991Sk02, 1992Ba50, 1994Ma34, 1994Wa02, 1996Ti02, 1997Re07, 2000Bh07, 2005Ni24, 2006Id01, 2007Ch73, 2007Gu03, 2014Ho08, 2016De38, 2016Ho14, 2017Ti04.
See discussion on 17O-17F mirror nuclei and analog states in: 1970Wa01, 1981Sh17, 1981Ta09, 1983Ma38, 1984Sh30, 1985Sh24, 1994Sa45, 1994Sh20, 1995Fo18, 1996Bu20, 1998Ao02, 1999Ts06, 1999Ki28, 2001Ag09, 2001Au01, 2001Sh17, 2002Zh28, 2003Ti13, 2003Zh29, 2004Fu04, 2005Ti07, 2008Li53, 2010Ha11, 2011Ti09, 2012Mu14, 2012Ok02, 2017De08, 2017Sv01, 2018Do02, 2018Fo04, 2019Mu05, 2020De03
See discussion on the nuclear and charge radii in:
experimental: 2000Fa12, 2001Oz03, 2001Oz04, 2012Ra29
Using elastic electron scattering the ratio of the rms charge radii of 17O to 16O was determined to be 0.995 6 as reported in (1970Si02) and 1.0015 25 as reported in (1978Ki01). In (1979Mi09), it is reported that the charge radius of 16O is larger than that of 17O by 0.008 fm 7.
theory: 1969No03 (RchargeRMS=2.70 fm (theory)), 1973Ho32, 1979Br17 2013Fo09, 2017Ah08(RmatterRMS=2.73 fm 4), 2018Fo12, 2019Fo08, 2019Ra09, 2019Sa02, 2020An13
Moments and hyperfine structure:
Experimental results on μ:
1951Al08: The ratio of the resonance frequency of 17O from H2O to the resonance frequency of D2 from D2O was determined to be ν(17O)/ν(D2)=0.88313 4; the spin of 17O is I=5/2; μ=-1.89280 nm 19.
2005An15: 17O measured NMR spectra; deduced μ=-1.8935428 95.
Theory, calculated μ dipole moment:
1968Pe16, 1968Sc18, 1972Gl06, 1973Er03, 1974Ha27, 1977Ko28, 1980Br13, 1980Ch35, 1983Zi01, 1984Bo11, 1984Zi04, 1985Bl20, 1985Zi05, 1987It01, 1988Ho16, 1989Ch24, 1989Ne02, 1990Mo36, 1991Bl14, 1994Li55, 1999Ga57, 2003Sm02, 2005An15, 2006Ya12, 2009Li64, 2012Fu06, 2012We11, 2014Ac01, 2017Sa48
Experimental results on Q:
1957Ka68: measured Q=-0.0265 b 30
1957St93: measured Q=-0.026 b 9
1969Sc34: measured Q=-0.025 b 78. See also (1969Sc33).
92Su: Sundholm and Olsen, J. Phys. Chem. 96 (1992) 627: measured Q=-0.02558 b 22
2008Py02, 2013De06: 17O compiled evaluated ground-state quadrupole moments: (2008Py02) considers Q=-25.58 mb 22 as the most accurate value (Su92: J. Phys. Chem. 96 (1992) 627).
Theory, calculated Q quadrupole moment: 1969Ke07, 1969Go12, 1969Ma38, 1986Ca27, 1991Zh06, 1993Ki05, 1993Ki22, 1997Si10, 1997Si34, 2003Ra04, 2003Sm02, 2003Ra09, 2007Be09, 2017Sa48
See moment compilations in: 1969Fu11, 1989Ra17, 2008Py02, 2005St25, 2015St03, 2016St14, 2019StZV, 2020StZV
Other experimental results not listed elsewhere:
1981Ma16: measured spin-dependent neutron scattering length.