²H(¹⁶O,p) 2013Al14

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. G. Sheu, J. H. Kelley, J. Purcell	ENSDF	5-Aug-2021					

1980FIZU: ²H(¹⁶O,p), E=42 MeV; measured $\sigma(E_p)$. ¹⁷O levels deduced ¹⁶O-neutron final state interaction. Kinematically

complete experiment, Si(Sb) detector, tof, deuterated polyethylene target.

2013Al14: XUNDL dataset compilded by TUNL, 2013.

The authors verified the performance of an experimental configuration using the ${}^{2}H({}^{16}O,p){}^{17}O$ reaction to study the (d,p) reaction in inverse kinematics. The primary focus was on ${}^{2}H({}^{8}He,p)$ to study ${}^{9}He$ levels.

A beam of $E(^{16}O)=15.5$ MeV/A ions from accelerators at GANIL impinged on Cd₂ targets of thickness 320 or 550 μ g/cm².

Position sensitive gas chamber detectors measured the incident trajectories while recoiling protons were measured at backward angles (θ =120°-170°) by a set of four position sensitive Δ E- Δ E-E MUST2 detector telescopes. In addition, the ¹⁷O ejectiles (or ¹⁶O ejectiles from in flight decay of neutron unbound levels of ¹⁷O) were detected by a thick plastic scintillator at θ < 5.6° along with non-interacting beam particles. The missing mass spectrum, which was deduced from the incident beam-particle kinematics and the ejected proton, revealed the ¹⁷O states populated in the reaction. The spectrum was analyzed via DWBA analysis and compared with literature values.

See also (1980FlZU).

¹⁷O Levels

E(level) [‡]	$J^{\pi \dagger}$	Γ^{\ddagger}	L‡	$C^2S^{\ddagger\#}$	Comments
0	5/2+			0.7 2	E(level): The authors deduced a ¹⁷ O mass excess that differs by 5 keV 2 when compared with (2017Wa10); this implies an unaccountable systematic error.
865 9 5089 1 5692 7 ≈7550	1/2 ⁺ 3/2 ⁺ 7/2 ⁻	≈70 keV	0	1.4 <i>3</i> 0.8 <i>2</i> 0.13 <i>3</i>	

[†] Nominal values listed in (2013Al14).

[‡] From (2013Al14).

[#] Uncertainties are stated as 20% by (2013A114).