¹⁸ $O(^3\text{He},\alpha)$ **1969De06**

Type Author Citation Literature Cutoff Date
Full Evaluation C. G. Sheu, J. H. Kelley, J. Purcell ENSDF 5-Aug-2021

1969De06: An E(3 He)=16 MeV beam from the Heidelberg E(n) Tandem Van de Graaff accelerator bombarded a target containing 10 μ g/cm 2 of 18 O and \approx 6 μ g/cm 2 of 16 O. A broad range magnetic spectrograph was used to analyze α -particles. The α -particle spectrum was obtained at θ =5° and the absolute cross sections were determined with an accuracy of 25%. Eight analogue T=3/2 excited states in 17 O were identified. The l-transfer values and spectroscopic factors were also deduced for four of these states.

1970Mc02: Branching ratios were measured for the decays of the lowest T=3/2 levels of 17 F and 17 O to the ground state and unresolved 6.05- and 6.13-MeV levels of 16 O. The experiment was performed by bombarding a nickel oxide target (98% 18 O enriched) with an E=12 3 He ion beam. Alpha particles were detected at θ =10° with a double-focusing magnetic spectrometer.

The branching ratios for transition $^{17}\text{O}*(11.08 \text{ MeV}) \rightarrow ^{16}\text{O}_{g.s.}$ and $^{17}\text{O}*(11.08 \text{ MeV}) \rightarrow ^{16}\text{O}*(6.05+6.13 \text{ MeV})$ are (0.91 *15*) and (0.05 2), respectively. The ratios of the reduced widths (θ^2) decaying to ^{16}O levels, $\Theta^2(g.s.)/\theta^2(6.05)=3.4$ *14* and $\Theta^2(g.s.)/\theta^2(6.13)=0.32$ *14* were also deduced. The width of $^{17}\text{O}*(11.08 \text{ MeV})$ state is <20 keV (D.C. Hensly, Ph.D. thesis, Caltech (1969) unpublished).

1973Ad02: $^{18}O(^{3}\text{He},n\alpha)$, E=12 MeV; measured $\sigma(E_{n},E_{\alpha},\theta(\alpha),\theta(n))n\alpha$ -coin. ^{17}O deduced level-width(n).

¹⁷O Levels

E(level) [†]	J^{π}	Γ	<u>L</u> ‡	$C^2S^{\#}$	Comments
11082 6	$(1/2)^{-}$	5 keV 1	1	0.49	Γ: from (McDonald et al., Bull. Amer. Phys. Soc. 16, 489 (1971)
					¹³ C(α,n))). See also <20 keV (D.C. Hensly, Ph.D. thesis, Caltech (1969) unpublished).
					$\Gamma_{n0}/\Gamma = 91$ 15 and $\Gamma_{n(1+2)}/\Gamma = 0.05$ 2 were deduced in (1973Ad02). Also
					$\theta^2(g.s.)/\theta^2(6.13)=0.31$ 14 (1973Ad02); these compare with
					$\theta^2(g.s.)/\theta^2(6.05)=3.4\ 14$ and $\theta^2(g.s.)/\theta^2(6.13)=0.32\ 14\ (1970Mc02)$.
					The value $\Gamma_{\alpha 0}$ =0.3 keV is deduced using the measured (1973Ad02) neutron
					branching ratios and the width from McDonald; however in the present
					evaluation we adopt a different Γ =2.4 keV 3 and Γ _{n0} / Γ =81 6. This changes the interpretation.
12471 5	$(3/2)^{-}$		1	0.27	changes the interpretation.
12950 8	1/2+		0	0.096	
12994 8	-, -				
13640 5	$(5/2)^+$		2	0.39	
14219 8					
14282 <i>12</i>					
15101 8					

[†] From (1969De06); T=3/2 states.

[‡] From (1969De06).

[#] Calculated assuming $C^2S=4$ for $^{15}O*(6.18 \text{ MeV})$ in $^{16}O(^3\text{He},\alpha)^{15}O$.