¹³C(*α*,**n**),(*α*,*α*) **1965Ba32,1968Ke02**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. G. Sheu, J. H. Kelley, J. Purcell	ENSDF	5-Aug-2021						

1965Ba32: Cross sections for the reaction ${}^{13}C(\alpha, \alpha)$ at $\theta_{cm}=54.7^{\circ}$, 107.9° , 142.6° , 169.6° and for the reaction ${}^{13}C(\alpha, n){}^{16}O$ at $\theta_{cm}=0^{\circ}$ were measured. A beam of $E(\alpha)=2-3.5$ MeV from the 5.5-MeV Van de Graff accelerator bombarded a self-supporting foils made either from 41.6% ${}^{13}C$ -enriched methyl iodide, or from 56.7% ${}^{13}C$ -enriched methane with thickness $\approx 15 \ \mu g/cm^2$. Using dispersion-theory analysis, a consistent set of J^{π} and partial-width values for 11 excitation energies $E_x=8-9$ MeV were obtained. See also (1965BaZY).

1968Ke02: Cross sections of reactions ${}^{13}C(\alpha,\alpha_0)$ and ${}^{13}C(\alpha,n)$ were measured by bombardment of an $E_{\alpha}=12$ MeV beam on to self-supporting, 20-30 μ g/cm² thick, enriched ${}^{13}C$ targets at the Van de Graaff facility/Australian National University. Two surface-barrier detectors (for (α,α_0)) and two 2.5 cm×5 cm plastic scintillators (for (α,n)) were used to detect particles. Using a dispersion-theory analysis, the J^{π} and partial width values were obtained for 11 states of ${}^{17}O$ with $E_x=9-10$ MeV.

1971Co14: ¹³C(α, α), E=15,18,20 MeV; measured $\sigma(\theta)$; deduced optical model parameters. Enriched targets.

1972Ku19: ¹³C(α, α), E=26.6 MeV; measured $\sigma(\theta)$.

1973Ku18: ¹³C(α,α), E=18,19,22,24,25,26.6 MeV; measured σ (E; θ); deduced reaction mechanism.

1973Le28: ¹³C(α, α), E=15-25 MeV; measured σ (E; θ). ¹⁷O deduced resonances.

1974Ku15: ¹³C(α , α), E=26.6 MeV; measured $\sigma(\theta)$.

1987Ab03: ¹³C(α, α), E=48.7,54.1 MeV; deduced model parameters. Δ E-E telescopes. Optical model analyses.

1990Mu19: ¹³C(α, α), E=65 MeV; analyzed $\sigma(\theta)$; deduced model parameters. Microscopic overlap integrals, vertex form factors.

- 1993AtZZ: ¹³C(α, α), (α, α'), E=54.1,104,155 MeV; measured σ (E, θ); deduced model parameters. Coupled-channels analysis.
- 2012PrZY: ⁴He($^{13}C,\alpha$), E=20.0,25.0,30.0,33.0,35.0 MeV; measured thick target reaction products. ¹⁷O deduced yield vs E*, resonances

2014My05: ⁴He(¹³C, ¹³C), E=1.75 MeV/nucleon; measured reaction products, E_{α} , I_{α} . ¹⁷O; deduced $\sigma(\theta)$.

Theory:

1971Te10: ¹³C(α, α), E=20,25 MeV; analyzed interference between states of transferred nucleus.

1974Ch58: ¹³C(α, α), E=26.6 MeV; analyzed $\sigma(\theta)$.

1977Sa19: ¹³C(α, α), E=40.5 MeV; calculated $\sigma(\theta)$ at forward angles.

1978Ze03: ¹³C(α, α), E=26.6 MeV; calculated $\sigma(\theta)$.

1983Go27: ¹³C(α, α), E=26.6 MeV; calculated $\sigma(\theta)$; deduced spin-orbit potential effects.

1987Le29: ${}^{13}C(\alpha, \alpha)$, E(cm)=1.59-4.34 MeV; analyzed, compiled data.

1988Le05: ¹³C(α, α), E not given; calculated resonances, Γ . Optical model.

1991Le33: ¹³C(α, α), E=1.5-10 MeV; compiled, reviewed backscattering σ data; deduced regions for ion-beam, depth profiling analyses.

1996Le06: ¹⁷O; calculated levels using parameters for ${}^{13}C+\alpha$ cluster system. Semi-microscopic algebraic cluster model.

2010DaZY: ¹³C(α, α),(α, α'), E=388 MeV; calculated $\sigma(\theta)$; deduced radii for specified excited states.

2011Og09: ¹³C(α, α), E(cm)<300 MeV; analyzed $\sigma(\theta)$ and diffraction radii data; deduced abnormally large radii for excited states.

2011Og10: ¹³C(α, α),(α, α'), E(cm)=388 MeV; analyzed $\sigma(\theta)$; deduced rms radii, diffraction radii, neutron halos in the excited states. Modified diffraction model.

¹⁷O Levels

E(level)	\mathbf{J}^{π}	Г	$E_{\alpha}(res)$ (keV)	Comments
7972 [†]	1/2-†	69 [†] keV	2110	E(level): from E _α =2110 keV. Γ: from Γ_{lab} =90 keV with Γ_{α}/Γ =0.03.
8066†	3/2+†	84 [†] keV	2233	E(level): from E_{α} =2233 keV. Γ: from Γ_{lab} =110 keV with Γ_{α}/Γ =0.05.
8199 [†]	3/2-†	64 [†] keV	2407	E(level): from E_{α} =2407 keV. Γ: from Γ_{lab} =84 keV with Γ_{α}/Γ =0.11.
8334 [†]	1/2+†	8 [†] keV	2583	E(level): from E_{α} =2583 keV. Γ : from Γ_{lab} =11 keV with Γ_{α}/Γ =0.44.

Continued on next page (footnotes at end of table)

¹³C(α ,n),(α , α) **1965Ba32**,1968Ke02 (continued)

¹⁷O Levels (continued)

E(level)	J^{π}	Г	$E_{\alpha}(res)$ (keV)	Comments
8395†	5/2+†	5 [†] keV 2	2663	E(level): from E_{α} =2663 keV. Γ : from Γ_{lab} =7 keV 2 with Γ_{α}/Γ =0.08.
8462†	7/2+†	8 [†] keV	2750	E(level): from E_{α} =2750 keV. Γ : from Γ_{lab} =10 keV with Γ_{α}/Γ =0.97.
8500†	5/2-†	5.0 [†] keV 15	2800	E(level): from E_{α} =2800 keV. Γ : from Γ_{lab} =6.7 keV 20 with Γ_{α}/Γ =0.26.
8681†	3/2-†	52 [†] keV	3037	E(level): from E_{α} =3037 keV. Γ : from Γ_{lab} =68 keV with Γ_{α}/Γ =0.06.
8875†	3/2+†	99 [†] keV	3290	E(level): from E_{α} =3290 keV. Γ : from Γ_{lab} =130 keV with Γ_{α}/Γ =0.50.
8886†	7/2-†	6 [†] keV	3305	E(level): from E _α =3305 keV; not observed in ¹³ C(α,n). Γ: from Γ_{lab} =8 keV with Γ_{α}/Γ =1.00.
8947†	7/2-†	23 [†] keV	3385	E(level): from E_{α} =3385 keV. Γ : from Γ_{lab} =30 keV with Γ_{α}/Γ =0.04.
9142 [‡]	1/2-‡	6 [‡] keV	3640	E(level): from E_{α} =3640 keV. Γ : See also Γ_{α}/Γ =0.45 (1968Ke02).
9180 [‡]	7/2 ^{-‡}	3 [‡] keV	3690	E(level): from E_{α} =3690 keV; observed via ¹³ C(α,α_0) only. Γ : See also Γ_{α}/Γ =0.98 (1968Ke02).
9203 [‡]	5/2+‡	5.5 [‡] keV	3720	E(level): from E_{α} =3720 keV. Γ : See also Γ_{α}/Γ =0.20 (1968Ke02).
9502 [‡]	5/2-‡	15 [‡] keV	4110	E(level): from E_{α} =4110 keV. Γ : See also Γ_{α}/Γ =0.85 (1968Ke02).
9723 [‡]	7/2+‡	16 [‡] keV	4400	E(level): from E_{α} =4400 keV. Γ : See also Γ_{α}/Γ =0.70 (1968Ke02).
9739 [‡]	3/2+‡	61 [‡] keV	4420	E(level): from E_{α} =4420 keV. This level is associated with E_x =9786 keV in Adopted Levels. Γ : See also Γ_{α}/Γ =0.90 (1968Ke02).
9861‡	9/2+‡	12 [‡] keV	4580	E(level): from E_{α} =4580 keV. Γ : See also Γ_{α}/Γ =0.18 (1968Ke02). J ^{π} : A doublet was populated and identified as J ^{π} =9/2 ⁺ . Two levels were subsequently identified with (5/2 ⁻) and (1/2 ⁻).
9953 [‡]	7/2+‡	107 [‡] keV	4700	E(level): from E_{α} =4700 keV. Γ : See also Γ_{α}/Γ =0.78 (1968Ke02). J^{π} : Associated with 9976 keV: 5/2 ⁺ level in Adopted Levels.
10136 [‡]	5/2+‡	138 [‡] keV	4940	E(level): from E _α =4940 keV. Γ: See also Γ_{α}/Γ =0.85 (1968Ke02).
10167 [‡]	7/2-‡	46 [‡] keV	4980	E(level): from E_{α} =4980 keV. Γ : See also Γ_{α}/Γ =0.15 (1968Ke02).
10243 [‡]	7/2+‡	122 [‡] keV	5080	E(level): from E_{α} =5080 keV. Γ : See also Γ_{α}/Γ =0.60 (1968Ke02).
10320‡	(7/2) ^{‡#}		5180	E(level): from E_{α} =5180 keV.
10412		$\leq 20^{\ddagger}$ keV	5300	E(level): from E_{α} =5300 keV.
10488	(5/2) ^{‡#}	75 [‡] keV <i>30</i>	5400	E(level): from E_{α} =5400 keV.
10580 [‡]	(7/2,9/2) ^{‡#}	45 [‡] keV 20	5520	E(level): from E_{α} =5520 keV.
10626? [‡]			(5580)	E(level): from $E_{\alpha} = (5580)$ keV.
10702 [‡]	$(7/2^+)^{\ddagger @}$	$\leq 25^{\ddagger}$ keV	5680	E(level): from E_{α} =5680 keV; observed via ¹³ C(α, α_0) only.
10779 [‡]	(5/2) ^{‡#}	75 [‡] keV 30	5780	E(level): from E_{α} =5780 keV.
10916	≥3/2 ^{‡#}	60 [∓] keV 20	5960	E(level): from E_{α} =5960 keV.
11046			6130	E(level): from E_{α} =6130 keV.
≈11253? +			≈(6400)	E(level): from $E_{\alpha} = (\approx 6400)$ keV.

Continued on next page (footnotes at end of table)

¹⁷O Levels (continued)

[†] From (1965Ba32) where $\Gamma_n + \Gamma_\alpha = \Gamma$. [‡] From (1968Ke02). No states overlapping with those of (1965Ba32) were reported. [#] Tentative assignments from ¹³C(α ,n) angular distribution data. [@] Inferred from comparison of elastic yield with calculated level shapes.