¹⁴C(³He,X): res 1972Ke08,1976Ch04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. G. Sheu, J. H. Kelley, J. Purcell	ENSDF	5-Aug-2021					

${}^{14}C({}^{3}He,\gamma):$

1972VeZY: ¹⁴C(³He, γ), E=3.2-7.4 MeV; measured σ (E; E_{γ}, θ (γ)). ¹⁷O deduced resonances, J, π .

1976Ch04: $E(^{3}He)=3.2-7.5$ MeV ion beams, from the Stanford FN tandem Van de Graaff accelerator, bombarded a thin carbon film (enriched 50% 14 C). The γ -rays were detected by a 24×24 cm² NaI(Tl) crystal at θ =90° with respect to the incident beam. At some energies, the angular distributions were measured in the range θ =0°-135°. Energy levels at 17 O*(21.7 1,22.2 1,22.6 2,23.0 1,23.5 1 and 24.4 1) were observed and J^{π} values for the first levels were assigned as 5/2⁺,7/2⁻,3/2⁽⁻⁾ and 1/2⁺, respectively. 14 C(³He,n):

1961Jo24: ${}^{14}C({}^{3}He,n_0)$, E=1.6-3.25 MeV; observed two resonances at E(${}^{3}He$)=2.1 and 2.8 MeV, corresponding to ${}^{17}O*(20.5,21.1 \text{ MeV})$.

1970Ho08: The ¹⁴C(³He,n) reaction was investigated using neutron time-of-flight spectrometry by bombarding a ¹⁴C target with $E(^{3}He)=3.5-6$ MeV beams at the University of Alberta/Van de Graaff facility. DWBA calculations were used to analyze angular distributions. Energy levels at ¹⁶O*(0, 6.05+6.13, 6.92+7.12 MeV) were observed. A resonance at $E_{res}=4.1$ MeV was observed in the 0° excitation function of the ¹⁶O ground state and the second doublet which implies ¹⁶O*(7.12 MeV:1⁻) state is strongly participating in this region, which corresponds to a level or levels at 22.2 MeV in ¹⁷O.

¹⁴C(³He,p),(³He,d):

1970KeZY: ¹⁴C(³He,p),(³He,d), E=2-7 MeV; measured σ (E; θ). ¹⁷O deduced resonances, J, π .

1972Ke08: This experiment was performed at the University of Florida/ Van de Graaff accelerator using $E({}^{3}He)=2.2-7$ MeV ion beams bombarding a ${}^{14}C$ target (70% enriched acetylene on 0.10 μ m Ni foil). Two solid state detectors (1000 μ m and 300 μ m thick) placed 15 cm from the target were used to detect the reaction products. The absolute cross sections were obtained with a uncertainty of ±20%. Three levels at ${}^{17}O*(21.7 \text{ MeV } I, 22.1 \text{ MeV } I, 23.0 \text{ MeV } I)$ were deduced with $J^{\pi}=5/2^+$, $7/2^-$, $1/2^+$, respectively, using a two-level analysis of the α -channel data and an optical-model-plus-resonance (OMPR) analysis of the elastic data.

¹⁴C(³He,³He):

1970Du07: ¹⁴C(³He, ³He), E=4-18 MeV; measured σ (E; θ); deduced optical potential parameters.

1970KeZY: ¹⁴C(³He, ³He), E=2-7 MeV; measured σ (E; θ). ¹⁷O deduced resonances, J, π .

1971Co14: ¹⁴C(³He, ³He), E=6.0,8.0,10.0 MeV; measured $\sigma(\theta)$; deduced optical model parameters.

1972Ke08: ¹⁴C(³He, ³He), see above.

¹⁴C(³He,α):

1970KeZY: ¹⁴C(³He, α), E=2-7 MeV; measured σ (E; θ). ¹⁷O deduced resonances, J, π .

1971Co14: ¹⁴C(³He, α), E=6.0,8.0,10.0 MeV; measured $\sigma(\theta)$; deduced optical model parameters. Enriched targets.

1971Ke08: A ³He ion beam from the University of Florida 4 MV Van de Graaff accelerator bombarded a ¹⁴C target (70% enriched acetylene deposited on a 0.1 μ m Ni foil). The α -particle angular distributions, measured in 5° step and covering θ =20°-160°, were fitted using a Legendre polynomial expansion. Two broad states at ¹⁷O*(21.7 MeV *1*:5/2⁺,22.1 MeV *1*:7/2⁻) with $\Gamma_{\rm cm}\approx750$ keV were obtained in both α_0 and α_1 channels with corresponding E_{res}=3.6 and 4.1 MeV. The 22.1-MeV level is suggested to be a 3p-2h quasi-bound state.

1972Ke08: ${}^{14}C({}^{3}He,\alpha)$, see above.

Theory:

Differential cross sections are calculated and analyzed in (1986Ze04: E=16-22 MeV), (1989Er05: E=72 MeV), (1990De31: E=39.6,12 MeV), (1992Ga26: E=72 MeV), (1996De49: E=72 MeV), (1996Go14: E(cm)=59,33 MeV), (2014El01: E=37.9 MeV), (2015Pa10: E=4-118.5 MeV; analyzed $\sigma(\theta)$ for 142 sets of experimental data; deduced optical model parameters). See also (1983Me18).

¹⁴C(³He,X): res **1972Ke08,1976Ch04** (continued)

¹⁷O Levels

Notes:

(1972Ke08) also report excitation functions in the range $E(^{3}He)=2.2-7.0 \text{ MeV} (\alpha_{0-3})$, 3.2-4.4 MeV (p_{0-3}), 3.2-5.5 MeV (d) and 4.0-6.1 MeV (^{3}He): angular distributions for the α -groups have been measured at a number of energies.

For ¹⁷O deduced resonances, J, π , see also (1970KeZY,1972VeZY).

The variation of the ³He optical parameters has been studied for $E(^{3}He)=10-18$ MeV (1970Du07).

(Ke70): Keyser et al., Bull. Amer. Phys. Soc. 15 (1970) 1685.

E(level)	$J^{\pi \ddagger}$	Γ#	Eres(lab) (MeV)@	Comments
0 871	$5/2^+$ $1/2^+$			E(level), J^{π} : from Adopted Levels. E(level), J^{π} : from Adopted Levels.
20489 [†] &			2.1 [†]	%n>0
21066 ^{†&b}			2.8 [†]	%n>0
21725 ^{@ab} 82	5/2+	0.75 MaV	261	E(level): from E(3 He)=2.8 MeV (1961Jo24).
21723 62	5/2	0.75 IVIE V	5.0 1	E(level): from E(³ He)=3600 keV <i>100</i> (1976Ch04). See also E_{res} =3600 keV (Ke70,1971Ke08,1972Ke08).
22136 ^{@&abcd} 82	7/2-	0.75 MeV	4.1 <i>I</i>	%IT>0; %n>0; α >0 E(level): From E(³ He)=4100 keV <i>100</i> (1976Ch04). See also E _{res} =4100 keV (Ke70,1970H008,1971Ke08,1972Ke08). J ^{π} : (1970H008) however suggests (1/2 ⁻ ,3/2 ⁻).
22.55×10 ³ @ab 17	3/2 ⁽⁻⁾	≈1 [@] MeV	4.6 2	%IT>0 E(level): from $E({}^{3}He)=4600$ keV 200 (1976Ch04).
22960 ^{@ae} 82	1/2+	≈0.4 MeV	5.1 1	%IT>0 E(level): from E(³ He)=5100 keV <i>100</i> (1976Ch04). See also E_{res} =5100 keV (Ke70,1972Ke08).
23454 ^{@ab} 82			5.7 1	%IT>0 E(level): from E(³ He)=5700 keV <i>100</i> (1976Ch04).
24442 ^{@a} 82			6.9 1	%IT>0 E(level): from E(³ He)=6900 keV <i>100</i> (1976Ch04).

[†] From (1961Jo24: ${}^{14}C({}^{3}He,n_0)$).

[‡] From (1976Ch04: ¹⁴C(³He, γ)). See also (1971Ke08: ¹⁴C(³He, α), 1972Ke08: ¹⁴C(³He, $\alpha/d/p/^{3}$ He), Ke70: ¹⁴C(³He,³He/ α)).

[#] From (1972Ke08) except where noted.

[@] From (1976Ch04) except where noted.

[&] Observed in (³He,n).

^{*a*} Observed in $({}^{3}\text{He},\gamma)$.

^b Observed in (³He, α).

^{*c*} Observed in (³He,p).

^d Observed in (³He,d).

^e Observed in (³He, ³He).

¹⁴C(³He,X): res 1972Ke08,1976Ch04 (continued)

$\gamma(^{17}O)$

${\rm E_{\gamma}}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
20855 [‡] 21679 21725	$21725 \\ 22.55 \times 10^{3} \\ 21725$	5/2 ⁺ 3/2 ⁽⁻⁾ 5/2 ⁺	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E2 E1 M1+E2	The integrated E2 strength for 21725 and 22960 states was estimated to be about 1.5% of the E2 sum rule.
22136 22550 22960	22136 22.55×10 ³ 22960	7/2 ⁻ 3/2 ⁽⁻⁾ 1/2 ⁺	$\begin{array}{ccc} 0 & 5/2^+ \\ 0 & 5/2^+ \\ 0 & 5/2^+ \end{array}$	E1 E1 E2	

[†] See (1976Ch04).
[‡] Placement of transition in the level scheme is uncertain.

¹⁴C(³He,X): res 1972Ke08,1976Ch04

Level Scheme

γ Decay (Uncertain)

Legend

