ADOPTED LEVELS, GAMMAS for 17O
Authors: C.G. Sheu,J.H. Kelley,J. Purcell | Citation: ENSDF | Cutoff date: 5-Aug-2021
Full ENSDF file | Adopted Levels (PDF version)
Q(β-)=-2760.47 keV 25 | S(n)= 4143.08 keV | S(p)= 13781.6 keV 23 | Q(α)= -6358.69 keV | ||
Reference: 2021Wa16 |
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
0 | ABCDEFG IJKL PQRS UVWXYZa defghi lmnopqr wxyz01 34 67 | 5/2+ | STABLE | |||||
870.756 20 | AB DEFG IJKLM PQRS VWXYZa defghi lmnopqr uvwxyz01 34567 | 1/2+ | 179.6 ps 27 % IT = 100 | 870.732 20 | 100 | E2 | 0 | 5/2+ |
3055.40 6 | A EFG JKL PQRS WX Za d f hi lmno r uvw z01 3456 | 1/2- | 110 fs +24-21 % IT = 100 | 2184.49 5 | 100 | E1 | 870.756 | 1/2+ |
3842.8 4 | A EFG IJKL PQRSTU WX Za def lmno s uv z01 3456 | 5/2- | 92×10-3 eV 6 % IT = 100 | 3842.3 4 | 100 | 0 | 5/2+ | |
4143.27 13 S | h | 1/2+ | 1087.89 4 3272.02 8 4142.6 6 | 100.00 62 20.15 50 4.18 30 | E1 M1 E2 | 3055.40 870.756 0 | 1/2- 1/2+ 5/2+ | |
4551.8 7 | A EFG JKL PQ S X Za de g j lm o tuv 01 3 5 | 3/2- | 38.7 keV 28 % IT = 9.5×10-3 % n = 99.9905 | 3680.6 7 4551.1 7 | 100 100 | E1 E1 | 870.756 0 | 1/2+ 5/2+ |
5086.8 9 | A DEF IJKL PQ Za d j lmn q tu 01 | 3/2+ | 90 keV 3 % IT = 1.1×10-3 % n = 99.9988 | |||||
5216.18 40 | E JKL PQ T X Za defg lmn r uv 0 3 5 | 9/2- | < 0.1 keV % n ≈ 100 % IT > 0 | |||||
5387.1 22 | A EFG JKL Za d f j m o tuv 01 3 5 | 3/2- | 37.1 keV 24 % IT = 1.9×10-3 % n = 99.9981 | |||||
5697.32 33 | DE IJK PQ X Za defg j mn tuv 3 5 | 7/2- | 3.4 keV 3 % IT = 3.2×10-2 % n = 99.968 | |||||
5732.07 42 | A E JK PQ T Za g j lm tuv 3 | (5/2-) | < 1 keV % n ≤ 100 | |||||
5869.62 40 | A E JKL PQ T Za d g j mn u 3 5 | 3/2+ | 6.6 keV 7 % n ≤ 100 | |||||
5931.6 15 | A E JK PQ Za d g j m u 1 3 | 1/2- | 32 keV 3 % n ≤ 100 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
6361.5 71 | A E KL PQ S U X Za d g j lm tu 3 | 1/2+ | 126 keV 14 % n ≈ 100 | |||||
6860.6 4 | E JKL N PQ Za d g j m uv 1 3 | 5/2+ | < 1 keV % n ≈ 100 % α > 1×10-5 | |||||
6972.5 4 | JKL N PQ Za d g j l n tu 3 | (7/2-) | < 1 keV % n ≈ 100 % α > 8×10-6 | |||||
7165.86 17 | JKL N PQ X Z d g j u 3 | 5/2- | 1.38 keV 5 % α = 0.19 % n ≈ 100 | |||||
7214 5 | N PQ T g j tu 3 | 3/2+ | 263 keV 7 % n = 99.957 % α = 0.043 | |||||
7379.23 19 | JKL N PQ X Z e g j l n tu 1 3 | 5/2+ | 0.61 keV +14-11 % IT = 0.13 % n ≈ 98 % α ≈ 1.9 | |||||
7382.37 14 | JKL N PQ Z d g j u 1 3 | 5/2- | 0.90 keV +17-14 % n = 99.73 % α = 0.27 | |||||
7543 20 | A DE I L P Z fg j m q u 3 | 3/2- | 500 keV 50 % n = 99.984 % α = 0.016 | |||||
7573.5 6 | E JK N PQ T d g n uv 3 | 7/2+ | < 0.1 keV % α > 0.073 % n < 99.93 | |||||
7689.21 22 | J N PQ d g j n tu 3 | 7/2- | 14.4 keV 3 % IT = 0.01 % n = 90.27 % α = 9.72 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
7763.6 4 | JK PQ X def l n tuv 3 5 | 11/2- | < 4 keV | |||||
7955 8 | N g j tu | 1/2+ | 85 keV 9 % n = 92.61 % α = 7.39 | |||||
7992 50 | A O d g j | 1/2- | 270 keV 27 % n ≈ 94.7 % α ≈ 5.3 | |||||
8070 10 | NO d g j v | 3/2+ | 77 keV 8 % n ≈ 83 % α ≈ 17 | |||||
8181 20 ? | g j | 1/2- | 69 keV 7 % n = 98.8 % α = 1.2 | |||||
8200 8 | A J NOP X de g j l tu 1 | 3/2- | 61 keV 10 % IT ≈ 0.002 % n ≈ 92.305 % α ≈ 7.692 | |||||
8343.94 39 | NO d j u | 1/2+ | 11.4 keV 5 % n = 71 % α = 29 | |||||
8403.90 7 | J L NO Q T d j n uv | 5/2+ | 6.17 keV 13 % n = 77 % α = 23 | |||||
≈8467 | JK Q tu | 9/2+ | < 10 keV | |||||
8467.63 9 | NOP X Za e j | 7/2+ | 2.13 keV 18 % IT = 0.3 % n = 55.2 % α = 44.5 | |||||
8502.40 12 | NOPQ d j u | 5/2- | 6.89 keV 22 % n = 42 % α = 58 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
8688.9 4 | JK NOPQ d j tu 1 | 3/2- | 55.3 keV 6 % IT = 0.002 % n = 88.4 % α = 11.5 | |||||
8880 20 | E OPQ Z d j n tu | (7/2-,9/2-) | 6 keV % IT = 0.068 % α ≈ 99.93 | |||||
8900 8 | JK NOPQ T X e jk | 3/2+ | 101 keV 3 % α > 22 % n < 78 | |||||
8968.7 16 | J NOPQ d f jkl u | 7/2- | 24.8 keV 24 % n = 89 % α = 11 | |||||
9146 4 | E MNOPQ k tu 1 | 1/2- | 4 keV 3 % IT = 0.025 % n = 55 % α = 45 | 8273 4 | 100 | E1 | 870.756 | 1/2+ |
9158 10 | E Q def u | 9/2- | ||||||
9181 9 | J NOPQ X Z j tu | 7/2- | 3 keV % α ≈ 98 | |||||
9196.16 9 | K NO jk u | 5/2+ | 3.53 keV 13 % n = 67 % α = 33 | |||||
9423 | j u | 3/2- | 120 keV % n = 100 | |||||
9491 4 | JK NO Q d k n u | 5/2- | 8 keV 3 % n = 15 % α = 85 | |||||
9714.53 14 | JK NO Q X Z d jk u | 7/2+ | 23.1 keV 3 % n = 78 % α = 22 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
9786.07 15 | NO T e j l n | 3/2+ | 11.7 keV 3 % n = 88 % α = 12 | |||||
9861.74 15 | E JKL NOP X d jk u | (5/2-) | 4.01 keV 23 % n = 84 % α = 16 | |||||
9879.4 10 | E JK N PQ X d j u | (1/2-) | 16.7 keV 17 % n = 65 % α = 35 | |||||
9976 20 | NOPQ k | 5/2+ | ≈ 80 keV % n = 22 % α = 78 | |||||
10045 20 | N k | ≈ 100 keV % n < 100 % α < 100 | ||||||
10136? | NOP | 5/2+ | 138 keV % n = 15 % α = 85 | |||||
10170.9 5 | NO jk | 7/2- | 49.1 keV 8 % n = 46 % α = 54 | |||||
≈10240? | O d | 7/2+ | 122 keV % n = 40 % α = 60 | |||||
10335 15 | NO d k | (5/2+,7/2-) | 150 keV % n < 100 % α < 100 | |||||
10421.3 20 | J MNO X t | (5/2-,7/2-) | 14 keV 3 % n < 100 % α < 100 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
≈10500 | NO | (5/2+,7/2-) | 75 keV 30 % n < 100 % α < 100 | |||||
10562.3 8 | J NO Q T d jk | (7/2-) | 44.5 keV 25 % n = 39 % α = 61 | |||||
10694 8 | JK O Za d | (7/2+) | ≤ 25 keV % n < 100 % α < 100 | |||||
10777.9 20 | H NO Q d jk | (1/2+,7/2-) | 74 keV 3 % n < 100 % α < 100 | |||||
10914.8 64 | J NO d jk | (5/2+) | 43.2 keV 16 % n > 63 % α < 37 | |||||
11035 2 | E JKL NO d jk u | 31 keV 3 % n < 100 % α < 100 | ||||||
11082.67 18 | MN d j u 12 | 1/2- | 2.4 keV 3 % IT = 0.4 % n = 85.8 % α = 13.8 | 10208.0 2 | 100 | E1 | 870.756 | 1/2+ |
11238 2 | E K NO X kl q | (3/2-,7/2+) | 80.0 keV 25 % n < 100 % α < 100 | |||||
≈11519 | jk 1 | GE3/2 | ≈ 190 keV % n < 100 % α < 100 | |||||
11622 2 | N | 65 keV 2 % n < 100 % α < 100 | ||||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
11751 10 | N Q k u | 40 keV 25 % n < 100 % α < 100 | ||||||
11815 13 | JKL N PQ X | 7/2+ | 12 keV 3 % n < 100 % α < 100 | |||||
11880? | k | ≈ 125 keV % n < 100 % α < 100 | ||||||
11.95E3 5 ? | E j u | GE3/2 | ≈ 250 keV % n < 100 | |||||
12007 10 | H JK N X Za k | 9/2+ | < 50 keV % n < 100 % α < 100 | |||||
12118 10 | N T j 1 | 150 keV 50 % n < 100 % α < 100 | ||||||
12229 16 | JK u | 7/2- | ≤ 20 keV | |||||
12274 15 | N X kl | (7/2+) | 100 keV 30 % n < 100 % α < 100 | |||||
12385 20 | N PQ j | 130 keV % n < 100 % α < 100 | ||||||
12424 13 | JK N Z | 9/2+ | < 50 keV % n < 100 % α < 100 | |||||
12471.4 6 | N j u 12 | 3/2- | 7.2 keV 11 % n > 18 % α < 82 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
12596 15 | N | 75 keV 30 % n < 100 % α < 100 | ||||||
12670 15 | N j u | (3/2-,9/2+) | 75 keV % n < 100 % α < 100 | |||||
12760 26 | JK N Z 1 | < 70 keV % n < 100 % α < 100 | ||||||
12928 20 | N | (1/2+,7/2-) | ≥ 150 keV % n < 100 % α < 100 | |||||
12946 6 | N j u 12 | 1/2+ | 6 keV 2 % n > 3.5 % α < 96.5 | |||||
13004.2 6 | N X j u 2 | 5/2- | 2.5 keV 10 % n > 16 % α < 84 | |||||
13072 15 | JK N | (3/2-) | 16 keV 4 % n < 100 % α < 100 | |||||
13485 15 | N a l | (9/2+) | ≈ 120 keV % n < 100 % α < 100 | |||||
13580 20 | E H JKL PQ T Z u | (11/2-,13/2-) | 68 keV 19 | |||||
13610 15 | E N u | ≈ 200 keV % n < 100 % α < 100 | ||||||
13641.9 24 | X j 12 | 5/2+ | 9 keV 5 % n > 2.7 | |||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
13649? | j | 400 keV % n ≤ 100 | ||||||
14.15E3 10 | E P l u | (9/2+,11/2+) | ≈ 150 keV | |||||
14237.7 15 | j u 2 | 7/2- | 20.5 keV 16 % n > 10 | |||||
14293 3 | j 2 | 7.5 keV 4 % n ≤ 100 | ||||||
14458 3 | j u | 40 keV 6 % n ≤ 100 | ||||||
14550 26 | K | |||||||
14720 20 | K q u | 9/2- | 35 keV 11 | |||||
14.76E3 10 | E PQ T X j l u | 7/2- | ≈ 340 keV % n ≤ 100 | |||||
14799 3 | j | 1/2- | 36 keV 13 % n < 100 | |||||
14880 26 | H JK Q a | (15/2+) | % α < 100 | |||||
14967 | c j | (5/2+) | ≈ 155 keV % n < 100 % α < 100 | |||||
15.10E3 10 | E P c t | (9/2+,11/2+) | 0.40 MeV 15 % IT > 0 % p < 100 % α < 100 | |||||
15101 8 | E K u 2 | |||||||
15208 3 | E X b j u | 3/2+ | 52 keV 14 % n < 100 % p < 100 | |||||
15377 3 | j | (5/2+) | 40 keV 6 % n ≤ 100 | |||||
15620 26 | JK bc | % p < 100 % α < 100 | ||||||
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
15787 20 | K b l uv | (13/2-) | < 30 keV % p ≤ 100 | |||||
15.95E3 15 | E P bc | (9/2+,11/2+) | 0.40 MeV 15 % IT > 0 % n < 100 % p < 100 % α < 100 | |||||
16253 4 | E X j u | (9/2+) | 21 keV 10 % n < 100 | |||||
16578 12 | E U u 1 | 3/2- | ≈ 300 keV | |||||
16.60E3 15 | P | (11/2-,13/2-) | ||||||
17060 20 | P l uv | (11/2-) | < 20 keV | |||||
17448 11 | j | 66 keV 20 % n < 100 | ||||||
17920 20 | u | 98 keV 16 | ||||||
18122 4 | E Q X j t 1 | 3/2- | 46 keV 12 % n ≤ 100 | |||||
18720 20 | u | 87 keV 33 | ||||||
18830 20 | T u | ≤ 20 keV | ||||||
19.28E3 7 ? | Y t | > 0.75 MeV % IT > 0 | 18418 19288 | | 870.756 0 | 1/2+ 5/2+ | ||
19.60E3 15 | E H PQ | (13/2+,15/2+) | 250 keV | |||||
19820 40 | E Y u | 3/2- | 550 keV 50 % IT > 6×10-4 | 18949 19820 | | E1 E1 | 870.756 0 | 1/2+ 5/2+ |
20140 20 | u | (11/2-) | 31 keV 5 | |||||
20.20E3 15 | P | (13/2+,15/2+) | ≈ 250 keV | |||||
20390 50 | Y t | (5/2-,7/2-) | 660 keV 70 % IT > 6.5×10-4 | 20390 | | E1 | 0 | 5/2+ |
20580 50 | E V Y j u | 1/2+ | 570 keV 80 % IT ≥ 9×10-4 % n ≤ 99.999 | 19709 | | M1 | 870.756 | 1/2+ |
E(level) (keV) | XREF | Jπ(level) | T1/2(level) | E(γ) (keV) | I(γ) | M(γ) | Final Levels | |
20700 20 | u | (9/2-) | < 20 keV | |||||
21050 50 | V Y | (3/2-) | 470 keV 60 % IT > 0.0026 | 20179 21050 | | E1 E1 | 870.756 0 | 1/2+ 5/2+ |
21200 | E P | (13/2+,15/2+) | ||||||
21725 82 | V | 5/2+ | 750 keV % IT > 0 % α < 100 | 20855? 21725 | | E2 M1+E2 | 870.756 0 | 1/2+ 5/2+ |
22136 82 | E P V tu | 7/2- | 750 keV % IT > 0 % n < 100 % p < 100 % α < 100 | 22136 | | E1 | 0 | 5/2+ |
22.55E3 17 | E V u | 3/2(-) | ≈ 1 MeV % IT > 0 | 21679 22550 | | E1 E1 | 870.756 0 | 1/2+ 5/2+ |
22960 82 | E V t | 1/2+ | ≈ 0.4 MeV % IT > 0 % p < 100 | 22960 | | E2 | 0 | 5/2+ |
23454 82 | V | % IT > 0 | ||||||
24442 82 | E V t | % IT > 0 % p < 100 | ||||||
26500 15 ? | E t | % IT > 0 % p < 100 |
E(level): Decay probabilities are listed as "%n|<100, %α|<100 " for levels populated in either 16O(n,α) or 13C(α,n) and when no further information is available. Similarly, "%n|<100 " or "%α|<100 " is given for population in, for example, 16O(n,n) or 15N(d,α), respectively. Levels populated in 17O(γ,X) are listed with %IT>0 or with Γγ0 and %IT from the reported values, but the decay transitions are not given. It appears that in past evaluations several levels were associated with α decay based on their population via 18O(3He,α), and with γ decay based on their population in 17O(e,e’).
E(γ): From energy level difference, except where noted.
E(level) (keV) | Jπ(level) | T1/2(level) | E(γ) (keV) | Multipolarity | Additional Data |
870.756 | 1/2+ | 179.6 ps 27 % IT = 100 | 870.732 20 | E2 | B(E2)(W.u.)=2.424 37 |
3055.40 | 1/2- | 110 fs +24-21 % IT = 100 | 2184.49 5 | E1 | B(E1)(W.u.)=8.9E-4 +22-16 |
3842.8 | 5/2- | 92×10-3 eV 6 % IT = 100 | 3842.3 4 | B(E1)(W.u.)=3.6E-3 2 | |
4551.8 | 3/2- | 38.7 keV 28 % IT = 9.5E-3 % n = 99.9905 | 3680.6 7 | E1 | B(E1)(W.u.)=8.3E-2 2 |
3/2- | 38.7 keV 28 % IT = 9.5E-3 % n = 99.9905 | 4551.1 7 | E1 | B(E1)(W.u.)=4.2E-2 8 | |
9146 | 1/2- | 4 keV 3 % IT = 0.025 % n = 55 % α = 45 | 8273 4 | E1 | B(E1)(W.u.)=5.7E-3 10 |
11082.67 | 1/2- | 2.4 keV 3 % IT = 0.4 % n = 85.8 % α = 13.8 | 10208.0 2 | E1 | B(E1)(W.u.)=2.5E-2 4 |
Additional Level Data and Comments:
E(level) | Jπ(level) | T1/2(level) | Comments |
870.756 | 1/2+ | 179.6 ps 27 % IT = 100 | T1/2: weighted average of 170 ps 7 from 14N(α,p) (1974Sc09) and 180.4 ps 20 from 16O(d,p) (see discussion). E(level): T1/2: weighted average of 170 ps 7 from 14N(α,p) (1974Sc09) and 180.4 ps 20 from 16O(d,p) (see discussion). |
5387.1 | 3/2- | 37.1 keV 24 % IT = 1.9×10-3 % n = 99.9981 | Γγ0=0.7 4 (1979Jo05) XREF: t(5430)5(5.55×103). |
5697.32 | 7/2- | 3.4 keV 3 % IT = 3.2×10-2 % n = 99.968 | Γγ0=1.1 4 (1979Jo05) XREF: J(5719)t(5710). |
5732.07 | (5/2-) | < 1 keV % n ≤ 100 | XREF: J(5719)t(5.8×103)t(5729). |
5869.62 | 3/2+ | 6.6 keV 7 % n ≤ 100 | XREF: K(5900)t(5.8×103). E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). |
5931.6 | 1/2- | 32 keV 3 % n ≤ 100 | XREF: K(5900). |
6361.5 | 1/2+ | 126 keV 14 % n ≈ 100 | T=1/2 XREF: t(6300). |
6860.6 | 5/2+ | < 1 keV % n ≈ 100 % α > 1×10-5 | Γα=0.11E-3 EV (2020Me09) XREF: v(6.86×103). E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). |
7214 | 3/2+ | 263 keV 7 % n = 99.957 % α = 0.043 | Γα/Γ=0.00043 from Γn=280 keV Γα=0.12 keV (1973Jo01). See also Γn=400 keV and Γα=0.09 keV (2008Pe09) and Γn=340 keV and Γα=0.14 keV (2008He11, 2012La29). and Γα=0.073 keV (2020Me09). E(level): Γα/Γ=0.00043 from Γn=280 keV Γα=0.12 keV (1973Jo01). See also Γn=400 keV and Γα=0.09 keV (2008Pe09) and Γn=340 keV and Γα=0.14 keV (2008He11, 2012La29). and Γα=0.073 keV (2020Me09). |
7379.23 | 5/2+ | 0.61 keV +14-11 % IT = 0.13 % n ≈ 98 % α ≈ 1.9 | Γγ0=0.8 4 (1979Jo05) Γα/Γ≈0.02 from Γn=0.50 keV Γα=0.01 keV (1973Jo01) See also Γn/Γα=450 (1957Wa46), Γn=0.41 keV Γα=0.011 keV (2008He11, 2012La29). E(level): Γα/Γ≈0.02 from Γn=0.50 keV Γα=0.01 keV (1973Jo01) See also Γn/Γα=450 (1957Wa46), Γn=0.41 keV Γα=0.011 keV (2008He11, 2012La29). |
7382.37 | 5/2- | 0.90 keV +17-14 % n = 99.73 % α = 0.27 | XREF: K(7380)L(7388)p(7381)Q(7382)Z(7379)1(7380)3(7380.1). |
7543 | 3/2- | 500 keV 50 % n = 99.984 % α = 0.016 | Γn≈500 KEV, Γα=80 EV (1973Jo01) XREF: I(7.56×103)p(7559). |
7573.5 | 7/2+ | < 0.1 keV % α > 0.073 % n < 99.93 | Γα≈7.3 EV (2020Me09) XREF: p(7576)t(7600)v(7.58×103). E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). |
7689.21 | 7/2- | 14.4 keV 3 % IT = 0.01 % n = 90.27 % α = 9.72 | Γγ0=1.5 5 (1979Jo05), Γn=13.0 6 (1980Ci03) XREF: j(7689.21)t(7660). |
7763.6 | 11/2- | < 4 keV | T=1/2 XREF: t(7800). E(level): Decay mode not specified. |
7955 | 1/2+ | 85 keV 9 % n = 92.61 % α = 7.39 | Γα/Γ=7.39 From Γα=6.7 keV and Γn=84 keV (1973Jo01). See also Γn/Γα=10 (1957Wa46). E(level): Γα/Γ=7.39 From Γα=6.7 keV and Γn=84 keV (1973Jo01). See also Γn/Γα=10 (1957Wa46). |
7992 | 1/2- | 270 keV 27 % n ≈ 94.7 % α ≈ 5.3 | Γα/Γ=0.053 From Γα=14 keV and Γn=250 keV (1973Jo01). See also Γα/Γ=0.059 7 (1973Fo11). E(level): Γα/Γ=0.053 From Γα=14 keV and Γn=250 keV (1973Jo01). See also Γα/Γ=0.059 7 (1973Fo11). |
8070 | 3/2+ | 77 keV 8 % n ≈ 83 % α ≈ 17 | Γα/Γ=7.39 From Γα=15 keV and Γn=71 keV (1973Jo01). E(level): Γα/Γ=7.39 From Γα=15 keV and Γn=71 keV (1973Jo01). |
8200 | 3/2- | 61 keV 10 % IT ≈ 0.002 % n ≈ 92.305 % α ≈ 7.692 | Γγ0=1.4 5 (1979Jo05) Γα/Γ=7.69 From Γα=4 keV and Γn=48 keV (1973Jo01). See also Γα/Γ=0.077 8 (1973Fo11). E(level): Γα/Γ=7.69 From Γα=4 keV and Γn=48 keV (1973Jo01). See also Γα/Γ=0.077 8 (1973Fo11). |
8343.94 | 1/2+ | 11.4 keV 5 % n = 71 % α = 29 | Γn=8.1 3 XREF: n(8350). |
8403.90 | 5/2+ | 6.17 keV 13 % n = 77 % α = 23 | Γn=4.75 11 XREF: L(8400). |
8467 | 9/2+ | < 10 keV | XREF: t(8480). |
8467.63 | 7/2+ | 2.13 keV 18 % IT = 0.3 % n = 55.2 % α = 44.5 | Γn=1.18 4, Γγ0=6.6 18 (1979Jo05) XREF: n(8473). E(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). Jπ(level): States at Ex:J=5869.62:3/2+, 6860.6:5/2+, 7573.5:7/2+, and 8467.63:9/2+ are well reproduced by simple Bansal-French type weak-coupling calculations and are considered 5p4h in nature (priv. comm. J. Millener (2021)). |
8880 | (7/2-,9/2-) | 6 keV % IT = 0.068 % α ≈ 99.93 | Γγ0=4.1 8 (1979Jo05) XREF: j(8858)t(8900)u(8.90×103). |
8900 | 3/2+ | 101 keV 3 % α > 22 % n < 78 | T=1/2 XREF: K(8900). |
E(level) | Jπ(level) | T1/2(level) | Comments |
8968.7 | 7/2- | 24.8 keV 24 % n = 89 % α = 11 | Γn/Γ=0.894 from Γn=23.5 keV and Γ=26.3 keV (1980Ci03). See also Γn=23 keV and Γα=2.3 keV from (1973Jo01), Γn/Γα=35 (1957Wa46) and Γα/Γ=0.04 (1965Ba32). E(level): Γn/Γ=0.894 from Γn=23.5 keV and Γ=26.3 keV (1980Ci03). See also Γn=23 keV and Γα=2.3 keV from (1973Jo01), Γn/Γα=35 (1957Wa46) and Γα/Γ=0.04 (1965Ba32). |
9146 | 1/2- | 4 keV 3 % IT = 0.025 % n = 55 % α = 45 | Γα/Γ=0.45 (1968Ke02). E(level): Γα/Γ=0.45 (1968Ke02). |
9158 | 9/2- | T=1/2 See doublet comment on 9146 keV state. E(level): See doublet comment on 9146 keV state. | |
9181 | 7/2- | 3 keV % α ≈ 98 | Γα/Γ ≈ 0.98 from 13C(α,α0) (1968Ke02); the resonance was not observed in the (α,n) channel. E(level): Γα/Γ ≈ 0.98 from 13C(α,α0) (1968Ke02); the resonance was not observed in the (α,n) channel. |
9196.16 | 5/2+ | 3.53 keV 13 % n = 67 % α = 33 | Γn=2.37 8 XREF: K(9190)n(9199)j(9196.16). |
9491 | 5/2- | 8 keV 3 % n = 15 % α = 85 | Γα/Γ=0.85 (1968Ke02). |
9714.53 | 7/2+ | 23.1 keV 3 % n = 78 % α = 22 | Γn=18.0 6 XREF: Z(9790). |
9786.07 | 3/2+ | 11.7 keV 3 % n = 88 % α = 12 | Γn=10.3 3 XREF: n(9739). |
9861.74 | (5/2-) | 4.01 keV 23 % n = 84 % α = 16 | Γn=3.37 20 XREF: J(9866)n(9863)p(9877)X(9.87×103)d(9856). |
9879.4 | (1/2-) | 16.7 keV 17 % n = 65 % α = 35 | Γn=10.9 12 (1980Ci03) XREF: J(9866)n(9876)p(9877)X(9.87×103)d(9856). |
9976 | 5/2+ | ≈ 80 keV % n = 22 % α = 78 | Γα/Γ=0.78 (1968Ke02). E(level): Γα/Γ=0.78 (1968Ke02). |
10045 | ≈ 100 keV % n < 100 % α < 100 | XREF: n(10045)k(9997). | |
10136 | 5/2+ | 138 keV % n = 15 % α = 85 | Γα/Γ=0.85 (1968Ke02). E(level): Γα/Γ=0.85 (1968Ke02). |
10240 | 7/2+ | 122 keV % n = 40 % α = 60 | Γα/Γ=0.40 (1968Ke02). E(level): Γα/Γ=0.40 (1968Ke02). |
10421.3 | (5/2-,7/2-) | 14 keV 3 % n < 100 % α < 100 | XREF: t(10530). |
10562.3 | (7/2-) | 44.5 keV 25 % n = 39 % α = 61 | XREF: n(10558.5)j(10562.6). |
10914.8 | (5/2+) | 43.2 keV 16 % n > 63 % α < 37 | Γn0/Γ=63.3 from Γn0=26.4 keV 9 and Γ=41.7 keV 14 (1980Ci03). |
11035 | 31 keV 3 % n < 100 % α < 100 | T=1/2 XREF: L(11.0×103)j(10957). | |
11238 | (3/2-,7/2+) | 80.0 keV 25 % n < 100 % α < 100 | XREF: q(11.2×103). |
11519 | GE3/2 | ≈ 190 keV % n < 100 % α < 100 | XREF: 1(11410). |
11880 | ≈ 125 keV % n < 100 % α < 100 | XREF: k(11880). | |
11.95E3 | GE3/2 | ≈ 250 keV % n < 100 | XREF: u(11.95×103). |
12007 | 9/2+ | < 50 keV % n < 100 % α < 100 | XREF: Z(12000). |
12229 | 7/2- | ≤ 20 keV | E(level): Decay mode not specified. |
12424 | 9/2+ | < 50 keV % n < 100 % α < 100 | XREF: n(12421). |
E(level) | Jπ(level) | T1/2(level) | Comments |
12471.4 | 3/2- | 7.2 keV 11 % n > 18 % α < 82 | T=3/2 XREF: n(12458). |
12760 | < 70 keV % n < 100 % α < 100 | T=1/2 XREF: n(12813). | |
12928 | (1/2+,7/2-) | ≥ 150 keV % n < 100 % α < 100 | XREF: n(12928). |
12946 | 1/2+ | 6 keV 2 % n > 3.5 % α < 96.5 | T=3/2 XREF: n(12944). |
13580 | (11/2-,13/2-) | 68 keV 19 | XREF: p(13.58×103)t(13.3×103)u(13.58×103). E(level): Decay mode not specified. |
13610 | ≈ 200 keV % n < 100 % α < 100 | XREF: E(13.6×103)u(13.56×103). | |
13641.9 | 5/2+ | 9 keV 5 % n > 2.7 | T=3/2 XREF: j(13641.9). |
13649 | 400 keV % n ≤ 100 | XREF: j(13649). | |
14.15E3 | (9/2+,11/2+) | ≈ 150 keV | XREF: u(14.4×103). |
14550 | E(level): Decay mode not specified. | ||
14720 | 9/2- | 35 keV 11 | T=3/2 E(level): Decay mode not specified. |
14.76E3 | 7/2- | ≈ 340 keV % n ≤ 100 | XREF: p(14760)t(14600)j(14590)u(14.76×103). |
14880 | (15/2+) | % α < 100 | XREF: K(14880). |
15.10E3 | (9/2+,11/2+) | 0.40 MeV 15 % IT > 0 % p < 100 % α < 100 | XREF: c(15149)t(15.06×103). |
15101 | T=3/2 XREF: u(15.10×103). E(level): Decay mode not specified. | ||
15208 | 3/2+ | 52 keV 14 % n < 100 % p < 100 | T=3/2 XREF: u(15.24×103). |
15787 | (13/2-) | < 30 keV % p ≤ 100 | T=(1/2) XREF: b(15722). |
15.95E3 | (9/2+,11/2+) | 0.40 MeV 15 % IT > 0 % n < 100 % p < 100 % α < 100 | XREF: E(16.1×103)b(16164)c(15800). |
16253 | (9/2+) | 21 keV 10 % n < 100 | T=3/2 XREF: u(16500). |
16578 | 3/2- | ≈ 300 keV | T=3/2 XREF: U(16.52×103)u(16.52×103). E(level): Decay mode not specified. |
16.60E3 | (11/2-,13/2-) | E(level): Decay mode not specified. | |
17060 | (11/2-) | < 20 keV | T=(1/2) E(level): Decay mode not specified. |
18122 | 3/2- | 46 keV 12 % n ≤ 100 | T=3/2 XREF: Q(18170)t(18.09×103). |
18720 | 87 keV 33 | E(level): Decay mode not specified. | |
18830 | ≤ 20 keV | E(level): Decay mode not specified. | |
E(level) | Jπ(level) | T1/2(level) | Comments |
19.60E3 | (13/2+,15/2+) | 250 keV | XREF: H(19.0×103)Q(19240). E(level): Decay mode not specified. |
19820 | 3/2- | 550 keV 50 % IT > 6×10-4 | Γγ0≥1 EV XREF: Y(19.76×103). |
20140 | (11/2-) | 31 keV 5 | T=3/2 E(level): Decay mode not specified. |
20.20E3 | (13/2+,15/2+) | ≈ 250 keV | E(level): Decay mode not specified. |
20580 | 1/2+ | 570 keV 80 % IT ≥ 9×10-4 % n ≤ 99.999 | T=(1/2) XREF: j(20425)u(20.5×103). |
20700 | (9/2-) | < 20 keV | T=(3/2) E(level): Decay mode not specified. |
21200 | (13/2+,15/2+) | XREF: p(21.2×103). E(level): Decay mode not specified. | |
22136 | 7/2- | 750 keV % IT > 0 % n < 100 % p < 100 % α < 100 | XREF: p(22.1×103)t(22.17×103)u(22.0×103). |
22.55E3 | 3/2(-) | ≈ 1 MeV % IT > 0 | XREF: u(22.0×103). |
22960 | 1/2+ | ≈ 0.4 MeV % IT > 0 % p < 100 | XREF: t(23.1×103). |
24442 | % IT > 0 % p < 100 | XREF: t(24.4×103). | |
26500 | % IT > 0 % p < 100 | XREF: t(26.5×103). |
E(level) | E(gamma) | Comments |
870.756 | 870.732 | E(γ): Precisely reported γ-ray energies are 870.76 4 from 16O(n,γ):E=thermal (2016Fi04) and 870.725 20 from 16O(d,pγ) from (1980Wa24). |
17O was first identified by (Blackett: Proc. Roy. Soc. α 107 (1925) 349); see (2012Th01).
Past evaluations: 1959Aj76, 1971Aj02, 1977Aj02, 1982Aj01, 1986Aj04 1993Ti07. In the present evaluation, we relied heavily on keywords and descriptions provided in the Nuclear Science Reference database (2011Pr03)
We acknowledge fruitful discussions with d.J. Millener.
The atomic mass of 17O is 16.9991317566 u 9 (2010Mo29). See recent AME Mass evaluations in (2012Wa16, 2017Wa10).
Theory:
See Shell model analyses in: 1963Pa03, 1966Ar10, 1966Br04, 1968Bi07, 1969Bo37, 1969Ul03, 1971Mu23, 1973Re17, 1979Co10, 1992Ja13, 1993Po11, 1997Pr05, 2005Vo01, 2006Ma17, 2006Vo14, 2012Yu07, 2016Pa05, 2018Ji07, 2018Ti08, 2019Sm04, 2019Ti04, 2020Fo04, 2020Ma25, 2020Mi15, 2020So01
See Cluster model analyses in: 1995Ho13, 2003Ma70, 2003Mb05, 2004Mc02, 2005Wl02, 2006Go22, 2008ToZV, 2020Ca21
See other theoretical analyses in: 1962Ma23, 1963Fa03, 1963Un01, 1965Ma16, 1966De18, 1966Ma12, 1967Go04, 1969De16, 1970Ry02, 1971Au08, 1971Hs02, 1971Ka40, 1972Be22, 1972En03, 1974HsZX, 1974Ri09, 1974Sa05, 1976Ma05, 1977Ho04, 1977Po16, 1978Fo22, 1978Kr02, 1979Kr05, 1980Hy03, 1980Va05, 1981Au04, 1986Be36, 1986Ed03, 1986To13, 1991Sk02, 1992Ba50, 1994Ma34, 1994Wa02, 1996Ti02, 1997Re07, 2000Bh07, 2005Ni24, 2006Id01, 2007Ch73, 2007Gu03, 2014Ho08, 2016De38, 2016Ho14, 2017Ti04.
See discussion on 17O-17F mirror nuclei and analog states in: 1970Wa01, 1981Sh17, 1981Ta09, 1983Ma38, 1984Sh30, 1985Sh24, 1994Sa45, 1994Sh20, 1995Fo18, 1996Bu20, 1998Ao02, 1999Ts06, 1999Ki28, 2001Ag09, 2001Au01, 2001Sh17, 2002Zh28, 2003Ti13, 2003Zh29, 2004Fu04, 2005Ti07, 2008Li53, 2010Ha11, 2011Ti09, 2012Mu14, 2012Ok02, 2017De08, 2017Sv01, 2018Do02, 2018Fo04, 2019Mu05, 2020De03
See discussion on the nuclear and charge radii in:
experimental: 2000Fa12, 2001Oz03, 2001Oz04, 2012Ra29
Using elastic electron scattering the ratio of the rms charge radii of 17O to 16O was determined to be 0.995 6 as reported in (1970Si02) and 1.0015 25 as reported in (1978Ki01). In (1979Mi09), it is reported that the charge radius of 16O is larger than that of 17O by 0.008 fm 7.
theory: 1969No03 (RchargeRMS=2.70 fm (theory)), 1973Ho32, 1979Br17 2013Fo09, 2017Ah08(RmatterRMS=2.73 fm 4), 2018Fo12, 2019Fo08, 2019Ra09, 2019Sa02, 2020An13
Moments and hyperfine structure:
Experimental results on μ:
1951Al08: The ratio of the resonance frequency of 17O from H2O to the resonance frequency of D2 from D2O was determined to be ν(17O)/ν(D2)=0.88313 4; the spin of 17O is I=5/2; μ=-1.89280 nm 19.
2005An15: 17O measured NMR spectra; deduced μ=-1.8935428 95.
Theory, calculated μ dipole moment:
1968Pe16, 1968Sc18, 1972Gl06, 1973Er03, 1974Ha27, 1977Ko28, 1980Br13, 1980Ch35, 1983Zi01, 1984Bo11, 1984Zi04, 1985Bl20, 1985Zi05, 1987It01, 1988Ho16, 1989Ch24, 1989Ne02, 1990Mo36, 1991Bl14, 1994Li55, 1999Ga57, 2003Sm02, 2005An15, 2006Ya12, 2009Li64, 2012Fu06, 2012We11, 2014Ac01, 2017Sa48
Experimental results on Q:
1957Ka68: measured Q=-0.0265 b 30
1957St93: measured Q=-0.026 b 9
1969Sc34: measured Q=-0.025 b 78. See also (1969Sc33).
92Su: Sundholm and Olsen, J. Phys. Chem. 96 (1992) 627: measured Q=-0.02558 b 22
2008Py02, 2013De06: 17O compiled evaluated ground-state quadrupole moments: (2008Py02) considers Q=-25.58 mb 22 as the most accurate value (Su92: J. Phys. Chem. 96 (1992) 627).
Theory, calculated Q quadrupole moment: 1969Ke07, 1969Go12, 1969Ma38, 1986Ca27, 1991Zh06, 1993Ki05, 1993Ki22, 1997Si10, 1997Si34, 2003Ra04, 2003Sm02, 2003Ra09, 2007Be09, 2017Sa48
See moment compilations in: 1969Fu11, 1989Ra17, 2008Py02, 2005St25, 2015St03, 2016St14, 2019StZV, 2020StZV
Other experimental results not listed elsewhere:
1981Ma16: measured spin-dependent neutron scattering length.