ADOPTED LEVELS, GAMMAS for 17O

Authors: C.G. Sheu,J.H. Kelley,J. Purcell |  Citation: ENSDF |  Cutoff date: 5-Aug-2021 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-2760.47 keV 25S(n)= 4143.08 keV S(p)= 13781.6 keV 23Q(α)= -6358.69 keV
Reference: 2021Wa16

References:
  A  17N β- decay  B  17F β+ decay
  C  18N β-n decay  D  2H(16O,p)
  E  6Li(13C,d)  F  6Li(18O,17O)
  G  7Li(18O,17O)  H  9Be(13C,A13C)
  I  9Be(16O,17O),16O(9Be,17O)  J  12C(6Li,p)
  K  12C(7Li,d)  L  12C(9Be,α),(11B,6Li)
  M  13C(α,γ)  N  13C(α,n)
  O  13C(α,n),(α,α)  P  13C(6Li,d)
  Q  13C(7Li,t)  R  13C(9Be,AN),(9Be,5He)
  S  13C(11B,7Li)  T  13C(13C,9Be)
  U  13C(17O,17O)  V  14C(3He,X): RES
  W  14C(α,n)  X  14C(6Li,t)
  Y  14N(t,γ)  Z  14N(α,p),4He(14N,G17O)
  a  14N(6Li,3He)  b  15N(d,p),(d,d),(d,γ)
  c  15N(d,α)  d  15N(3He,p)
  e  15N(α,d)  f  15N(11B,9Be)
  g  16O(n,γ),(n,n)  h  16O(n,γ):E=THERMAL
  i  16O(n,γ):EN=10-80 KEV  j  16O(n,n),(n,n’)
  k  16O(n,α)  l  16O(p,π+)
  m  16O(d,p),(d,pγ)  n  16O(α,3He),(α,N3HE)
  o  16O(7Li,6Li)  p  16O(13C,12C)
  q  16O(14N,13N)  r  16O(18O,17O)
  s  17O(γ,γ’)  t  17O(γ,n),17O(γ,p)
  u  17O(E,E’)  v  17O(π++’),(π--’)
  w  17O(p,p’)  x  17O(3He,3He)
  y  17O(16O,16O),(16O,16O’)  z  18O(γ,n)
  0  18O(p,d)  1  18O(d,t)
  2  18O(3He,α)  3  19F(n,t),(d,α),(α,6Li)
  4  19F(p,3He)  5  20Ne(n,α)
  6  181Ta(18O,17O)  7  208Pb(17O,17O’):CoulEx

General Comments:

17O was first identified by (Blackett: Proc. Roy. Soc. α 107 (1925) 349); see (2012Th01).

Past evaluations: 1959Aj76, 1971Aj02, 1977Aj02, 1982Aj01, 1986Aj04 1993Ti07. In the present evaluation, we relied heavily on keywords and descriptions provided in the Nuclear Science Reference database (2011Pr03)

We acknowledge fruitful discussions with d.J. Millener.

The atomic mass of 17O is 16.9991317566 u 9 (2010Mo29). See recent AME Mass evaluations in (2012Wa16, 2017Wa10).

Theory:

See Shell model analyses in: 1963Pa03, 1966Ar10, 1966Br04, 1968Bi07, 1969Bo37, 1969Ul03, 1971Mu23, 1973Re17, 1979Co10, 1992Ja13, 1993Po11, 1997Pr05, 2005Vo01, 2006Ma17, 2006Vo14, 2012Yu07, 2016Pa05, 2018Ji07, 2018Ti08, 2019Sm04, 2019Ti04, 2020Fo04, 2020Ma25, 2020Mi15, 2020So01

See Cluster model analyses in: 1995Ho13, 2003Ma70, 2003Mb05, 2004Mc02, 2005Wl02, 2006Go22, 2008ToZV, 2020Ca21

See other theoretical analyses in: 1962Ma23, 1963Fa03, 1963Un01, 1965Ma16, 1966De18, 1966Ma12, 1967Go04, 1969De16, 1970Ry02, 1971Au08, 1971Hs02, 1971Ka40, 1972Be22, 1972En03, 1974HsZX, 1974Ri09, 1974Sa05, 1976Ma05, 1977Ho04, 1977Po16, 1978Fo22, 1978Kr02, 1979Kr05, 1980Hy03, 1980Va05, 1981Au04, 1986Be36, 1986Ed03, 1986To13, 1991Sk02, 1992Ba50, 1994Ma34, 1994Wa02, 1996Ti02, 1997Re07, 2000Bh07, 2005Ni24, 2006Id01, 2007Ch73, 2007Gu03, 2014Ho08, 2016De38, 2016Ho14, 2017Ti04.

See discussion on 17O-17F mirror nuclei and analog states in: 1970Wa01, 1981Sh17, 1981Ta09, 1983Ma38, 1984Sh30, 1985Sh24, 1994Sa45, 1994Sh20, 1995Fo18, 1996Bu20, 1998Ao02, 1999Ts06, 1999Ki28, 2001Ag09, 2001Au01, 2001Sh17, 2002Zh28, 2003Ti13, 2003Zh29, 2004Fu04, 2005Ti07, 2008Li53, 2010Ha11, 2011Ti09, 2012Mu14, 2012Ok02, 2017De08, 2017Sv01, 2018Do02, 2018Fo04, 2019Mu05, 2020De03

See discussion on the nuclear and charge radii in:

experimental: 2000Fa12, 2001Oz03, 2001Oz04, 2012Ra29

Using elastic electron scattering the ratio of the rms charge radii of 17O to 16O was determined to be 0.995 6 as reported in (1970Si02) and 1.0015 25 as reported in (1978Ki01). In (1979Mi09), it is reported that the charge radius of 16O is larger than that of 17O by 0.008 fm 7.

theory: 1969No03 (RchargeRMS=2.70 fm (theory)), 1973Ho32, 1979Br17 2013Fo09, 2017Ah08(RmatterRMS=2.73 fm 4), 2018Fo12, 2019Fo08, 2019Ra09, 2019Sa02, 2020An13

Moments and hyperfine structure:

Experimental results on μ:

1951Al08: The ratio of the resonance frequency of 17O from H2O to the resonance frequency of D2 from D2O was determined to be ν(17O)/ν(D2)=0.88313 4; the spin of 17O is I=5/2; μ=-1.89280 nm 19.

2005An15: 17O measured NMR spectra; deduced μ=-1.8935428 95.

Theory, calculated μ dipole moment:

1968Pe16, 1968Sc18, 1972Gl06, 1973Er03, 1974Ha27, 1977Ko28, 1980Br13, 1980Ch35, 1983Zi01, 1984Bo11, 1984Zi04, 1985Bl20, 1985Zi05, 1987It01, 1988Ho16, 1989Ch24, 1989Ne02, 1990Mo36, 1991Bl14, 1994Li55, 1999Ga57, 2003Sm02, 2005An15, 2006Ya12, 2009Li64, 2012Fu06, 2012We11, 2014Ac01, 2017Sa48

Experimental results on Q:

1957Ka68: measured Q=-0.0265 b 30

1957St93: measured Q=-0.026 b 9

1969Sc34: measured Q=-0.025 b 78. See also (1969Sc33).

92Su: Sundholm and Olsen, J. Phys. Chem. 96 (1992) 627: measured Q=-0.02558 b 22

2008Py02, 2013De06: 17O compiled evaluated ground-state quadrupole moments: (2008Py02) considers Q=-25.58 mb 22 as the most accurate value (Su92: J. Phys. Chem. 96 (1992) 627).

Theory, calculated Q quadrupole moment: 1969Ke07, 1969Go12, 1969Ma38, 1986Ca27, 1991Zh06, 1993Ki05, 1993Ki22, 1997Si10, 1997Si34, 2003Ra04, 2003Sm02, 2003Ra09, 2007Be09, 2017Sa48

See moment compilations in: 1969Fu11, 1989Ra17, 2008Py02, 2005St25, 2015St03, 2016St14, 2019StZV, 2020StZV

Other experimental results not listed elsewhere:

1981Ma16: measured spin-dependent neutron scattering length.










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
       0ABCDEFG IJKL   PQRS UVWXYZa  defghi  lmnopqr    wxyz01 34 67 5/2+ STABLE      
     870.756 20 AB DEFG IJKLM  PQRS  VWXYZa  defghi  lmnopqr  uvwxyz01 34567 1/2+ 179.6 ps 27 
% IT = 100
    870.732 20 
  100
E2
       0
5/2+
    3055.40 6 A   EFG  JKL   PQRS   WX Za  d f hi  lmno  r  uvw  z01 3456  1/2- 110 fs +24-21 
% IT = 100
   2184.49 5 
  100
E1
     870.756
1/2+
    3842.8 4 A   EFG IJKL   PQRSTU WX Za  def     lmno   s uv   z01 3456  5/2- 92×10-3 eV 6 
% IT = 100
   3842.3 4 
  100

       0
5/2+
    4143.27 13 S                                 h                           1/2+      1087.89 4 
   3272.02 8 
   4142.6 6 
  100.00 62 
   20.15 50 
    4.18 30 
E1
M1
E2
    3055.40
     870.756
       0
1/2-
1/2+
5/2+
    4551.8 7 A   EFG  JKL   PQ S    X Za  de g  j lm o    tuv    01 3 5   3/2- 38.7 keV 28 
% IT = 9.5×10-3
% n = 99.9905
   3680.6 7 
   4551.1 7 
  100
  100
E1
E1
     870.756
       0
1/2+
5/2+
    5086.8 9 A  DEF  IJKL   PQ        Za  d     j lmn  q  tu     01       3/2+ 90 keV 3 
% IT = 1.1×10-3
% n = 99.9988
     
    5216.18 40     E    JKL   PQ  T   X Za  defg    lmn   r  uv    0  3 5   9/2- < 0.1 keV
% n ≈ 100
% IT > 0
     
    5387.1 22 A   EFG  JKL             Za  d f   j  m o    tuv    01 3 5   3/2- 37.1 keV 24 
% IT = 1.9×10-3
% n = 99.9981
     
    5697.32 33    DE   IJK    PQ      X Za  defg  j  mn     tuv       3 5   7/2- 3.4 keV 3 
% IT = 3.2×10-2
% n = 99.968
     
    5732.07 42 A   E    JK    PQ  T     Za     g  j lm      tuv       3     (5/2-) < 1 keV
% n ≤ 100
     
    5869.62 40 A   E    JKL   PQ  T     Za  d  g  j  mn      u        3 5   3/2+ 6.6 keV 7 
% n ≤ 100
     
    5931.6 15 A   E    JK    PQ        Za  d  g  j  m       u      1 3     1/2- 32 keV 3 
% n ≤ 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
    6361.5 71 A   E     KL   PQ S U  X Za  d  g  j lm      tu        3     1/2+ 126 keV 14 
% n ≈ 100
     
    6860.6 4     E    JKL N PQ        Za  d  g  j  m       uv     1 3     5/2+ < 1 keV
% n ≈ 100
% α > 1×10-5
     
    6972.5 4          JKL N PQ        Za  d  g  j l n     tu        3     (7/2-) < 1 keV
% n ≈ 100
% α > 8×10-6
     
    7165.86 17          JKL N PQ      X Z   d  g  j          u        3     5/2- 1.38 keV 5 
% α = 0.19
% n ≈ 100
     
    7214 5              N PQ  T            g  j         tu        3     3/2+ 263 keV 7 
% n = 99.957
% α = 0.043
     
    7379.23 19          JKL N PQ      X Z    e g  j l n     tu      1 3     5/2+ 0.61 keV +14-11 
% IT = 0.13
% n ≈ 98
% α ≈ 1.9
     
    7382.37 14          JKL N PQ        Z   d  g  j          u      1 3     5/2- 0.90 keV +17-14 
% n = 99.73
% α = 0.27
     
    7543 20 A  DE   I  L   P         Z     fg  j  m   q   u        3     3/2- 500 keV 50 
% n = 99.984
% α = 0.016
     
    7573.5 6     E    JK  N PQ  T         d  g      n      uv       3     7/2+ < 0.1 keV
% α > 0.073
% n < 99.93
     
    7689.21 22          J   N PQ            d  g  j   n     tu        3     7/2- 14.4 keV 3 
% IT = 0.01
% n = 90.27
% α = 9.72
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
    7763.6 4          JK    PQ      X     def     l n     tuv       3 5   11/2- < 4 keV      
    7955 8              N                  g  j         tu              1/2+ 85 keV 9 
% n = 92.61
% α = 7.39
     
    7992 50 A             O              d  g  j                         1/2- 270 keV 27 
% n ≈ 94.7
% α ≈ 5.3
     
    8070 10              NO              d  g  j           v             3/2+ 77 keV 8 
% n ≈ 83
% α ≈ 17
     
    8181 20 ?                                g  j                         1/2- 69 keV 7 
% n = 98.8
% α = 1.2
     
    8200 8 A        J   NOP       X     de g  j l       tu      1       3/2- 61 keV 10 
% IT ≈ 0.002
% n ≈ 92.305
% α ≈ 7.692
     
    8343.94 39              NO              d     j          u              1/2+ 11.4 keV 5 
% n = 71
% α = 29
     
    8403.90 7          J L NO Q  T         d     j   n      uv             5/2+ 6.17 keV 13 
% n = 77
% α = 23
     
   ≈8467         JK     Q                            tu              9/2+ < 10 keV      
    8467.63 9              NOP       X Za   e    j                         7/2+ 2.13 keV 18 
% IT = 0.3
% n = 55.2
% α = 44.5
     
    8502.40 12              NOPQ            d     j          u              5/2- 6.89 keV 22 
% n = 42
% α = 58
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
    8688.9 4          JK  NOPQ            d     j         tu      1       3/2- 55.3 keV 6 
% IT = 0.002
% n = 88.4
% α = 11.5
     
    8880 20     E         OPQ        Z   d     j   n     tu              (7/2-,9/2-) 6 keV
% IT = 0.068
% α ≈ 99.93
     
    8900 8          JK  NOPQ  T   X      e    jk                        3/2+ 101 keV 3 
% α > 22
% n < 78
     
    8968.7 16          J   NOPQ            d f   jkl        u              7/2- 24.8 keV 24 
% n = 89
% α = 11
     
    9146 4     E       MNOPQ                   k        tu      1       1/2- 4 keV 3 
% IT = 0.025
% n = 55
% α = 45
   8273 4 
  100
E1
     870.756
1/2+
    9158 10     E           Q            def              u              9/2-        
    9181 9          J   NOPQ      X Z         j         tu              7/2- 3 keV
% α ≈ 98
     
    9196.16 9           K  NO                    jk         u              5/2+ 3.53 keV 13 
% n = 67
% α = 33
     
    9423                                   j          u              3/2- 120 keV
% n = 100
     
    9491 4          JK  NO Q            d      k  n      u              5/2- 8 keV 3 
% n = 15
% α = 85
     
    9714.53 14          JK  NO Q      X Z   d     jk         u              7/2+ 23.1 keV 3 
% n = 78
% α = 22
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
    9786.07 15              NO    T          e    j l n                     3/2+ 11.7 keV 3 
% n = 88
% α = 12
     
    9861.74 15     E    JKL NOP       X     d     jk         u              (5/2-) 4.01 keV 23 
% n = 84
% α = 16
     
    9879.4 10     E    JK  N PQ      X     d     j          u              (1/2-) 16.7 keV 17 
% n = 65
% α = 35
     
    9976 20              NOPQ                   k                        5/2+ ≈ 80 keV
% n = 22
% α = 78
     
   10045 20              N                      k                        ≈ 100 keV
% n < 100
% α < 100
     
   10136?             NOP                                             5/2+ 138 keV
% n = 15
% α = 85
     
   10170.9 5              NO                    jk                        7/2- 49.1 keV 8 
% n = 46
% α = 54
     
  ≈10240?              O              d                               7/2+ 122 keV
% n = 40
% α = 60
     
   10335 15              NO              d      k                        (5/2+,7/2-) 150 keV
% n < 100
% α < 100
     
   10421.3 20          J  MNO        X                     t               (5/2-,7/2-) 14 keV 3 
% n < 100
% α < 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  ≈10500             NO                                              (5/2+,7/2-) 75 keV 30 
% n < 100
% α < 100
     
   10562.3 8          J   NO Q  T         d     jk                        (7/2-) 44.5 keV 25 
% n = 39
% α = 61
     
   10694 8          JK   O          Za  d                               (7/2+) ≤ 25 keV
% n < 100
% α < 100
     
   10777.9 20        H     NO Q            d     jk                        (1/2+,7/2-) 74 keV 3 
% n < 100
% α < 100
     
   10914.8 64          J   NO              d     jk                        (5/2+) 43.2 keV 16 
% n > 63
% α < 37
     
   11035 2     E    JKL NO              d     jk         u              31 keV 3 
% n < 100
% α < 100
     
   11082.67 18             MN               d     j          u      12      1/2- 2.4 keV 3 
% IT = 0.4
% n = 85.8
% α = 13.8
  10208.0 2 
  100
E1
     870.756
1/2+
   11238 2     E     K  NO        X            kl    q                  (3/2-,7/2+) 80.0 keV 25 
% n < 100
% α < 100
     
  ≈11519                                   jk                1       GE3/2 ≈ 190 keV
% n < 100
% α < 100
     
   11622 2              N                                               65 keV 2 
% n < 100
% α < 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   11751 10              N  Q                   k         u              40 keV 25 
% n < 100
% α < 100
     
   11815 13          JKL N PQ      X                                     7/2+ 12 keV 3 
% n < 100
% α < 100
     
   11880?                                    k                        ≈ 125 keV
% n < 100
% α < 100
     
      11.95E3 5 ?    E                              j          u              GE3/2 ≈ 250 keV
% n < 100
     
   12007 10        H JK  N         X Za         k                        9/2+ < 50 keV
% n < 100
% α < 100
     
   12118 10              N     T               j                 1       150 keV 50 
% n < 100
% α < 100
     
   12229 16          JK                                   u              7/2- ≤ 20 keV      
   12274 15              N         X            kl                       (7/2+) 100 keV 30 
% n < 100
% α < 100
     
   12385 20              N PQ                  j                         130 keV
% n < 100
% α < 100
     
   12424 13          JK  N           Z                                   9/2+ < 50 keV
% n < 100
% α < 100
     
   12471.4 6              N                     j          u      12      3/2- 7.2 keV 11 
% n > 18
% α < 82
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   12596 15              N                                               75 keV 30 
% n < 100
% α < 100
     
   12670 15              N                     j          u              (3/2-,9/2+) 75 keV
% n < 100
% α < 100
     
   12760 26          JK  N           Z                           1       < 70 keV
% n < 100
% α < 100
     
   12928 20              N                                               (1/2+,7/2-) ≥ 150 keV
% n < 100
% α < 100
     
   12946 6              N                     j          u      12      1/2+ 6 keV 2 
% n > 3.5
% α < 96.5
     
   13004.2 6              N         X           j          u       2      5/2- 2.5 keV 10 
% n > 16
% α < 84
     
   13072 15          JK  N                                               (3/2-) 16 keV 4 
% n < 100
% α < 100
     
   13485 15              N            a          l                       (9/2+) ≈ 120 keV
% n < 100
% α < 100
     
   13580 20     E  H JKL   PQ  T     Z                    u              (11/2-,13/2-) 68 keV 19       
   13610 15     E        N                                u              ≈ 200 keV
% n < 100
% α < 100
     
   13641.9 24                        X           j                 12      5/2+ 9 keV 5 
% n > 2.7
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   13649?                                   j                         400 keV
% n ≤ 100
     
      14.15E3 10     E          P                     l        u              (9/2+,11/2+) ≈ 150 keV      
   14237.7 15                                    j          u       2      7/2- 20.5 keV 16 
% n > 10
     
   14293 3                                    j                  2      7.5 keV 4 
% n ≤ 100
     
   14458 3                                    j          u              40 keV 6 
% n ≤ 100
     
   14550 26           K                                                         
   14720 20           K                               q   u              9/2- 35 keV 11       
      14.76E3 10     E          PQ  T   X           j l        u              7/2- ≈ 340 keV
% n ≤ 100
     
   14799 3                                    j                         1/2- 36 keV 13 
% n < 100
     
   14880 26        H JK     Q         a                                  (15/2+) % α < 100
     
   14967                            c      j                         (5/2+) ≈ 155 keV
% n < 100
% α < 100
     
      15.10E3 10     E          P            c                t               (9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% p < 100
% α < 100
     
   15101 8     E     K                                   u       2             
   15208 3     E                  X   b       j          u              3/2+ 52 keV 14 
% n < 100
% p < 100
     
   15377 3                                    j                         (5/2+) 40 keV 6 
% n ≤ 100
     
   15620 26          JK                bc                                % p < 100
% α < 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   15787 20           K                b         l        uv             (13/2-) < 30 keV
% p ≤ 100
     
      15.95E3 15     E          P           bc                                (9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% n < 100
% p < 100
% α < 100
     
   16253 4     E                  X           j          u              (9/2+) 21 keV 10 
% n < 100
     
   16578 12     E               U                         u      1       3/2- ≈ 300 keV      
      16.60E3 15                P                                             (11/2-,13/2-)        
   17060 20                P                     l        uv             (11/2-) < 20 keV      
   17448 11                                    j                         66 keV 20 
% n < 100
     
   17920 20                                               u              98 keV 16       
   18122 4     E           Q      X           j         t       1       3/2- 46 keV 12 
% n ≤ 100
     
   18720 20                                               u              87 keV 33       
   18830 20                    T                          u              ≤ 20 keV      
      19.28E3 7 ?                        Y                    t               > 0.75 MeV
% IT > 0
  18418
  19288
 
 


     870.756
       0
1/2+
5/2+
      19.60E3 15     E  H       PQ                                            (13/2+,15/2+) 250 keV      
   19820 40     E                   Y                     u              3/2- 550 keV 50 
% IT > 6×10-4
  18949
  19820
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   20140 20                                               u              (11/2-) 31 keV 5       
      20.20E3 15                P                                             (13/2+,15/2+) ≈ 250 keV      
   20390 50                         Y                    t               (5/2-,7/2-) 660 keV 70 
% IT > 6.5×10-4
% IT > 0
  20390
 
E1
       0
5/2+
   20580 50     E                V  Y          j          u              1/2+ 570 keV 80 
% IT ≥ 9×10-4
% n ≤ 99.999
  19709
 
M1
     870.756
1/2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   20700 20                                               u              (9/2-) < 20 keV      
   21050 50                      V  Y                                    (3/2-) 470 keV 60 
% IT > 0
% IT > 0.0026
  20179
  21050
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   21200    E          P                                             (13/2+,15/2+)        
   21725 82                      V                                       5/2+ 750 keV
% IT > 0
% α < 100
  20855?
  21725
 
 
E2
M1+E2
     870.756
       0
1/2+
5/2+
   22136 82     E          P     V                       tu              7/2- 750 keV
% IT > 0
% n < 100
% p < 100
% α < 100
  22136
 
E1
       0
5/2+
      22.55E3 17     E                V                        u              3/2(-) ≈ 1 MeV
% IT > 0
  21679
  22550
 
 
E1
E1
     870.756
       0
1/2+
5/2+
   22960 82     E                V                       t               1/2+ ≈ 0.4 MeV
% IT > 0
% p < 100
  22960
 
E2
       0
5/2+
   23454 82                      V                                       % IT > 0
     
   24442 82     E                V                       t               % IT > 0
% p < 100
     
   26500 15 ?    E                                        t               % IT > 0
% p < 100
     

E(level): Decay probabilities are listed as "%n|<100, %α|<100 " for levels populated in either 16O(n,α) or 13C(α,n) and when no further information is available. Similarly, "%n|<100 " or "%α|<100 " is given for population in, for example, 16O(n,n) or 15N(d,α), respectively. Levels populated in 17O(γ,X) are listed with %IT>0 or with Γγ0 and %IT from the reported values, but the decay transitions are not given. It appears that in past evaluations several levels were associated with α decay based on their population via 18O(3He,α), and with γ decay based on their population in 17O(e,e’).

E(γ): From energy level difference, except where noted.

Back to top

Back to top

Additional Gamma Data:











E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityAdditional Data
     870.756 1/2+ 179.6 ps 27 
% IT = 100
    870.732 20 E2B(E2)(W.u.)=2.424 37
    3055.40 1/2- 110 fs +24-21 
% IT = 100
   2184.49 5 E1B(E1)(W.u.)=8.9E-4 +22-16
    3842.8 5/2- 92×10-3 eV 6 
% IT = 100
   3842.3 4  B(E1)(W.u.)=3.6E-3 2
    4551.8 3/2- 38.7 keV 28 
% IT = 9.5E-3
% n = 99.9905
   3680.6 7 E1B(E1)(W.u.)=8.3E-2 2
3/2- 38.7 keV 28 
% IT = 9.5E-3
% n = 99.9905
   4551.1 7 E1B(E1)(W.u.)=4.2E-2 8
    9146 1/2- 4 keV 3 
% IT = 0.025
% n = 55
% α = 45
   8273 4 E1B(E1)(W.u.)=5.7E-3 10
   11082.67 1/2- 2.4 keV 3 
% IT = 0.4
% n = 85.8
% α = 13.8
  10208.0 2 E1B(E1)(W.u.)=2.5E-2 4

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     870.7561/2+ 179.6 ps 27 
% IT = 100
T1/2: weighted average of 170 ps 7 from 14N(α,p) (1974Sc09) and 180.4 ps 20 from 16O(d,p) (see discussion).
E(level): T1/2: weighted average of 170 ps 7 from 14N(α,p) (1974Sc09) and 180.4 ps 20 from 16O(d,p) (see discussion).
    5387.13/2- 37.1 keV 24 
% IT = 1.9×10-3
% n = 99.9981
Γγ0=0.7 4 (1979Jo05)
XREF: t(5430)5(5.55×103).
    5697.327/2- 3.4 keV 3 
% IT = 3.2×10-2
% n = 99.968
Γγ0=1.1 4 (1979Jo05)
XREF: J(5719)t(5710).
    5732.07(5/2-) < 1 keV
% n ≤ 100
XREF: J(5719)t(5.8×103)t(5729).
    5869.623/2+ 6.6 keV 7 
% n ≤ 100
XREF: K(5900)t(5.8×103).
E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    5931.61/2- 32 keV 3 
% n ≤ 100
XREF: K(5900).
    6361.51/2+ 126 keV 14 
% n ≈ 100
T=1/2
XREF: t(6300).
    6860.65/2+ < 1 keV
% n ≈ 100
% α > 1×10-5
Γα=0.11E-3 EV (2020Me09)
XREF: v(6.86×103).
E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    72143/2+ 263 keV 7 
% n = 99.957
% α = 0.043
Γα/Γ=0.00043 from Γn=280 keV Γα=0.12 keV (1973Jo01). See also Γn=400 keV and Γα=0.09 keV (2008Pe09) and Γn=340 keV and Γα=0.14 keV (2008He11, 2012La29). and Γα=0.073 keV (2020Me09).
E(level): Γα/Γ=0.00043 from Γn=280 keV Γα=0.12 keV (1973Jo01). See also Γn=400 keV and Γα=0.09 keV (2008Pe09) and Γn=340 keV and Γα=0.14 keV (2008He11, 2012La29). and Γα=0.073 keV (2020Me09).
    7379.235/2+ 0.61 keV +14-11 
% IT = 0.13
% n ≈ 98
% α ≈ 1.9
Γγ0=0.8 4 (1979Jo05)
Γα/Γ≈0.02 from Γn=0.50 keV Γα=0.01 keV (1973Jo01) See also Γnα=450 (1957Wa46), Γn=0.41 keV Γα=0.011 keV (2008He11, 2012La29).
E(level): Γα/Γ≈0.02 from Γn=0.50 keV Γα=0.01 keV (1973Jo01) See also Γnα=450 (1957Wa46), Γn=0.41 keV Γα=0.011 keV (2008He11, 2012La29).
    7382.375/2- 0.90 keV +17-14 
% n = 99.73
% α = 0.27
XREF: K(7380)L(7388)p(7381)Q(7382)Z(7379)1(7380)3(7380.1).
    75433/2- 500 keV 50 
% n = 99.984
% α = 0.016
Γn≈500 KEV, Γα=80 EV (1973Jo01)
XREF: I(7.56×103)p(7559).
    7573.57/2+ < 0.1 keV
% α > 0.073
% n < 99.93
Γα≈7.3 EV (2020Me09)
XREF: p(7576)t(7600)v(7.58×103).
E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    7689.217/2- 14.4 keV 3 
% IT = 0.01
% n = 90.27
% α = 9.72
Γγ0=1.5 5 (1979Jo05), Γn=13.0 6 (1980Ci03)
XREF: j(7689.21)t(7660).
    7763.611/2- < 4 keV T=1/2
XREF: t(7800).
E(level): Decay mode not specified.
    79551/2+ 85 keV 9 
% n = 92.61
% α = 7.39
Γα/Γ=7.39 From Γα=6.7 keV and Γn=84 keV (1973Jo01). See also Γnα=10 (1957Wa46).
E(level): Γα/Γ=7.39 From Γα=6.7 keV and Γn=84 keV (1973Jo01). See also Γnα=10 (1957Wa46).
    79921/2- 270 keV 27 
% n ≈ 94.7
% α ≈ 5.3
Γα/Γ=0.053 From Γα=14 keV and Γn=250 keV (1973Jo01). See also Γα/Γ=0.059 7 (1973Fo11).
E(level): Γα/Γ=0.053 From Γα=14 keV and Γn=250 keV (1973Jo01). See also Γα/Γ=0.059 7 (1973Fo11).
    80703/2+ 77 keV 8 
% n ≈ 83
% α ≈ 17
Γα/Γ=7.39 From Γα=15 keV and Γn=71 keV (1973Jo01).
E(level): Γα/Γ=7.39 From Γα=15 keV and Γn=71 keV (1973Jo01).
    82003/2- 61 keV 10 
% IT ≈ 0.002
% n ≈ 92.305
% α ≈ 7.692
Γγ0=1.4 5 (1979Jo05)
Γα/Γ=7.69 From Γα=4 keV and Γn=48 keV (1973Jo01). See also Γα/Γ=0.077 8 (1973Fo11).
E(level): Γα/Γ=7.69 From Γα=4 keV and Γn=48 keV (1973Jo01). See also Γα/Γ=0.077 8 (1973Fo11).
    8343.941/2+ 11.4 keV 5 
% n = 71
% α = 29
Γn=8.1 3
XREF: n(8350).
    8403.905/2+ 6.17 keV 13 
% n = 77
% α = 23
Γn=4.75 11
XREF: L(8400).
    84679/2+ < 10 keV XREF: t(8480).
    8467.637/2+ 2.13 keV 18 
% IT = 0.3
% n = 55.2
% α = 44.5
Γn=1.18 4, Γγ0=6.6 18 (1979Jo05)
XREF: n(8473).
E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)).
    8880(7/2-,9/2-) 6 keV
% IT = 0.068
% α ≈ 99.93
Γγ0=4.1 8 (1979Jo05)
XREF: j(8858)t(8900)u(8.90×103).
    89003/2+ 101 keV 3 
% α > 22
% n < 78
T=1/2
XREF: K(8900).
E(level)Jπ(level)T1/2(level)Comments
    8968.77/2- 24.8 keV 24 
% n = 89
% α = 11
Γn/Γ=0.894 from Γn=23.5 keV and Γ=26.3 keV (1980Ci03). See also Γn=23 keV and Γα=2.3 keV from (1973Jo01), Γnα=35 (1957Wa46) and Γα/Γ=0.04 (1965Ba32).
E(level): Γn/Γ=0.894 from Γn=23.5 keV and Γ=26.3 keV (1980Ci03). See also Γn=23 keV and Γα=2.3 keV from (1973Jo01), Γnα=35 (1957Wa46) and Γα/Γ=0.04 (1965Ba32).
    91461/2- 4 keV 3 
% IT = 0.025
% n = 55
% α = 45
Γα/Γ=0.45 (1968Ke02).
E(level): Γα/Γ=0.45 (1968Ke02).
    91589/2-   T=1/2
See doublet comment on 9146 keV state.
E(level): See doublet comment on 9146 keV state.
    91817/2- 3 keV
% α ≈ 98
Γα/Γ ≈ 0.98 from 13C(α,α0) (1968Ke02); the resonance was not observed in the (α,n) channel.
E(level): Γα/Γ ≈ 0.98 from 13C(α,α0) (1968Ke02); the resonance was not observed in the (α,n) channel.
    9196.165/2+ 3.53 keV 13 
% n = 67
% α = 33
Γn=2.37 8
XREF: K(9190)n(9199)j(9196.16).
    94915/2- 8 keV 3 
% n = 15
% α = 85
Γα/Γ=0.85 (1968Ke02).
    9714.537/2+ 23.1 keV 3 
% n = 78
% α = 22
Γn=18.0 6
XREF: Z(9790).
    9786.073/2+ 11.7 keV 3 
% n = 88
% α = 12
Γn=10.3 3
XREF: n(9739).
    9861.74(5/2-) 4.01 keV 23 
% n = 84
% α = 16
Γn=3.37 20
XREF: J(9866)n(9863)p(9877)X(9.87×103)d(9856).
    9879.4(1/2-) 16.7 keV 17 
% n = 65
% α = 35
Γn=10.9 12 (1980Ci03)
XREF: J(9866)n(9876)p(9877)X(9.87×103)d(9856).
    99765/2+ ≈ 80 keV
% n = 22
% α = 78
Γα/Γ=0.78 (1968Ke02).
E(level): Γα/Γ=0.78 (1968Ke02).
   10045 ≈ 100 keV
% n < 100
% α < 100
XREF: n(10045)k(9997).
   101365/2+ 138 keV
% n = 15
% α = 85
Γα/Γ=0.85 (1968Ke02).
E(level): Γα/Γ=0.85 (1968Ke02).
   102407/2+ 122 keV
% n = 40
% α = 60
Γα/Γ=0.40 (1968Ke02).
E(level): Γα/Γ=0.40 (1968Ke02).
   10421.3(5/2-,7/2-) 14 keV 3 
% n < 100
% α < 100
XREF: t(10530).
   10562.3(7/2-) 44.5 keV 25 
% n = 39
% α = 61
XREF: n(10558.5)j(10562.6).
   10914.8(5/2+) 43.2 keV 16 
% n > 63
% α < 37
Γn0/Γ=63.3 from Γn0=26.4 keV 9 and Γ=41.7 keV 14 (1980Ci03).
   11035 31 keV 3 
% n < 100
% α < 100
T=1/2
XREF: L(11.0×103)j(10957).
   11238(3/2-,7/2+) 80.0 keV 25 
% n < 100
% α < 100
XREF: q(11.2×103).
   11519GE3/2 ≈ 190 keV
% n < 100
% α < 100
XREF: 1(11410).
   11880 ≈ 125 keV
% n < 100
% α < 100
XREF: k(11880).
      11.95E3GE3/2 ≈ 250 keV
% n < 100
XREF: u(11.95×103).
   120079/2+ < 50 keV
% n < 100
% α < 100
XREF: Z(12000).
   122297/2- ≤ 20 keV E(level): Decay mode not specified.
   124249/2+ < 50 keV
% n < 100
% α < 100
XREF: n(12421).
E(level)Jπ(level)T1/2(level)Comments
   12471.43/2- 7.2 keV 11 
% n > 18
% α < 82
T=3/2
XREF: n(12458).
   12760 < 70 keV
% n < 100
% α < 100
T=1/2
XREF: n(12813).
   12928(1/2+,7/2-) ≥ 150 keV
% n < 100
% α < 100
XREF: n(12928).
   129461/2+ 6 keV 2 
% n > 3.5
% α < 96.5
T=3/2
XREF: n(12944).
   13580(11/2-,13/2-) 68 keV 19  XREF: p(13.58×103)t(13.3×103)u(13.58×103).
E(level): Decay mode not specified.
   13610 ≈ 200 keV
% n < 100
% α < 100
XREF: E(13.6×103)u(13.56×103).
   13641.95/2+ 9 keV 5 
% n > 2.7
T=3/2
XREF: j(13641.9).
   13649 400 keV
% n ≤ 100
XREF: j(13649).
      14.15E3(9/2+,11/2+) ≈ 150 keV XREF: u(14.4×103).
   14550   E(level): Decay mode not specified.
   147209/2- 35 keV 11  T=3/2
E(level): Decay mode not specified.
      14.76E37/2- ≈ 340 keV
% n ≤ 100
XREF: p(14760)t(14600)j(14590)u(14.76×103).
   14880(15/2+) % α < 100
XREF: K(14880).
      15.10E3(9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% p < 100
% α < 100
XREF: c(15149)t(15.06×103).
   15101   T=3/2
XREF: u(15.10×103).
E(level): Decay mode not specified.
   152083/2+ 52 keV 14 
% n < 100
% p < 100
T=3/2
XREF: u(15.24×103).
   15787(13/2-) < 30 keV
% p ≤ 100
T=(1/2)
XREF: b(15722).
      15.95E3(9/2+,11/2+) 0.40 MeV 15 
% IT > 0
% n < 100
% p < 100
% α < 100
XREF: E(16.1×103)b(16164)c(15800).
   16253(9/2+) 21 keV 10 
% n < 100
T=3/2
XREF: u(16500).
   165783/2- ≈ 300 keV T=3/2
XREF: U(16.52×103)u(16.52×103).
E(level): Decay mode not specified.
      16.60E3(11/2-,13/2-)   E(level): Decay mode not specified.
   17060(11/2-) < 20 keV T=(1/2)
E(level): Decay mode not specified.
   181223/2- 46 keV 12 
% n ≤ 100
T=3/2
XREF: Q(18170)t(18.09×103).
   18720 87 keV 33  E(level): Decay mode not specified.
   18830 ≤ 20 keV E(level): Decay mode not specified.
E(level)Jπ(level)T1/2(level)Comments
      19.60E3(13/2+,15/2+) 250 keV XREF: H(19.0×103)Q(19240).
E(level): Decay mode not specified.
   198203/2- 550 keV 50 
% IT > 6×10-4
Γγ0≥1 EV
XREF: Y(19.76×103).
   20140(11/2-) 31 keV 5  T=3/2
E(level): Decay mode not specified.
      20.20E3(13/2+,15/2+) ≈ 250 keV E(level): Decay mode not specified.
   205801/2+ 570 keV 80 
% IT ≥ 9×10-4
% n ≤ 99.999
T=(1/2)
XREF: j(20425)u(20.5×103).
   20700(9/2-) < 20 keV T=(3/2)
E(level): Decay mode not specified.
   21200(13/2+,15/2+)   XREF: p(21.2×103).
E(level): Decay mode not specified.
   221367/2- 750 keV
% IT > 0
% n < 100
% p < 100
% α < 100
XREF: p(22.1×103)t(22.17×103)u(22.0×103).
      22.55E33/2(-) ≈ 1 MeV
% IT > 0
XREF: u(22.0×103).
   229601/2+ ≈ 0.4 MeV
% IT > 0
% p < 100
XREF: t(23.1×103).
   24442 % IT > 0
% p < 100
XREF: t(24.4×103).
   26500 % IT > 0
% p < 100
XREF: t(26.5×103).

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
     870.756     870.732E(γ): Precisely reported γ-ray energies are 870.76 4 from 16O(n,γ):E=thermal (2016Fi04) and 870.725 20 from 16O(d,pγ) from (1980Wa24).

Back to top