¹⁸O(d,t) **1977Ma10**

History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	C G Shen I H Kelley I Purcell	ENSDE	5-Aug-2021				

- 1961Ar06: ¹⁸O(d,t), E=15 MeV; angular distributions of triton groups corresponding to the ¹⁷O*(0,0.871,3.846,4.555,5.083, and 5.378-MeV) states are obtained.
- 1963Ro12: The distorted wave Born approximation is used to analyse the reactions $^{18}O(d,t)$ and $^{18}O(d,p)^{19}O$. Assignments of L values obtained from Butler theory are confirmed.
- 1977Ma10: A beam of deuterons at E=52 MeV from the Karlsruhe isochronous cyclotron impinged on a 98% enriched $^{18}O_2$ gas target. The tritons were detected with Δ E-E counter telescopes with an energy resolution of 90 keV FWHM and were measured between θ =8° and 50°. Spectroscopic factors were obtained by a DWBA analysis. Energy levels of ^{17}O up to 25 MeV, J^{π} , L and T values were also deduced.
- 1978Fo05: An E=17 MeV deuteron beam from the University of Pennsylvania FN tandem Van de Graaff accelerator bombarded once a solid target WO₃ and once a gaseous O₂ target. In both experiments elastic and inelastic deuterons were detected at θ=45° relative to the beam. The absolute cross sections were measured. Spectroscopic factors deduced by DWBA analysis for ¹⁷O ground state (5/2+) and the first excited state (1/2+) are 1.48 and 0.29, respectively.
 1981Ma14: ¹⁸O(pol. d, ³He); E=52 MeV; measured iT₁₁(E(³He),θ). ¹⁷O deduced levels, J, π, S. Enriched targets. DWBA,
- 1981Ma14: 18 O(pol. d, 3 He); E=52 MeV; measured i $T_{11}(E(^{3}He),\theta)$. 17 O deduced levels, J, π , S. Enriched targets. DWBA, Nilsson model analyses.

See also (1961Vl02,1977FoZZ,1979KnZQ) and (1975Hs01,1976La13: theory).

¹⁷O Levels

E(level) [†]	$J^{\pi \dagger}$	<u>L</u> ‡	C^2S^{\ddagger}	Comments	
0#@&	5/2+	2	1.53	L: See also (1961Ar06,1963Ro12). Spectroscopic factor (DWBA) S(5/2 ⁺)=1.48 27 (1978Fo05).	
871#@&	1/2+	0	0.21	L: See also (1961Ar06,1963Ro12). Spectroscopic factor (DWBA) $S(1/2^+)=0.29\ 5$ (1978Fo05). The ratio of $S(1/2^+)/S(5/2^+)=0.195\ 15$ which is in disagreement with the theoretical value of 0.267 (1976La13).	
3055 ^{#&}	1/2-	1	1.08		
3841 #@&	5/2-	3		L: from (1961Ar06,1963Ro12); see also (1977Ma10: >2).	
4554 ^{#@&}	3/2-	1	0.12	L: See also (1961Ar06,1963Ro12).	
5083 ^{#@} &	3/2+	2	0.10	L: See also (1961Ar06,1963Ro12).	
5377 ^{#@} &	3/2-	1	0.53	L: See also (1961Ar06,1963Ro12).	
5935 <mark>&</mark>	1/2-	1	0.06		
6859 7380	(5/2 ⁻ ,5/2 ⁺)			L: $L \neq 1$ (1977Ma10). E(level), J^{π} : unresolved doublet (1977Ma10). L: $L \neq 2$ (1977Ma10).	
8213 <mark>&</mark>	3/2-	1	0.15		
8703 <mark>&</mark>	3/2-	1	0.10		
9160 <mark>&</mark>	1/2-	1	0.10		
11082 <mark>&</mark>	$1/2^{-a}$	1	0.96	T=3/2 (1981Ma14)	
11410 <mark>&</mark> <i>10</i>		(1)	0.04	T=1/2 (1977Ma10)	
12120 <mark>&</mark> <i>10</i>		(1)	0.24	T=1/2 (1977Ma10)	
12471 <mark>&</mark>	$3/2^{-a}$	1	0.24	T=3/2 (1981Ma14)	
12760 <mark>&</mark> <i>10</i>		(1)	0.17	T=1/2 (1977Ma10)	
12950 <mark>&</mark>	$1/2^{+a}$	0	0.19 5	T=3/2 (1981Ma14)	
13640 ^{&}	5/2 ^{+a}	2	0.29 12	T=3/2 (1981Ma14) J ^{π} : See also (5/2 ⁺) (1977Ma10).	
16580 ^{&} 10	3/2 ^{-a}	1	0.93	T=3/2 (1977Ma10,1981Ma14) J^{π} : See also (1/2 ⁻ ,3/2 ⁻) (1977Ma10).	

¹⁸O(d,t) **1977Ma10** (continued)

¹⁷O Levels (continued)

[†] See nominal level energy values listed in, for example, (1977Ma10) except where noted. J is consistent with DWBA analysis in (1977Ma10).

[‡] From (1977Ma10) except where noted.

[#] Observed in (1961Ar06). However, the triton group corresponding to the 3.06-MeV state was not observed at $8^{\circ} < \theta_{lab} < 37^{\circ}$.

[@] Observed in (1963Ro12).

[&]amp; Observed/measured(with uncertainty) in (1977Ma10). The authors find agreement with (1971Aj) within \approx 10 keV and use this as the basis for their uncertainty; this may be an underestimate?

^a From (1981Ma14: ¹⁸O(pol. d,³He)); deduced from combining with the results of a parallel ¹⁸O(d,³He)¹⁷N and ¹⁸O(d,t)¹⁷O measurement (1977Ma10).