¹³C(¹¹B,⁷Li) 2012Gu18,2017Me04

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. G. Sheu, J. H. Kelley, J. Purcell	ENSDF	5-Aug-2021		

2012Gu18: The angular distribution for the reaction ¹³C(¹¹B,⁷Li)¹⁷O was measured at the HI-13 tandem accelerator of the China Institute of Atomic Energy in Beijing. A beam of E(¹¹B)=50 MeV impinged on a self-supporting ¹³C target (75 *6 μg/cm²*, 8% purity). The reaction products were separated by a Q3D magnetic spectrograph and detected by a two-dimensioanl position-sensitive Si detector PSSD.

Excitation states of ¹⁷O*(3.055,3.843,4.554,6.356 MeV) were observed. The α -spectroscopic factor S_{α}=0.37 *12*, the square of the Coulomb modified ANC (asymptotic normalization coefficient), C² or ANC²=4.0 fm⁻¹ *11*, and the reduced α -width γ_{α}^2 =12.7 keV for the ¹⁷O*(6.356 MeV; 1/2⁺) subthreshold state were deduced.

2017Me04: XUNDL dataset compiled by TUNL, 2017.

The authors measured the angular distributions of ${}^{11}\beta^+$ ${}^{13}C$ elastic and inelastic scattering and deduced α spectroscopic factors of ${}^{17}O$ states.

- A beam of 45 MeV ¹¹B ions, from the Warsaw cyclotron facility, impinged on a carbon foil target (90% ¹³C). The reaction products were detected at $\theta_{cm} \approx 12^{\circ} 175^{\circ}$ using ΔE -E telescopes. The ¹¹ β^+ ¹³C elastic and inelastic scattering to ¹⁷O states with $E_x = (0,871,3055,3843,4554,6356)$ were observed.
- The data were analyzed using optical model (OM) and the coupled-channels Born approximation (CCBA) calculations. The α spectroscopic factors of the ¹⁷O states were determined. The largest value was for the subthreshold 1/2⁺ state at E_x=6.356 MeV, either S_{α}=0.72±0.22 (N=3) or S_{α}=0.39±0.12 (N=4). The number N is the number of nodes in the α particle radial wave function, not counting the one at the origin (2003Ke10,2008Pe09).

Enhancements were observed in the backward angle scattering for reactions to ¹⁷O*(0,871,3055,3843). The authors explored the exotic ⁶Li cluster transfer mode as an explanation but were still unable to explain the effect. See also (2018Ke03: theory).

¹⁷O Levels

E(level) [†]	$J^{\pi \dagger}$	S_{α}^{\ddagger}	Comments
0	5/2+	0.08 2	
871	$1/2^{+}$	0.35 12	
3055	$1/2^{-}$	0.42 16	S_{α} : =0.19 6 (2012Gu18).
3843	5/2-	0.10 3	S_{α} : =0.078 25 (2012Gu18).
4554	$3/2^{-}$	0.15 5	S_{α} : =0.060 <i>19</i> (2012Gu18).
6356	$1/2^{+}$	0.39 12	S_{α} : for N=4; ANC ² =4.5 fm ⁻¹ 14. For N=3, S_{α} =0.72 22; ANC ² =5.1 fm ⁻¹ 15 (2017Me04).
			S_{α} =0.37 12; ANC ² =4.0 fm ⁻¹ 11 (2012Gu18).

[†] Nominal level energy and J^{π} values listed in (2017Me04).

[‡] From (2017Me04).

 $^{17}_{8}O_{0}$