NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 2, 2024.

Search: Author = Yang Jingfu

Found 81 matches.

Back to query form



2024CH12      Phys.Rev. C 109, L021604 (2024)

X.Chen, J.Yang, Y.Cui, K.Zhao, Zh.Li, Y.Zhang

Novel Pauli blocking method in quantum molecular dynamics type models

doi: 10.1103/PhysRevC.109.L021604
Citations: PlumX Metrics


2024YA08      Phys.Rev.Lett. 132, 152502 (2024)

X.Yan, Zh.Cheng, A.Abdukerim, Z.Bo, W.Chen, X.Chen, Ch.Cheng, X.Cui, Y.Fan, D.Fang, Ch.Fu, M.Fu, L.Geng, K.Giboni, L.Gu, X.Guo, Ch.Han, K.Han, Ch.He, J.He, D.Huang, Y.Huang, J.Huang, Zh.Huang, R.Hou, Y.Hou, X.Ji, Y.Ju, Ch.Li, J.Li, M.Li, Sh.Li, T.Li, Q.Lin, J.Liu, X.Lu, C.Lu, L.Luo, Y.Luo, W.Ma, Y.Ma, Y.Mao, Y.Meng, X.Ning, B.Pang, N.Qi, Zh.Qian, X.Ren, N.Shaheed, X.Shang, X.Shao, G.Shen, L.Si, W.Sun, A.Tan, Y.Tao, A.Wang, M.Wang, Q.Wang, Sh.Wang, S.Wang, W.Wang, X.Wang, Zh.Wang, Y.Wei, M.Wu, W.Wu, J.Xia, M.Xiao, X.Xiao, P.Xie, B.Yan, J.Yang, Y.Yang, Y.Yao, Ch.Yu, Y.Yuan, Zh.Yuan, X.Zeng, D.Zhang, M.Zhang, P.Zhang, Sh.Zhang, Sh.Zhang, T.Zhang, W.Zhang, Y.Zhang, Y.Zhang, Y.Zhang, L.Zhao, Q.Zheng, J.Zhou, N.Zhou, X.Zhou, Y.Zhou, Y.Zhou, for the PandaX Collaboration

Searching for Two-Neutrino and Neutrinoless Double Beta Decay of 134Xe with the PandaX-4T Experiment

RADIOACTIVITY 134Xe(2β-); measured decay products, Eβ, Iβ; deduced two-neutrino and neutrinoless T1/2 limits. Comparison with available data. The cylindrical active volume PandaX-4T dual-phase TPC.

doi: 10.1103/PhysRevLett.132.152502
Citations: PlumX Metrics


2023CH44      Phys.Rev. C 108, 034613 (2023)

X.Chen, L.Li, Y.Cui, J.Yang, Z.Li, Y.Zhang

Bayesian reconstruction of impact parameter distributions from two observables for intermediate energy heavy ion collisions

doi: 10.1103/PhysRevC.108.034613
Citations: PlumX Metrics


2023FA05      Appl.Radiat.Isot. 197, 110791 (2023)

Z.Fan, H.Liu, J.Liang, Y.Xiao, D.Yuan, C.Sun, Z.Yang, J.Yang, H.Zhang

Activity determination of 56Mn using extended TDCR-Cerenkov method

RADIOACTIVITY 56Mn(β-) [from 55Mn(n, γ), E thermal]; measured decay products, Eγ, Iγ, Eβ, Iβ; deduced branch ratio of cascades and discrete point of beta emission spectra, anisotropy parameters. Comparison with calculations.

doi: 10.1016/j.apradiso.2023.110791
Citations: PlumX Metrics


2023LI21      Appl.Radiat.Isot. 197, 110824 (2023)

C.Li, H.Zhou, H.Liu, T.Sun, H.Fan, J.Yang, W.Xiao

Neutron spectrometry of D2O-moderated 252Cf with Bonner sphere spectrometer

doi: 10.1016/j.apradiso.2023.110824
Citations: PlumX Metrics


2023YA14      Universe 9, 206 (2023)

J.Yang, X.Chen, Y.Cui, Z.Li, Y.Zhang

Probing the Neutron Skin of Unstable Nuclei with Heavy-Ion Collisions

NUCLEAR REACTIONS 124Sn(124Sn, X), (132Sn, X), E=200 MeV; calculated peripheral collisions; deduced σ of projectile-like residues correlations with the neutron skin of the system.

doi: 10.3390/universe9050206
Citations: PlumX Metrics


2023YA15      Phys.Rev. C 107, 054304 (2023)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Islands of oblate hyperdeformed and superdeformed superheavy nuclei with D3h point group symmetry in competition with normal-deformed D3h states: "Archipelago" of D3h-symmetry islands

NUCLEAR STRUCTURE 302Og, 292124, 318130; calculated contours of projections of the total nuclear energy surfaces on (α22, α20), (α33, α20), ( α33, α22) and (α30, α20) planes, deformation parameters. N=166-206;Z=116-138; calculated single-particle neutron and proton energy levels, shell energies defined as sums of the Strutinsky and pairing correction energies, D3h-symmetric hyperdeformed, superdeformed, and normal-deformed configurations. Found three separate islands of nuclei with D3h symmetry ("archipelago of three islands") differing by their average α20 < 0 deformations. Macroscopic-microscopic method with a realistic phenomenological Woods-Saxon potential.

doi: 10.1103/PhysRevC.107.054304
Citations: PlumX Metrics


2023ZH01      At.Data Nucl.Data Tables 149, 101547 (2023)

G.Zhang, B.Deng, J.Yang, K.Tang, B.Meng, X.Zhang

Wavelengths, transition rates, weight oscillator strengths and line strengths for He-like to Ne-like cobalt ions

ATOMIC PHYSICS Co; calculated wavelengths, transition rates, absorption oscillator strengths, and line strengths for the 2s-3p, 2p-3s, and 2p-3d electric dipole (E1) transitions in He-like to Ne-like cobalt ions using the multi-configuration Dirac–Hartree–Fock (MCDHF) and Relativistic Configuration Interaction (RCI) methods. Comparison with available data.

doi: 10.1016/j.adt.2022.101547
Citations: PlumX Metrics


2022LI02      At.Data Nucl.Data Tables 143, 101476 (2022)

Z.Li, D.Li, J.Yang, X.Jiang, W.Jiang, D.Chen

Non-dissociative ionization cross section of the electronically excited H2 and D2 with atomic-limit principal quantum number n=3 and 4

NUCLEAR REACTIONS 1,2H(e-, X), E<10 keV; calculated electron-impact σ for non-dissociative ionization via the ground vibrational level of the electronically excited H2 and D2.

doi: 10.1016/j.adt.2021.101476
Citations: PlumX Metrics


2022PO02      Phys.Rev. C 105, L041301 (2022)

W.S.Porter, B.Ashrafkhani, J.Bergmann, C.Brown, T.Brunner, J.D.Cardona, D.Curien, I.Dedes, T.Dickel, J.Dudek, E.Dunling, G.Gwinner, Z.Hockenbery, J.D.Holt, C.Hornung, C.Izzo, A.Jacobs, A.Javaji, B.Kootte, G.Kripko-Koncz, E.M.Lykiardopoulou, T.Miyagi, I.Mukul, T.Murbock, W.R.Plass, M.P.Reiter, J.Ringuette, C.Scheidenberger, R.Silwal, C.Walls, H.L.Wang, Y.Wang, J.Yang, J.Dilling, A.A.Kwiatkowski

Mapping the N=40 island of inversion: Precision mass measurements of neutron-rich Fe isotopes

ATOMIC MASSES 63,64,65,65m,66,67,68,69,69m,70Fe; measured time-of-flight; deduced mass excess, S(2n), pairing gap. Systematics of S(2n) values for Z=24–28 isotope chains. Compared to mean-field calculations employing recent Woods-Saxon Hamiltonian and results from the multishell valence-space in-medium similarity renormalization group (VS-IMSRG). Comparison to recommended values from AME2020. TITAN (TRIUMF’s Ion Trap for Atomic and Nuclear science) Multiple-Reflection Time-of- Flight Mass Spectrometer.

doi: 10.1103/PhysRevC.105.L041301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022SA30      Chin.Phys.Lett. 39, 062901 (2022)

A.Salman, J.Zhou, J.Yang, J.Zhang, C.Huang, F.Ye, Z.Qin, X.Jiang, S.M.Amir, W.Kreuzpaintner, Z.Sun, T.Wang, X.Tong

Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source

doi: 10.1088/0256-307X/39/6/062901
Citations: PlumX Metrics


2022YA11      Phys.Rev. C 105, 034348 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang, J.Burkat

Exotic shape symmetries around the fourfold octupole magic number N=136: Formulation of experimental identification criteria

NUCLEAR STRUCTURE N=122-164; calculated single-particle neutron levelsand Routhians as functions of α30, α31, α32 and α33 octupole deformations; deduced very large neutron shell gaps at N=136 for all the four octupole deformations, and N=136 as a "universal or fourfold octupole magic number". 208,212,216,218Pb, 218,220,222,224Ra, 220Po, 222Rn, 224Ra, 226Th; calculated contours of projections of the total nuclear energy surfaces on (α30, α20) planes for all the isotopes, (α31, α20), (α32, α20), and (α33, α20) planes for 218Pb, (α32, α20) planes for 218,220, 222,224Ra, and (α31, α20) and (α32, α20) planes for 220Po, 222Rn, 224Ra, 226Th. Discussed exotic point-group symmetries C, D2d, Td (tetrahedral symmetry), and D3h in order to formulate spectroscopic criteria for experimental identifications through analysis of collective rotational bands generated by the symmetries. Macroscopic-microscopic method in multidimensional deformation spaces to analyze the expected exotic symmetries and octupole shape instabilities, tetrahedral point group symmetry, and realistic nuclear mean-field theory using phenomenological Woods-Saxon Hamiltonian combined with the Monte Carlo approach. Comparison with available experimental nuclear octupole deformations.

doi: 10.1103/PhysRevC.105.034348
Citations: PlumX Metrics


2022YA26      Phys.Rev. C 106, 054314 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Exotic symmetries as stabilizing factors for superheavy nuclei: Symmetry-oriented generalized concept of nuclear magic numbers

NUCLEAR STRUCTURE Z=82-138, N=164-258; calculated single-particle proton and neutron energies, spherical orbital energies and shell gaps. 314Og; calculated Monte Carlo simulated probability distributions of single-particle level position uncertainties for protons and neutrons. 308122; calculated proton and neutron single-particle energies as functions of the octupole deformations α30, α31, α32 and α33 in the center of Z=114-130, N=166-206 region. 310Fl, 314Og, 318122, 322126, 326130; calculated potential-energy projection contours as functions of quadrupole deformation parameter α20 and octupole deformation parameters α30, α31, α32 and α33 for 310Fl, and α32 for others. 296,298,300,302,304,306,308,310,312,314,316Sg, 304,306,308,310,312,314,316,318,320,322,324Fl, 310Fl, 314,316,318,320,322,324,326,328,330,332,334124, 312Lv, 314Og, 316120, 318122, 320124, 322126, 324128, 326130, 328132, 330134, 332136; calculated nuclear shell energies as functions of octupole deformation parameters α30, α31, α32 and α33, comparisons of nuclear shell-energies as functions of quadrupole deformation α20, and octupole deformation parameters α30 (pear-shaped), α31, α32, and α33 for Z-114, N=190-210, and for N=196, Z=114-136 nuclei. 296,298,300,302,304,306,308,310,312,314,316Sg, 314,316,318,320,322,324,326,328,330,332,334124; calculated energies at the equilibrium before and after allowing the α32 minimization. 280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322Lv, 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324Og, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326120, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330124, 292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332126, 294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334128, 296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336130; predicted quadrupole deformation α2, components of octupole deformation α30, α31, α32 and α33 for the ground states, energy differences between the nearest quadrupole-shape minima and octupole-deformed configurations; deduced spherical or octupole deformed, with dominance of octupole-tetrahedral geometry for a majority of superheavy nuclei, which lowers the ground-state energy by up to 8 MeV. Realistic phenomenological mean-field approach with the deformed Woods-Saxon potential and macroscopic-microscopic method to examine impact of exotic shapes of nuclei associated with the four-fold octupole degrees of freedom on the stabilization of superheavy nuclei in the mass range of Z=114-130, and N=166-206.

doi: 10.1103/PhysRevC.106.054314
Citations: PlumX Metrics


2021BE23      Phys.Rev.Lett. 127, 112501 (2021)

S.Beck, B.Kootte, I.Dedes, T.Dickel, A.A.Kwiatkowski, E.M.Lykiardopoulou, W.R.Plass, M.P.Reiter, C.Andreoiu, J.Bergmann, T.Brunner, D.Curien, J.Dilling, J.Dudek, E.Dunling, J.Flowerdew, A.Gaamouci, L.Graham, G.Gwinner, A.Jacobs, R.Klawitter, Y.Lan, E.Leistenschneider, N.Minkov, V.Monier, I.Mukul, S.F.Paul, C.Scheidenberger, R.I.Thompson, J.L.Tracy, Jr., M.Vansteenkiste, H.-L.Wang, M.E.Wieser, C.Will, J.Yang

Mass Measurements of Neutron-Deficient Yb Isotopes and Nuclear Structure at the Extreme Proton-Rich Side of the N=82 Shell

ATOMIC MASSES 150,151,152,153,154,155,156Yb; measured frequencies, TOF; deduced mass excess values. Comparison with systematics, AME2020 evaluation. TITAN's multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS).

RADIOACTIVITY 151Yb(IT); measured decay products; deduced excitation energy.

doi: 10.1103/PhysRevLett.127.112501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021GA18      Phys.Rev. C 103, 054311 (2021)

A.Gaamouci, I.Dedes, J.Dudek, A.Baran, N.Benhamouda, D.Curien, H.L.Wang, J.Yang

Exotic toroidal and superdeformed configurations in light atomic nuclei: Predictions using a mean-field Hamiltonian without parametric correlations

NUCLEAR STRUCTURE 28Si, 28,30,38,40Si, 32,40,42S, 36Ar, 40Ca, 44Ti, 48Cr, 56Ni, 52,56Fe, 82,84,100Zr; A≈30-50; calculated nuclear potential energy surfaces in (α20, α40) and (β2cos(γ+30°)), (β2sin(γ+30°)) planes using mean-field calculations in multidimensional deformation spaces with phenomenological Woods-Saxon Hamiltonian, Monte-Carlo Hamiltonian parameter adjustments based on doubly-magic spherical nuclei: 16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd and 208Pb, parametric-correlation removal; tested parametric uncertainties, theoretical prediction uncertainty propagation with nucleon numbers; generated nuclear shape coexistence, low-energy toroidal shape excitations, superdeformed oblate and prolate shapes, exotic shapes and isomers. Comparison with available experimental information for deformation parameters.

doi: 10.1103/PhysRevC.103.054311
Citations: PlumX Metrics


2021GA27      Appl.Radiat.Isot. 176, 109828 (2021)

J.Gao, Z.Liao, W.Liu, Y.Hu, H.Ma, L.Xia, F.Li, T.Lan, Y.Yang, J.Yang, J.Liao, N.Liu

Simple and efficient method for producing high radionuclidic purity 111In using enriched 112Cd target

NUCLEAR REACTIONS 112Cd(p, 2n)111In, E=21 MeV; measured reaction products, Eγ, Iγ; deduced yields.

doi: 10.1016/j.apradiso.2021.109828
Citations: PlumX Metrics


2021GO15      Phys.Rev. C 103, L041302 (2021)

G.Gosta, A.Mentana, F.Camera, A.Bracco, S.Ceruti, G.Benzoni, N.Blasi, S.Brambilla, S.Capra, F.C.L.Crespi, A.Giaz, S.Leoni, B.Million, S.Riboldi, C.Porzio, S.Ziliani, O.Wieland, A.Nannini, M.Rocchini, N.Marchini, M.Ciemala, M.Kmiecik, A.Maj, B.Wasilewska, M.Zieblinski, D.Filipescu, J.Kaur, N.Marginean, S.Pascu, T.Glodariu, D.Ghita, V.Zamfir, J.J.Valiente-Dobon, G.de Angelis, F.Galtarossa, A.Goasduff, T.Bayram, A.Gadea, A.Montaner, I.Zanon, D.Brugnara, A.Gozzelino, G.Pasqualato, R.Menegazzo, A.Gottardo, G.Jaworski, S.Lenzi, D.Napoli, D.Testov, M.Siciliano, T.Marchi, D.Mengoni, D.Bazzacco, A.Boso, P.R.John, F.Recchia, R.Raabe, O.Poleshchuk, J.Yang

Probing isospin mixing with the giant dipole resonance in the 60Zn compound nucleus

NUCLEAR REACTIONS 32Si(28Si, X)60Zn*, E=86, 110 MeV; 32Si(30Si, X)62Zn*, E=75, 98 MeV; measured high-energy Eγ, Iγ using GALILEO array of 25 HPGe detectors and ten LaBr3(Ce) scintillators at the Tandem accelerator facility of INFN-Legnaro. 60,62Zn; deduced GDR parameters, Coulomb spreading widths, isospin mixing parameter at zero temperature and the isospin-symmetry-breaking correction for beta decay by analyzing experimental γ-spectra with statistical model calculations using a version of CASCADE code that included isospin formalism. Comparison of Coulomb spreading widths with the values for other mass regions deduced from GDR γ-decay measurements in other compound-nucleus reactions.

doi: 10.1103/PhysRevC.103.L041302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021MA72      Phys.Rev. C 104, L051301 (2021)

P.T.MacGregor, D.K.Sharp, S.J.Freeman, C.R.Hoffman, B.P.Kay, T.L.Tang, L.P.Gaffney, E.F.Baader, M.J.G.Borge, P.A.Butler, W.N.Catford, B.D.Cropper, G.de Angelis, J.Konki, Th.Kroll, M.Labiche, I.H.Lazarus, R.S.Lubna, I.Martel, D.G.McNeel, R.D.Page, O.Poleshchuk, R.Raabe, F.Recchia, J.Yang

Evolution of single-particle structure near the N=20 island of inversion

NUCLEAR REACTIONS 2H(28Mg, p)29Mg, E=9.47 MeV/nucleon, [secondary 28Mg beam from Si(p, X), E=1.4 GeV, followed resonant ionization by the resonance ionization laser ion source (RILIS), and mass separated and injected into an ion trap at the HIE-ISOLDE-CERN Linac facility]; measured E(p), I(p), σ(θ) using ISOLDE Solenoidal Spectrometer. 29Mg; deduced levels, J, π, L-transfers, spectroscopic factors, vacancies deduced from summed spectroscopic factors, binding energies of single-particle centroids. Comparison with shell-model calculations. Detailed σ(θ) data are tabulated in the Supplemental Material.

doi: 10.1103/PhysRevC.104.L051301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021XI05      Chin.Phys.C 48, 084106 (2021)

C.Xiu, Y.Zhang, M.-J.Li, J.Yang, Y.-X.Chen

Effects of an odd particle on shape phase transitions in odd-even systems

doi: 10.1088/1674-1137/ac05a0
Citations: PlumX Metrics


2021YA24      Phys.Rev. C 104, 024605 (2021)

J.Yang, Y.Zhang, N.Wang, Z.Li

Influence of the treatment of initialization and mean-field potential on the neutron to proton yield ratios

doi: 10.1103/PhysRevC.104.024605
Citations: PlumX Metrics


2020GO02      Acta Phys.Pol. B51, 683(2020)

G.Gosta, S.Ceruti, A.Mentana, M.Ciemala, F.Camera, A.Bracco, G.Benzoni, N.Blasi, G.Bocchi, S.Brambilla, F.C.L.Crespi, A.Giaz, S.Leoni, B.Million, O.Wieland, M.Kmiecik, A.Maj, B.Wasilewska, M.Zieblinski, D.Filipescu, D.Ghita, V.Zamfir, J.J.Valiente-Dobon, g.De Angelis, F.Galtarossa, A.Goasduff, G.Jaworski, D.R.Napoli, D.Testov, M.Siciliano, T.Marchi, D.Mengoni, D.Bazzacco, A.Boso, P.R.John, R.Recchia R.Raabe, O.Poleshchuk, J.Yang

Isospin Symmetry in the 60Zn Nucleus

doi: 10.5506/APhysPolB.51.683
Citations: PlumX Metrics


2020HU06      Appl.Radiat.Isot. 160, 109133 (2020)

Y.Hu, Y.Tang, F.Li, J.Gao, Y.Yang, J.Yang, J.Liao, N.Liu

Production of 98Tc with high isotopic purity

NUCLEAR REACTIONS 98Mo(p, n)98Tc, E=9.4 MeV; measured reaction products, Eγ, Iγ; deduced production technology.

doi: 10.1016/j.apradiso.2020.109133
Citations: PlumX Metrics


2020OV01      Acta Phys.Pol. B51, 731 (2020)

J.D.Ovejas, A.Knyazev, I.Martel, O.Tengblad, M.J.G.Borge, J.Cederkall, N.Keeley, K.Rusek, C.Garcia-Ramos, L.A.Acosta, A.A.Arokiaraj, M.Babo, T.Cap, N.Ceylan, G.De Angelis, A.Di Pietro, J.P.Fernandez, P.Figuera, L.Fraile, H.Fynbo, D.Galviz, J.H.Jensen, B.Jonson, R.Kotak, T.Kurtukian, M.Madurga, G.Marquinez-Duran, M.Munch, A.K.Orduz, R.Honorio, A.Pakou, T.Perez, L.Peralta, A.Perea, R.Raabe, M.Renaud, K.Riisager, A.M.Sanchez-Benitez, J.Sanchez-Segovia, O.Sgouros, V.Soukeras, P.Teubig, S.Vinals, M.Wolinska-Cichocka, R.Wolski, J.Yang

Halo Effects in the Low-Energy Scattering of 15C with Heavy Targets

doi: 10.5506/APhysPolB.51.731
Citations: PlumX Metrics


2020TA03      Phys.Rev.Lett. 124, 062502 (2020)

T.L.Tang, B.P.Kay, C.R.Hoffman, J.P.Schiffer, D.K.Sharp, L.P.Gaffney, S.J.Freeman, M.R.Mumpower, A.Arokiaraj, E.F.Baader, P.A.Butler, W.N.Catford, G.de Angelis, F.Flavigny, M.D.Gott, E.T.Gregor, J.Konki, M.Labiche, I.H.Lazarus, P.T.MacGregor, I.Martel, R.D.Page, Zs.Podolyak, O.Poleshchuk, R.Raabe, F.Recchia, J.F.Smith, S.V.Szwec, J.Yang

First Exploration of Neutron Shell Structure below Lead and beyond N=126

NUCLEAR REACTIONS 2H(206Hg, p), E=7.38 MeV/nucleon; measured reaction products, Ep, Ip. 207Hg; deduced excitation energies, J, π, σ(θ). Comparison with theoretical calculations.

doi: 10.1103/physrevlett.124.062502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020YA25      Phys.Rev. C 102, 054308 (2020)

J.Yang, J.Piekarewicz

Dirac oscillator: An alternative basis for nuclear structure calculations

NUCLEAR STRUCTURE 40,48Ca, 132Sn, 208Pb; calculated binding energies per nucleon, charge radii, neutron skin thicknesses, baryon (neutron + proton) densities. Dirac oscillator (harmonic-oscillator supplemented a strong spin-orbit coupling) on a fully relativistic basis within the framework of covariant density-functional theory. Comparison with results obtained with often-used Runge-Kutta method.

doi: 10.1103/PhysRevC.102.054308
Citations: PlumX Metrics


2019AK14      Phys.Rev. D 100, 115020 (2019)

D.Akimov, J.B.Albert, P.An, C.Awe, P.S.Barbeau, B.Becker, V.Belov, M.A.Blackston, A.Bolozdynya, B.Cabrera-Palmer, M.Cervantes, J.I.Collar, R.L.Cooper, J.Daughhetee, M.del Valle Coello, J.A.Detwiler, M.D'Onofrio, Y.Efremenko, E.M.Erkela, S.R.Elliott, L.Fabris, M.Febbraro, W.Fox, A.Galindo-Uribarri, M.P.Green, K.S.Hansen, M.R.Heath, S.Hedges, T.Johnson, M.Kaemingk, L.J.Kaufman, A.Khromov, A.Konovalov, E.Kozlova, A.Kumpan, L.Li, J.T.Librande, J.M.Link, J.Liu, K.Mann, D.M.Markoff, H.Moreno, P.E.Mueller, J.Newby, D.S.Parno, S.Penttila, D.Pershey, D.Radford, R.Rapp, H.Ray, J.Raybern, O.Razuvaeva, D.Reyna, G.C.Rich, D.Rudik, J.Runge, D.J.Salvat, K.Scholberg, A.Shakirov, G.Simakov, G.Sinev, W.M.Snow, V.Sosnovtsev, B.Suh, R.Tayloe, K.Tellez-Giron-Flores, R.T.Thornton, I.Tolstukhin, J.Vanderwerp, R.L.Varner, C.J.Virtue, G.Visser, C.Wiseman, T.Wongjirad, J.Yang, Y.-R.Yen, J.Yoo, C.-H.Yu, J.Zettlemoyer

First constraint on coherent elastic neutrino-nucleus scattering in argon

NUCLEAR REACTIONS Ar, 133Cs, 127I, Ge, 23Na(ν, ν), E, 100 MeV; measured reaction products, nuclear recoils; deduced a limit on coherent elastic neutrino-nucleus scattering.

doi: 10.1103/PhysRevD.100.115020
Citations: PlumX Metrics


2019DU22      Acta Phys.Pol. B50, 685 (2019)

J.Dudek, I.Dedes, J.Yang, A.Baran, D.Curien, T.Dickel, A.Gozdz, D.Rouvel, H.L.Wang

High-rank Symmetries in Nuclei: Challenges for Prediction Capacities of the Nuclear Mean-field Theories

NUCLEAR STRUCTURE 226Th; calculated total nuclear energy surfaces. Discussed the possible structure of rotational bands in cases of tetrahedral and octahedral nuclear symmetries. Mean-field approach with the phenomenological “universal” Woods–Saxon Hamiltonian.

doi: 10.5506/aphyspolb.50.685
Citations: PlumX Metrics


2019GO35      Acta Phys.Pol. B50, 481 (2019)

G.Gosta, S.Ceruti, A.Mentana, M.Ciemala, F.Camera, A.Bracco, G.Benzoni, N.Blasi, G.Bocchi, S.Brambilla, F.C.L.Crespi, A.Giaz, S.Leoni, B.Million, O.Wieland, M.Kmiecik, A.Maj, B.Wasilewska, M.Zieblinski, D.Filipescu, D.Ghita, V.Zamfir, J.J.Valiente-Dobon, G.de Angelis, F.Galtarossa, A.Goasduff, G.Jaworski, D.R.Napoli, D.Testov, M.Siciliano, T.Marchi, D.Mengoni, D.Bazzacco, A.Boso, P.R.John, F.Recchia, R.Raabe, O.Poleshchuk, J.Yang

Study of the Isospin Symmetry in 60Zn

NUCLEAR REACTIONS 28,30Si(32Si, X)60Zn/62Zn, E=75, 86, 98, 110 MeV; measured reaction products, Eγ, Iγ, γγ-coin, nγ-coin. Analysis of compound nuclei decay. GALILEO HPGe-array, EUCLIDES Si-array and Neutron Wall detectors.

doi: 10.5506/aphyspolb.50.481
Citations: PlumX Metrics


2019MO32      Phys.Rev. C 100, 044615 (2019)

L.Moschini, J.Yang, P.Capel

15C: From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

NUCLEAR REACTIONS 14C(d, p)15C, E=14, 17.06 MeV; analyzed experimental data for differential σ(θ, E) using leading-order (LO) halo-EFT description of 15C with a finite-range adiabatic distorted wave approximation (FR-ADWA) model; deduced asymptotic normalization coefficient (ANC) of 15C ground state. 208Pb(15C, X), E=68, 605 MeV/nucleon; analyzed experimental data from GSI and RIKEN for differential breakup σ(E) using NLO eikonal-based model. 14C(n, γ)15C, E=10-1000 keV; calculated σ(E) using ANC extracted from (d, p) data. 15C; calculated E1 strength from the 1/2+ ground state to its 14C-n continuum based on the halo-EFT structure of 15C at NLO, and compared to experimental data. Relevance of 14C(n, γ)15C reaction in production of heavy elements in inhomogeneous big-bang nucleosynthesis.

doi: 10.1103/PhysRevC.100.044615
Citations: PlumX Metrics


2019NI10      Chin.Phys.C 43, 113001 (2019)

K.Ni, Y.Lai, A.Abdukerim, W.Chen, X.Chen, Y.Chen, X.Cui, Y.Fan, D.Fang, C.Fu, L.Geng, K.Giboni, F.Giuliani, L.Gu, X.Guo, K.Han, C.He, D.Huang, Y.Huang, Y.Huang, Z.Huang, P.Ji, X.Ji, Y.Ju, K.Liang, H.Liu, J.Liu, W.Ma, Y.Ma, Y.Mao, Y.Meng, P.Namwongsa, J.Ning, X.Ning, X.Ren, C.Shang, L.Si, A.Tan, A.Wang, H.Wang, M.Wang, Q.Wang, S.Wang, X.Wang, Z.Wang, M.Wu, S.Wu, J.Xia, M.Xiao, P.Xie, B.Yan, J.Yang, Y.Yang, C.Yu, J.Yuan, D.Zhang, H.Zhang, T.Zhang, L.Zhao, Q.Zheng, J.Zhou, N.Zhou, X.Zhou

Searching for neutrino-less double beta decay of 136Xe with PandaX-II liquid xenon detector

RADIOACTIVITY 136Xe(2β-); measured decay products, Eβ, Iβ; deduced T1/2 and Majorana neutrino mass limits. Comparison with available data.

doi: 10.1088/1674-1137/43/11/113001
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019SH30      Eur.Phys.J. A 55, 138 (2019)

R.Shi, X.Tuo, J.Yang, Y.Cheng, H.Zheng, Q.Wang, C.Deng

A peak shape model with high-energy tailing for high-resolution alpha-particle spectra

doi: 10.1140/epja/i2019-12827-x
Citations: PlumX Metrics


2019YA20      Phys.Rev. C 100, 054301 (2019)

J.Yang, J.A.Hernandez, J.Piekarewicz

Electroweak probes of ground state densities

NUCLEAR REACTIONS 40Ar, 48Ca, 50Ti, 50Ni, 132Xe, 208Pb(e, e), (ν, ν), at momentum transfer q=0-3 fm-1; calculated ground state charge densities for 50Ti, 50Ni and 208Pb, form factors (weak and charge), neutron skin thickness, point proton and neutron charge density. Calculations used relativistic mean-field models, and three electroweak experiments to constrain the neutron distribution of atomic nuclei: (1) parity-violating elastic electron scattering, (2) coherent elastic neutrino-nucleus scattering, and (3) elastic electron scattering on mirror pair unstable nuclei. Comparison and relevance to experimental data from the ongoing PREX-II, and upcoming CREX campaigns at Jefferson Lab.

doi: 10.1103/PhysRevC.100.054301
Citations: PlumX Metrics


2018HU01      Phys.Rev. A 97, 013424 (2018)

Q.-Q.Hu, C.Freier, Y.Sun, B.Leykauf, V.Schkolnik, J.Yang, M.Krutzik, A.Peters

Observation of vector and tensor light shifts in 87Rb using near-resonant, stimulated Raman spectroscopy

ATOMIC PHYSICS 87Rb; measured relative frequency; deduced the differential vector and tensor light shifts, Raman spectra, implications for higher fidelities for applications of neutral atoms in quantum information and precision measurements.

doi: 10.1103/PhysRevA.97.013424
Citations: PlumX Metrics


2018YA02      Phys.Rev. C 97, 014314 (2018)

J.Yang, J.Piekarewicz

Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin

NUCLEAR STRUCTURE 48Ca, 208Pb; analyzed relations between the neutron-skin thickness and the difference in proton radii between a few neutron-deficient nickel isotopes and their mirror nuclei: 54Ni and 54Fe, 52Ni and 52Cr, and 50Ni and 50Ti, stellar radii for neutron stars as a function of the difference in proton radii between 50Ni and 50Ti; verified correlation between the differences in the charge radii of mirror nuclei and neutron-skin thickness of neutron-rich nuclei and the slope of the symmetry energy in the relativistic framework.

doi: 10.1103/PhysRevC.97.014314
Citations: PlumX Metrics


2018YA22      Phys.Rev. C 98, 054602 (2018)

J.Yang, P.Capel

Systematic analysis of the peripherality of the 10Be (d, p) 11Be transfer reaction and extraction of the asymptotic normalization coefficient of 11Be bound states

NUCLEAR REACTIONS 10Be(d, p), E=12, 15, 18, 21.4 MeV; analyzed experimental data differential σ(θ, E) populating the g.s. of 11Be using adiabatic distorted wave approximation (ADWA) and a Halo-EFT description of 11Be at leading order; deduced asymptotic normalization coefficients (ANCs). 11Be; calculated parameters of the Gaussian 10Be-neutron potentials, and reduced radial wave function.

doi: 10.1103/PhysRevC.98.054602
Citations: PlumX Metrics


2017DI02      Phys.Rev. C 95, 024301 (2017)

B.Ding, Z.Liu, D.Seweryniak, P.J.Woods, H.L.Wang, J.Yang, H.L.Liu, C.N.Davids, M.P.Carpenter, T.Davinson, R.V.F.Janssens, R.D.Page, A.P.Robinson, J.Shergur, S.Sinha, S.Zhu, X.D.Tang, J.G.Wang, T.H.Huang, W.Q.Zhang, M.D.Sun, X.Y.Liu, H.Y.Lu

First identification of excited states in 117Ba using the recoil-β-delayed proton tagging technique

NUCLEAR REACTIONS 64Zn(58Ni, 3n2p), E=305 MeV; measured Eγ, Iγ, (delayed protons)γ-coin, recoil-βp decay tagging using fragment mass analyzer (FMA), and Gammasphere array at ATLAS-ANL facility. 117Ba; deduced high-spin levels, J, π, bands, alignments, Routhian energies, configurations. Comparison with cranked shell-model calculations. Level-spacing systematics for negative- and positive-parity bands in 117,119,121,123,125,127,129Ba.

doi: 10.1103/PhysRevC.95.024301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016WA01      At.Data Nucl.Data Tables 108, 15 (2016)

C.Wang, H.Liu, F.Hu, J.Li, S.Liu, Y.Ding, J.Yang, G.Jiang

Transition probabilities of the low-lying levels of Kr XXIV

ATOMIC PHYSICS Kr; calculated energy levels, radiative rates, and wavelengths. Multiconfigurational Dirac-Hartree-Fock (MCDHF) method, comparison with available data.

doi: 10.1016/j.adt.2015.07.004
Citations: PlumX Metrics


2016YA04      Prog.Theor.Exp.Phys. 2016, 063D03 (2016)

J.Yang, H.-L.Wang, Q.-Z.Chai, M.-L.Liu, F.-R.Xu

Evolution of shape and rotational structure in neutron-deficient 118-128Ba nuclei

NUCLEAR STRUCTURE 118,120,122,124,126,128Ba; calculated deformation Routhian curves, LN pairing gaps of protons and neutrons, angular momenta. Comparison with available data.

doi: 10.1093/ptep/ptw074
Citations: PlumX Metrics


2015WA25      Phys.Rev. C 92, 024303 (2015)

H.-L.Wang, J.Yang, M.-L.Liu, F.-R.Xu

Evolution of ground-state quadrupole and octupole stiffnesses in even-even barium isotopes

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Ba; calculated ground-state deformation parameters β2, γ, β3, potential energy curves as function of (β2, γ, β4) and (β2, β3, β4, β5) deformation, quadrupole and octupole stiffnesses, single-particle Fermi energies, pairing gaps, energies of first excited 2+, 4+, 3- and the second 2+ states. 114Ba; calculated single-particle levels, energy curves. Potential energy surface method with standard Liquid drop model and Lipkin-Nogami pairing model. Discussed importance of nonaxial and reflection-asymmetric deformation degrees of freedom in the calculation of potential energy surfaces, especially for actinides and superheavy nuclei. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.024303
Citations: PlumX Metrics


2015ZH27      Phys.Rev. C 92, 024906 (2015)

Y.Zhang, J.Yang, W.N.Zhang

Squeezed correlations of φ-meson pairs for hydrodynamic sources in high-energy heavy-ion collisions

doi: 10.1103/PhysRevC.92.024906
Citations: PlumX Metrics


2012YA17      Eur.Phys.J. A 48, 149 (2012)

T.Yang, TaoJiang, R.Ze, H.Wu, Y.He, J.Yang, C.Yang

Preparation of the 178m2Hf isomer used in the induced gamma decay experiment by X-ray from synchrotron radiation facility

NUCLEAR REACTIONS 176Yb(α, 2n)178m2Hf, (α, X), E≈27 MeV; measured Eγ, Iγ after cooling using HPGe; deduced isomeric state (after radiochemical separation).

doi: 10.1140/epja/i2012-12149-7
Citations: PlumX Metrics


2012YI01      Phys.Rev. C 86, 024914 (2012)

H.-J.Yin, J.Yang, W.-N.Zhang, L.-L.Yu

Two-particle interferometry for the sources undergoing a first-order QCD phase transition in high-energy heavy ion collisions

doi: 10.1103/PhysRevC.86.024914
Citations: PlumX Metrics


2011IS13      Phys.Rev. C 84, 065802 (2011)

A.A.Isayev, J.Yang

Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

doi: 10.1103/PhysRevC.84.065802
Citations: PlumX Metrics


2010IS03      Ukr.J.Phys. 55, 515 (2010)

A.A.Isayev, J.Yang

Magnetization of Dense Neutron Matter in a Strong Magnetic Field


2010YA01      Radiochim.Acta 98, 59 (2010)

J.Yang, S.Zhang, Y.Ding, F.Shu, J.Zhang

A new value of 93Zr half-life

RADIOACTIVITY 93Zr(β-); measured Eγ, Iγ; deduced T1/2.

doi: 10.1524/ract.2010.1678
Citations: PlumX Metrics


2009IS06      Phys.Rev. C 80, 065801 (2009)

A.A.Isayev, J.Yang

Spin-polarized states in neutron matter in a strong magnetic field

doi: 10.1103/PhysRevC.80.065801
Citations: PlumX Metrics


2006IS03      Phys.Atomic Nuclei 69, 1220 (2006)

A.A.Isayev, J.Yang

Antiferromagnetism of Nuclear Matter in the Model with Effective Gogny Interaction

doi: 10.1134/S1063778806070209
Citations: PlumX Metrics


2004IS02      Phys.Rev. C 69, 025801 (2004)

A.A.Isayev, J.Yang

Spin polarized states in strongly asymmetric nuclear matter

doi: 10.1103/PhysRevC.69.025801
Citations: PlumX Metrics


2004IS06      Nucl.Phys. A734, E112 (2004)

A.A.Isayev, S.I.Bastrukov, J.Yang

Pairing effects in low density domain of nuclear matter

doi: 10.1016/j.nuclphysa.2004.03.033
Citations: PlumX Metrics


2004IS15      Yad.Fiz. 67, 1867 (2004); Phys.Atomic Nuclei 67, 1840 (2004)

A.A.Isayev, S.I.Bastrukov, J.Yang

np Pairing Correlations in Low-Density Region of Nuclear Matter

doi: 10.1134/1.1811188
Citations: PlumX Metrics


2004IS17      Phys.Rev. C 70, 064310 (2004)

A.A.Isayev, J.Yang

Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

doi: 10.1103/PhysRevC.70.064310
Citations: PlumX Metrics


2004PU01      J.Radioanal.Nucl.Chem. 260, 143 (2004)

Z.Pu, J.Yang, X.Kong

Cross section measurements for (n, p) and (n, 2n) reactions of rare-earth isotopes at neutron energies from 13.5 to 14.6 MeV

NUCLEAR REACTIONS 142,148,150Nd(n, 2n), E=13.5-14.6 MeV; 146Nd, 141Pr, 139La, 158Gd(n, p), E=13.5-14.6 MeV; measured σ. Activation technique, comparison with previous results.

doi: 10.1023/B:JRNC.0000027073.70271.99
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31695.


2003PU08      Appl.Radiat.Isot. 58, 723 (2003)

Z.Pu, J.Yang, X.Kong

Cross-section measurements for (n, 2n), (n, p) and (n, n'α) reactions on gallium isotopes in the neutron energy range of 13.5 - 14.6 MeV

NUCLEAR REACTIONS 69Ga(n, 2n), (n, p), E=13.5-14.6 MeV; 71Ga(n, p), (n, n'α), E=13.5-14.6 MeV; measured σ. Activation technique.

doi: 10.1016/S0969-8043(03)00090-3
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31534.


2000WA16      Phys.Rev. C61, 064904 (2000)

F.Wang, H.Liu, H.Sorge, N.Xu, J.Yang

Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions

NUCLEAR REACTIONS 1H(p, X), E(cm)=4-20 GeV; 197Au(197Au, X), Pb(Pb, X), E(cm)=1-200 GeV/nucleon; calculated kaon-to-pion multiplicity ratios. Relativistic quantum molecular dynamics model, comparisons with data.

doi: 10.1103/PhysRevC.61.064904
Citations: PlumX Metrics


1999CH18      Int.J.Mod.Phys. E8, 159 (1999)

H.Chen, J.Yang

Light Baryon Spectrum in a Chiral Quark Model

doi: 10.1142/S0218301399000124
Citations: PlumX Metrics


1999KO06      Appl.Radiat.Isot. 50, 361 (1999)

X.Kong, R.Wang, Y.Wang, J.Yang

Cross Sections for 13.5-14.7 MeV Neutron Induced Reactions on Palladiim Isotopes

NUCLEAR REACTIONS 102,105,106Pd(n, p), 106,108Pd(n, α), 102,110Pd(n, 2n), E=13.5-14.7 MeV; measured σ. Activation technique.

doi: 10.1016/S0969-8043(97)10144-0
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32552.


1998KO37      Appl.Radiat.Isot. 49, 1529 (1998)

X.Kong, Y.Wang, J.Yang

Cross Sections for (n, 2n), (n, p) and (n, α) Reactions on Rare-Earth Isotopes at 14.7 MeV

NUCLEAR REACTIONS 154Sm, 162Er, 168Yb, 174,176Hf(n, 2n), 142Ce, 144,148,150Sm, 160,162,163Dy, 166,167,168Er, 174Yb(n, p), 150,152,154Sm, 159Tb, 153Eu, 162,164Dy, 168Er, 169Tm, 178,180Hf(n, α), E=14.7 MeV; measured σ. Activation technique. Comparison with previous measurements.

doi: 10.1016/S0969-8043(98)00018-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31497.


1998KO59      Radiochim.Acta 81, 63 (1998)

X.Kong, Y.Wang, R.Wang, J.Yuan, J.Yang

Cross Section Measurements for (n, d*), (n, t) and (n, n'α) Reactions at 14 MeV

NUCLEAR REACTIONS 92Mo, 106Cd, 142Ce(n, d), (n, np), 46Ti, 54Fe, 58Ni, 90Zr, 92Mo, 204Pb(n, t), 51V, 65Cu, 92Mo, 182W(n, n'α), E ≈ 14.7 MeV; measured activation σ.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32515.


1998YA17      Nucl.Instrum.Methods Phys.Res. A413, 239 (1998)

J.Yang, J.Ni

New Data on Alpha-Particle Emission Probabilities of Several Actinide Nuclides

RADIOACTIVITY 233U, 238Pu, 242,244Cm, 241,243Am(α); measured α spectra, emission probability.

doi: 10.1016/S0168-9002(98)00147-8
Citations: PlumX Metrics


1997KO44      Radiochim.Acta 76, 11 (1997)

X.Kong, Y.Wang, J.Yang, J.Yuan

Cross Sections for (n, p), (n, α) and (n, 2n) Reactions on Rare-Earth Isotopes at 14.7 MeV

NUCLEAR REACTIONS 140Ce, 153Eu, 159Tb, 172,173Yb(n, p), E=14.7 MeV; 151Eu, 174Yb(n, α), E=14.7 MeV; 136,138,140,142Ce, 156,158Dy, 169Tm, 170,176Yb, 176Hf(n, 2n), E=14.7 MeV; measured σ. Activation technique.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31763.


1994XI05      Proc.Intern.Conf.Nuclear Data for Science and Technology, Gatlinburg, Tennesse, 9-13 May, 1994, J.K.Dickens, Ed., American Nuclear Society, Vol.1, p.251 (1994)

Y.J.Xia, X.-G.Long, X.-B.Luo, Z.Yang, M.Liu, F.He, C.Wang, X.F.Pen, J.Yang

Activation cross section measurement for the Eu-(n, γ) reactions

NUCLEAR REACTIONS 151Eu(n, γ), 153Eu(n, γ), E=22 keV-1.1 MeV; measured products, 152Eu, Eγ, Iγ; deduced σ, σ(E). Data were imported from EXFOR entry 32623.


1994YA12      Nucl.Instrum.Methods Phys.Res. A338, 498 (1994)

J.Yang, J.Ni

Analysis Technique of Multiplet Alpha Spectra

RADIOACTIVITY 241Am, 244Cm(α); calculated α-emission probabilities. 240,239Pu(α); calculated activity ratio in Pu samples. Multiplet α-spectra analysis.

doi: 10.1016/0168-9002(94)91333-1
Citations: PlumX Metrics


1994YU02      Chin.J.Nucl.Phys. 16, No 1, 59 (1994)

J.Yuan, X.Kong, J.Yang, Y.Wang

Cross Section Measurement for 108Cd(n, p)108mAg Reaction

NUCLEAR REACTIONS 108Cd(n, p), E=14.6 MeV; measured residual isomer production σ. Activation technique.


1993LI53      Nucl.Instrum.Methods Phys.Res. A336, 150 (1993)

Z.Li, Y.Cheng, C.Yan, J.Yang, Q.Zhang, S.Li, K.Zhao, X.Lu, C.Jiang

Beijing Q3D Magnetic Spectrometer and Its Applications

NUCLEAR REACTIONS 56Fe(α, α'), E=35 MeV; 152Sm(12C, 12C), (12C, 12C'), E=63.2 MeV; measured particle momentum spectra. Q3D magnetic spectrometer.

doi: 10.1016/0168-9002(93)91091-Z
Citations: PlumX Metrics


1993ZH19      Chin.J.Nucl.Phys. 15, No 1, 39 (1993)

Y.Zhang, J.Yang, J.He, J.Zhang

Breakup Energy of Singlet Deuteron Measured for d + d → d(*) + d(*) Four-Body Reaction at 15.7 MeV

NUCLEAR REACTIONS 2H(d, X), E=15.7 MeV; measured particle spectra following 4-body breakup; deduced singlet deuteron breakup energy. Kinematically complete experiment.


1992KO17      Chin.J.Nucl.Phys. 14, No 3, 239 (1992)

X.Kong, Y.Wang, J.Yang, J.Yuan, X.Wang

Cross Section Measurements for 98Mo(n, α)95Zr, 95Mo(n, p)95mNb, 95Mo(n, p)95gNb and 181Ta(n, p)181Hf Reactions

NUCLEAR REACTIONS 98Mo(n, α), 95Mo, 181Ta(n, p), E=13.5-14.8 MeV; measured σ(E). Activation technique, 27Al(n, α), 93Nb(n, 2n) standard reactions.


1992WA17      Nucl.Sci.Eng. 111, 314 (1992)

Y.Wang, J.Yuan, J.Yang, H.Wang, Y.Shui, Z.Ren

Cross-Section Measurement for 109Ag(n, 2n)108mAg Reaction

NUCLEAR REACTIONS 109Ag(n, 2n), E=13.64-14.8 MeV; measured σ relative 93Nb(n, 2n) reaction. Activation method.

doi: 10.13182/NSE92-A23944
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset30996.


1991LU08      Phys.Rev. A44, 1843 (1991)

F.Lu, S.Wu, Y.Wang, W.Shi, P.Shi, L.Song, J.Yang, J.Tang, T.Yang

Optical Isotope Shifts in the 5702-Angstrom Line of Nd II by Collinear Fast-Beam-Laser Spectroscopy

NUCLEAR MOMENTS 142,144,146,148,150Nd; measured optical isotope shift; deduced rms charge radii changes. Collinear fast-beam laser spectroscopy.

doi: 10.1103/PhysRevA.44.1843
Citations: PlumX Metrics


1991LU10      Chin.J.Nucl.Phys. 13, No 3, 203 (1991)

H.Lu, W.Yu, W.Zhao, Y.Zhao, Y.Wang, J.Yuan, H.Wang, Z.Ren, J.Yang, Z.Shi

Research of Activation Cross Sections for Long-Lived Radionuclides on Elements of Cu, Mo, Ag, Eu and Tb

NUCLEAR REACTIONS 109Ag, 151,153Eu, 159Tb(n, 2n), E=14 MeV; measured reaction σ. Activation method. Evaporation plus preequilibrium exciton model analyses.


1990WA15      Chin.J.Nucl.Phys. 12, No 1, 89 (1990)

C.Wang, Y.Xia, J.Yang, Z.Yang, S.Wang

Measurement of Neutron Capture Cross Sections of Natural Hafnium

NUCLEAR REACTIONS Hf(n, γ), E=10-100 keV; measured σ(E). Gold standard.


1990XI04      Chin.J.Nucl.Phys. 12, No 3, 261 (1990)

Y.Xia, C.Wang, J.Yang, Z.Yang, M.Liu

Measurement of Maxwellian Averaged Neutron Capture Cross Section of 140,142Ce, 139La and 181Ta at kT = 24 keV

NUCLEAR REACTIONS 140,142Ce, 139La, 181Ta(n, γ), E ≤ 250 keV; measured Eγ, Iγ following capture; deduced Maxwellian averaged capture σ. Hyperpure Ge detector.


1990XI06      Chin.J.Nucl.Phys. 12, No 4, 375 (1990)

Y.Xia, C.Wang, J.Yang, Z.Yang, S.Wang

Measurement of Neutron Capture Cross Section of Wolfram

NUCLEAR REACTIONS W(n, γ), E=11.2-99.9 keV; measured capture σ(E).


1989WA34      Chin.J.Nucl.Phys. 11, No. 4, 63 (1989)

C.Wang, Y.Xia, J.Yang, Z.Yang, S.Wang

Measurement of Neutron Capture Cross Sections of Ag in Energy Range from 10 to 100 keV

NUCLEAR REACTIONS Ag(n, γ), E=0.01-0.1 MeV; measured capture σ(E).


1989XI01      Chin.J.Nucl.Phys. 11, No.2, 75 (1989)

Y.Xia, J.Yang, Z.Yang, W.Zhao, W.Yu

Measurement of Neutron Capture Cross Sections of 169Tm in the Energy Range from 10 to 100 keV

NUCLEAR REACTIONS 169Tm(n, γ), E=10-100 keV; measured capture σ(E).


1988XI02      Chin.J.Nucl.Phys. 10, 102 (1988)

Xia Yijun, Yang Jingfu, Yang Zhihua, Zhao Wenrong, Yu Weixiang

Measurement of the Neutron Capture Cross Section of 169Tm in the Energy Range from 10 to 100 keV

NUCLEAR REACTIONS 169Tm(n, γ), E=10-100 keV; measured capture σ(E). Moxon-Rae detector, 197Au standard.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset30998.


1988XI03      Chin.J.Nucl.Phys. 10, 227 (1988)

Xia Yijun, Yang Jingfu, Guo Huachong, Wang Minhua, Xie Bizheng, Wang Shimin

Measurement of the Neutron Capture Cross Section of 93Nb

NUCLEAR REACTIONS 93Nb(n, γ), E=10-100 keV; measured capture σ(E). Moxon-Rae detectors, 197Au as standard.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32504.


1987CH23      J.Radioanal.Nucl.Chem. 111, 63 (1987)

Chen Qingjiang, Su Shuxin, Guo Jinru, Yang Jingxia, Chen Yundong, Li Xueliang, Zhang Hongdi, Lin Fa, Sun Shuying, Zhang Shulan

Absolute Determination of the Spontaneous Fission Yield of 252Cf by Radiochemical Method

RADIOACTIVITY 252Cf(SF); measured fission fragment absolute yields vs mass; deduced average neutron number per fission.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset30793.


1987LI23      Chin.J.Nucl.Phys. 9, 207 (1987)

Liu Genbao, Yang Jingqin, Jiang Dazhen, Zhang Yingchi, Xu Nu, Xu Jianjun, Cheng Xiaowu

Study of p-p Quasi-Free Scattering in the Reaction D(p, pp)n

NUCLEAR REACTIONS 2H(p, 2p), E=7.3-16.5 MeV; measured σ(E1, θ1, θ2). Enriched target. Impulse approximation.


1987ZH11      Scientica Sinica 30, 826 (1987)

Zhang Yinghi, Liu Genbao, Jiang Dazhen, Yang Jinqing, Xu Nu, Xu Jianjun

2He Intermediate Process in the Reaction of D(d, 2He)2n at 15.7 MeV

NUCLEAR REACTIONS, MECPD 2H(d, 2p), E=15.7 MeV; measured σ(Ep, θp1, θp2); deduced 2He resonant state.


1981YA11      Chin.J.Nucl.Phys. 3, 373 (1981)

Yang Jinqing, Ni Xinbo, Chang Yingji, Cheng Xiaowu

Angular Distributions of (α, p) Reactions by 31.2 MeV α Particles

NUCLEAR REACTIONS 51V, Fe, 59Co(α, p), E=31.2 MeV: measured σ(θ). Legendre polynominal analysis.


1980YA12      Chin.J.Nucl.Phys. 2, 155 (1980)

Yang Jinqing, Ni Xinbai, Chang Yingqi, Jiang Dazhen, Cheng Xiaowu

(α, p) Reactions Induced by 31.2 MeV α Particles

NUCLEAR REACTIONS Al, V, Fe, Co(α, p), E=31.2 MeV; measured σ(Ep); deduced equilibrium, preequilibrium components. Statistical, hybrid models.


Back to query form