⁶Li(¹³C,d) 2015Av02

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. G. Sheu, J. H. Kelley, J. Purcell	ENSDF	5-Aug-2021	

1987Ca30: ${}^{6}\text{Li}({}^{13}\text{C},\text{d}){}^{17}\text{O}^* \rightarrow \alpha + {}^{13}\text{C}$, E=34 MeV; measured $\sigma(\theta_{\text{d}},\theta_{\alpha})$; deduced reaction mechanism. ${}^{17}\text{O}$ deduced levels, Additional information 1.

2006Jo11: A beam of E(¹³C)=8.0, 8.5 MeV impinged on a 50 µg/cm² thick, 98% enriched ⁶Li target at the Florida State University Tandem-LINAC facility. Four Si ΔE-E telescopes were used to identify deuterons at forward angles with thicknesses from 15 to 25 µm. The energy resolution FWHM in the c.m. system was ≈250 keV. The code FRESCO was used to calculate the reaction angular distribution in the DWBA approach. The low-energy astrophysical S-factor was determined using the indirect asymptotic normalization (ANC) technique. Coulomb-modified ANC² for ¹³C+α→¹⁷O*(6.356 MeV:1/2⁺)=0.89 fm⁻¹ 23 and the S(0) of this ¹⁷O state is (2.5±0.7)×10⁶ MeV·b.

2015Av02: XUNDL dataset compiled by TUNL, 2015.

- An 8 MeV beam of ¹³C ions, from the John D. Fox Accelerator Lab at FSU, impinged on 35 μ g/cm² (±10%) ⁶Li targets. The reaction products were detected using a pair of Δ E-E (position sensitive proportional counter/Si pin diode) detectors. The effective energy, corresponding to the energy where half the yield has been produced, was determined as 7.72 MeV. Many states, including an unresolved multiplet of states near 5.9 MeV were populated in the reaction.
- The authors deduced the ¹⁷O*(6356) asymptotic normalization coefficient (ANC) and analyzed its impact on the ¹³C(α ,n)¹⁶O reaction rate at astrophysical energies. This reaction is thought to be the main source of *s*-process neutrons, and existing information in the literature provides an inconsistent description. The value ANC²=3.6 fm⁻¹ 7 was deduced. See also (2018Ke03: theory).

¹⁷O Levels

E(level) [†]	$J^{\pi \dagger}$	Comments
0		
871		
3055		
3843		
4552		
5085 [‡]		
5216 [‡]		
5379 [‡]		
5700 [#]		
5730 [#]		
5870 [#]		
5940 [#]		
6356		$ANC^2=3.6 \text{ fm}^{-1}$ 7 is deduced by (2015Av02). See also $ANC^2=0.89 \text{ fm}^{-1}$ 23 (2006Jo11).
13.6×10 ³	(11/2,13/2)	E(level), J^{π} : Analysis of the angular distributions in (1987Ca30) concluded this peak corresponds to an unresolved doublet with (11/2,13/2).
16.1×10^3	(7/2,11/2)	E(level), J^{π} : Analysis of the angular distributions in (1987Ca30) concluded this peak corresponds to an unresolved doublet with (7/2,11/2).

[†] Nominal values listed in (2015Av02) except where noted.

[‡] Unresolved group of levels includes ¹⁷O*(5085,5216,5379) (2015Av02).

[#] Unresolved group of levels includes ¹⁷O*(5700,5730,5870,5940) (2015Av02).