NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Piekarewicz

Found 139 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024RE05      Phys.Rev. C 109, 035803 (2024)

B.T.Reed, F.J.Fattoyev, C.J.Horowitz, J.Piekarewicz

Density dependence of the symmetry energy in the post-PREX-CREX era

doi: 10.1103/PhysRevC.109.035803
Citations: PlumX Metrics


2024SH05      Phys.Rev. C 109, 025806 (2024)

R.Shafieepour, H.R.Moshfegh, J.Piekarewicz

Correlating isothermal compressibility to nucleon fluctuations in the inner crust of neutron stars

doi: 10.1103/PhysRevC.109.025806
Citations: PlumX Metrics


2023SA14      Phys.Rev. C 107, 045802 (2023)

M.Salinas, J.Piekarewicz

Bayesian refinement of covariant energy density functionals

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated charge radius, weak radius, weak skin, neutron skin. Covariant density functionals FSUGold2 and FSUGarnet refined with tidal information from the LIGO-Virgo, simultaneous extraction of stellar radii and masses of two sources by the NICER mission and predictions for the EOS of pure neutron matter from chiral effective field theory. Comparison to values extracted from PREX and CREX experiment data.

doi: 10.1103/PhysRevC.107.045802
Citations: PlumX Metrics


2022AN19      Phys.Rev. C 106, L031302 (2022)

A.L.Anderson, G.L.O'Donnell, J.Piekarewicz

Applications of reduced-basis methods to the nuclear single-particle spectrum

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated single-neutron spectrum, bound state orbitals. Reduced-basis methods (RBM) framework used to generate set of basis states with Woods-Saxon parameters.

doi: 10.1103/PhysRevC.106.L031302
Citations: PlumX Metrics


2022CO09      Phys.Rev. C 106, 044318 (2022)

F.Colomer, P.Capel, M.Ferretti, J.Piekarewicz, C.Sfienti, M.Thiel, V.Tsaran, M.Vanderhaeghen

Theoretical analysis of the extraction of neutron skin thickness from coherent π0 photoproduction off nuclei

NUCLEAR REACTIONS 12C, 40Ca, 116Sn, 124Sn, 208Pb(γ, π0), E=200 MeV; calculated σ(θ). Plane-wave (PWIA) and distorted-wave (DWIA) impulse approximation using the density profiles obtained with Sao Paulo parametrization and the prediction of the FSU relativistic mean-field model. Comparison to experimental data. Concluded that photoproduction of a neutral pion on a nucleus is largely insensitive to the nuclear density and thus is not a good tool for neutron skin thickness study.

doi: 10.1103/PhysRevC.106.044318
Citations: PlumX Metrics


2022PI02      Ann.Phys.(Leipzig) 534, 2100185 (2022)

J.Piekarewicz

Electric Dipole Polarizability of Neutron Rich Nuclei

NUCLEAR STRUCTURE 208Pb; analyzed available data; deduced equation of state of neutron rich matter from the neutron skin thickness, sharp conflict with earlier measurements of the electric dipole polarizability using energy density functionals.

doi: 10.1002/andp.202100185
Citations: PlumX Metrics


2022PI03      Phys.Rev. C 105, 044310 (2022)

J.Piekarewicz

Insights into the possible existence of a soft dipole mode in 8He

NUCLEAR STRUCTURE 8He; calculated proton and neutron single particle states, rms radii, binding energy per nucleon, S(n), proton, neutron, charge, and weak-charge densities, dipole strength distribution, energy-weighted dipole response, dipole polarizability. Covariant density-functional theory (DFT).

doi: 10.1103/PhysRevC.105.044310
Citations: PlumX Metrics


2022SH21      Phys.Rev. C 105, 055809 (2022)

R.Shafieepour, H.R.Moshfegh, J.Piekarewicz

Characterization of the inner edge of the neutron star crust

doi: 10.1103/PhysRevC.105.055809
Citations: PlumX Metrics


2021GI12      Phys.Rev. C 104, 024301 (2021)

P.G.Giuliani, J.Piekarewicz

From noise to information: The transfer function formalism for uncertainty quantification in reconstructing the nuclear density

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated mean square radii, interior neutron and nuclear densities, weak charge densities; evaluated performance of seven models in reproducing these two observables, from noisy experimental data for electric form factors and noisy pseudodata from a variety of relativistic mean field models for weak-charge form factor using a novel statistical transfer function (TF) formalism for extraction of nuclear densities from form factors in electron-scattering data. Comparison with results from other theoretical approaches such as symmetrized Fermi function with a sum of Gaussians (SF+G) or a Fourier-Bessel expansion, and with available experimental data. Relevance to parity violating electron scattering (PVES) experiments PREX for 208Pb and CREX for 48Ca at JLab.

doi: 10.1103/PhysRevC.104.024301
Citations: PlumX Metrics


2021PI08      Phys.Rev. C 104, 024329 (2021)

J.Piekarewicz

Implications of PREX-2 on the electric dipole polarizability of neutron-rich nuclei

NUCLEAR STRUCTURE 48Ca, 68Ni, 132Sn, 208Pb; calculated inverse energy weighted dipole response, electric dipole polarizability using covariant energy density functionals; deduced impact of PREX-2 experiment at Jefferson Lab for skin thickness of 208Pb on the electric dipole polarizability.

doi: 10.1103/PhysRevC.104.024329
Citations: PlumX Metrics


2021PI10      Phys.Rev.Lett. 127, 182503 (2021)

S.V.Pineda, K.Konig, D.M.Rossi, B.A.Brown, A.Incorvati, J.Lantis, K.Minamisono, W.Nortershauser, J.Piekarewicz, R.Powel, F.Sommer

Charge Radius of Neutron-Deficient 54Ni and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii

NUCLEAR REACTIONS 9Be(58Ni, 54Ni), E not given; measured resonance spectra, frequencies. 54Ni; deduced nuclear root-mean-square charge radius. Comparison with available data. BECOLA, National Superconducting Cyclotron Laboratory at Michigan State University.

doi: 10.1103/PhysRevLett.127.182503
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021RE05      Phys.Rev.Lett. 126, 172503 (2021)

B.T.Reed, F.J.Fattoyev, C.J.Horowitz, J.Piekarewicz

Implications of PREX-2 on the Equation of State of Neutron-Rich Matter

NUCLEAR STRUCTURE 208Pb; analyzed available data for the neutron skin thickness; deduced the slope of the symmetry energy, the impact of stiff symmetry energy on some critical neutron-star observables.

doi: 10.1103/PhysRevLett.126.172503
Citations: PlumX Metrics


2020BR12      Phys. Rev. Res. 2, 022035 (2020)

B.A.Brown, K.Minamisono, J.Piekarewicz, H.Hergert, D.Garand, A.Klose, K.Konig, J.D.Lantis, Y.Liu, B.Maass, A.J.Miller, W.Nortershauser, S.V.Pineda, R.C.Powel, D.M.Rossi, F.Sommer, C.Sumithrarachchi, A.Teigelhofer, J.Watkins, R.Wirth

Implications of the 36Ca-36S and 38Ca-38Ar difference in mirror charge radii on the neutron matter equation of state

NUCLEAR STRUCTURE 36Ca, 36S, 38Ca, 38Ar; analyzed available data; deduced differences in charge radii between mirror nuclei, the slope of the symmetry energy L at the nuclear saturation density. Comparison with theoretical calculations of charge radii, differences and symmetry energy.

doi: 10.1103/PhysRevResearch.2.022035
Citations: PlumX Metrics


2020CH39      Phys.Rev. C 102, 042801 (2020)

W.-C.Chen, J.Piekarewicz

Analytic insights on the information content of new observables

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated theoretical uncertainties of the slope of the symmetry energy at saturation density, and pressure of pure neutron matter at double the nuclear matter saturation density based on improved measurements of the neutron radii by calibration of Nuclear energy density functionals using minimization procedures.

doi: 10.1103/PhysRevC.102.042801
Citations: PlumX Metrics


2020FA09      Phys.Rev. C 102, 065805 (2020)

F.J.Fattoyev, C.J.Horowitz, J.Piekarewicz, B.Reed

GW190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state

doi: 10.1103/PhysRevC.102.065805
Citations: PlumX Metrics


2020HO11      Phys.Lett. B 807, 135608 (2020)

K.B.Howard, U.Garg, M.Itoh, H.Akimune, M.Fujiwara, T.Furuno, Y.K.Gupta, M.N.Harakeh, K.Inaba, Y.Ishibashi, K.Karasudani, T.Kawabata, A.Kohda, Y.Matsuda, M.Murata, S.Nakamura, J.Okamoto, S.Ota, J.Piekarewicz, A.Sakaue, M.Senyigit, M.Tsumura, Y.Yang

Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A = 90

NUCLEAR REACTIONS 94,96,98,100Mo(α, α'), E=386 MeV; measured reaction products, Eα, Iα; deduced σ(θ, E), isoscalar giant monopole resonance (ISGMR) strength distributions within the MDA framework, softness in the molybdenum isotopes. Comparison with relativistic, self-consistent Random-Phase Approximation calculations.

doi: 10.1016/j.physletb.2020.135608
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020HO16      Phys.Rev. C 102, 044321 (2020)

C.J.Horowitz, J.Piekarewicz, B.Reed

Insights into nuclear saturation density from parity-violating electron scattering

NUCLEAR STRUCTURE 208Pb; calculated charge density, saturation density of nuclear matter, baryon density, extrapolation factor as a function of the neutron skin thickness for several nonrelativistic and relativistic energy density functionals (EDFs) using PREX experimental result for the weak radius of 208Pb, and symmetrized two parameter Fermi function. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.102.044321
Citations: PlumX Metrics


2020KO22      Phys.Rev. C 102, 022501 (2020)

O.Koshchii, J.Erler, M.Gorchtein, C.J.Horowitz, J.Piekarewicz, X.Roca-Maza, C.-Y.Seng, H.Spiesberger

Weak charge and weak radius of 12C

NUCLEAR REACTIONS 12C(e, e), E=155 MeV; calculated parity-violating (PV) asymmetry; deduced weak charge, weak radius and neutron skin of 12C nucleus. Parity-violating electron scattering (PVEC), based on model-independent assessment of the uncertainties. Relevance to experiments at the upcoming MESA facility in Mainz, to quantification of generic isospin symmetry-breaking (ISB) effects, test of unitarity of Cabibbo-Kobayashi-Maskawa (CKM) matrix, and new physics searches with superallowed β decays.

doi: 10.1103/PhysRevC.102.022501
Citations: PlumX Metrics


2020ME01      Ann.Phys.(New York) 412, 168027 (2020)

B.D.Metzger, J.Piekarewicz

Nuclear astrophysics in the new era of multi-messenger astronomy

doi: 10.1016/j.aop.2019.168027
Citations: PlumX Metrics


2020YA25      Phys.Rev. C 102, 054308 (2020)

J.Yang, J.Piekarewicz

Dirac oscillator: An alternative basis for nuclear structure calculations

NUCLEAR STRUCTURE 40,48Ca, 132Sn, 208Pb; calculated binding energies per nucleon, charge radii, neutron skin thicknesses, baryon (neutron + proton) densities. Dirac oscillator (harmonic-oscillator supplemented a strong spin-orbit coupling) on a fully relativistic basis within the framework of covariant density-functional theory. Comparison with results obtained with often-used Runge-Kutta method.

doi: 10.1103/PhysRevC.102.054308
Citations: PlumX Metrics


2019PI07      Phys.Rev. C 99, 045802 (2019)

J.Piekarewicz, F.J.Fattoyev

Impact of the neutron star crust on the tidal polarizability

doi: 10.1103/PhysRevC.99.045802
Citations: PlumX Metrics


2019PI14      Acta Phys.Pol. B50, 239 (2019)

J.Piekarewicz

Nuclear Astrophysics in the Multimessenger Era: A Partnership Made in Heaven

doi: 10.5506/aphyspolb.50.239
Citations: PlumX Metrics


2019YA20      Phys.Rev. C 100, 054301 (2019)

J.Yang, J.A.Hernandez, J.Piekarewicz

Electroweak probes of ground state densities

NUCLEAR REACTIONS 40Ar, 48Ca, 50Ti, 50Ni, 132Xe, 208Pb(e, e), (ν, ν), at momentum transfer q=0-3 fm-1; calculated ground state charge densities for 50Ti, 50Ni and 208Pb, form factors (weak and charge), neutron skin thickness, point proton and neutron charge density. Calculations used relativistic mean-field models, and three electroweak experiments to constrain the neutron distribution of atomic nuclei: (1) parity-violating elastic electron scattering, (2) coherent elastic neutrino-nucleus scattering, and (3) elastic electron scattering on mirror pair unstable nuclei. Comparison and relevance to experimental data from the ongoing PREX-II, and upcoming CREX campaigns at Jefferson Lab.

doi: 10.1103/PhysRevC.100.054301
Citations: PlumX Metrics


2019ZH28      Phys.Rev. C 99, 055202 (2019)

S.Zhou, P.Giulani, J.Piekarewicz, A.Bhattacharya, D.Pati

Reexamining the proton-radius problem using constrained Gaussian processes

doi: 10.1103/PhysRevC.99.055202
Citations: PlumX Metrics


2018FA05      Phys.Rev.Lett. 120, 172702 (2018)

F.J.Fattoyev, J.Piekarewicz, C.J.Horowitz

Neutron Skins and Neutron Stars in the Multimessenger Era

NUCLEAR STRUCTURE 208Pb; calculated neutron star dimensionless tidal polarizability as a function of the neutron-skin thickness of 208Pb, mass-vs-radius relations.

doi: 10.1103/PhysRevLett.120.172702
Citations: PlumX Metrics


2018UT01      Phys.Rev. C 97, 014306 (2018)

R.Utama, J.Piekarewicz

Validating neural-network refinements of nuclear mass models

ATOMIC MASSES 53,54Ca, 56,57Sc, 64Cr, 62Mn, 52Co, 56Cu, 82Zn, 86Ge, 91Se, 82Zn, 100Rb, 105Y, 82,106,107Zr, 84,110Nb, 114,115Tc, 121Rh, 123Pd, 129,131Cd, 138Sb, 141I, 149Ba, 150,151La, 137Eu, 190Tl, 215Pb, 194Bi, 198At, 197,198,202,232,233Fr, 201Ra, 205,206Ac, 215,216,221,222U; 132,133,134Cd, 133,134,135,136,137In, 136,138Sn; calculated total binding energies using the microscopic HFB-19-Bayesian neural network (BNN), and mic-mac model of Duflo and Zuker (DZ) with Bayesian neural network (BNN), and compared with various theoretical mass formulas (HFB-19, DZ, FRDM-2012, HFB-27 and WS3), and with experimental values in AME-2016; deduced root-mean-square deviations, refinements in Bayesian neural network (BNN) analysis of mass models.

doi: 10.1103/PhysRevC.97.014306
Citations: PlumX Metrics


2018YA02      Phys.Rev. C 97, 014314 (2018)

J.Yang, J.Piekarewicz

Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin

NUCLEAR STRUCTURE 48Ca, 208Pb; analyzed relations between the neutron-skin thickness and the difference in proton radii between a few neutron-deficient nickel isotopes and their mirror nuclei: 54Ni and 54Fe, 52Ni and 52Cr, and 50Ni and 50Ti, stellar radii for neutron stars as a function of the difference in proton radii between 50Ni and 50Ti; verified correlation between the differences in the charge radii of mirror nuclei and neutron-skin thickness of neutron-rich nuclei and the slope of the symmetry energy in the relativistic framework.

doi: 10.1103/PhysRevC.97.014314
Citations: PlumX Metrics


2017PI12      Phys.Rev. C 96, 044314 (2017)

J.Piekarewicz

Emergence of low-energy monopole strength in the neutron-rich calcium isotopes

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60Ca; calculated centroids and E0 strengths of isoscalar giant monopole resonances; deduced no evidence of low-energy monopole strength. Relativistic random phase approximation (RPA) using three effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044314
Citations: PlumX Metrics


2017RI09      Phys.Rev. C 96, 064315 (2017)

L.A.Riley, M.L.Agiorgousis, T.R.Baugher, D.Bazin, R.L.Blanchard, M.Bowry, P.D.Cottle, F.G.DeVone, A.Gade, M.T.Glowacki, K.W.Kemper, J.S.Kustina, E.Lunderberg, D.M.McPherson, S.Noji, J.Piekarewicz, F.Recchia, B.V.Sadler, M.Scott, D.Weisshaar, R.G.T.Zegers

Spectroscopy of 54Ti and the systematic behavior of low-energy octupole states in Ca and Ti isotopes

NUCLEAR REACTIONS 1H(54Ti, p'), (55Ti, 54Ti), E=91.5 MeV/nucleon, [secondary 54,55Ti beams from 9Be(76Ge, X), E=130 MeV/nucleon primary reaction using A1900 separator at NSCL-MSU]; measured Eγ, Iγ, γγ-coin, σ using GRETINA array for γ detection. 54Ti; deduced levels, J, π, γ-ray branching ratios, deformation lengths. Comparison with previous experimental results, and with random phase approximation (RPA) calculations using NL3, FSUGold and FSUGarnet effective interactions. Discussed systematics of E3 strength distributions in neighboring nuclei.

NUCLEAR STRUCTURE 40,42,44,46,48,50,52Ca, 50,52,54Ti; calculated E3 strength distributions using random phase approximation (RPA) with NL3, FSUGold and FSUGarnet effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.064315
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2291. Data from this article have been entered in the XUNDL database. For more information, click here.


2017TO16      Phys.Lett. B 773, 20 (2017)

A.P.Tonchev, N.Tsoneva, C.Bhatia, C.W.Arnold, S.Goriely, S.L.Hammond, J.H.Kelley, E.Kwan, H.Lenske, J.Piekarewicz, R.Raut, G.Rusev, T.Shizuma, W.Tornow

Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

NUCLEAR REACTIONS 208Pb(γ, γ'), E=4.9-8.1 MeV; analyzed available data; deduced a range for the neutron-skin thickness of and a corresponding range for the slope of the symmetry energy, Maxwellian-averaged radiative σ.

doi: 10.1016/j.physletb.2017.07.062
Citations: PlumX Metrics


2017UT01      Phys.Rev. C 96, 044308 (2017)

R.Utama, J.Piekarewicz

Refining mass formulas for astrophysical applications: A Bayesian neural network approach

ATOMIC MASSES Z=20-90, N=20-220; 130,131,132Pd, 132,133,134,135,136,137,138Cd, 133,134,135,136,137,138In, 136,138Sn; analyzed mass formulas for proton and neutron drip lines; deduced refined mass tables for two existing mass models, microscopic and the mic-mac type, using HFB19 for former and 28-parameter Duflo-Zuker model for the latter with the Bayesian neural network (BNN) approach. Comparison with mass models and with AME-2012 evaluation.

doi: 10.1103/PhysRevC.96.044308
Citations: PlumX Metrics


2016PI02      Acta Phys.Pol. B47, 659 (2016)

J.Piekarewicz, R.Utama

The Nuclear Physics of Neutron Stars

doi: 10.5506/APhysPolB.47.659
Citations: PlumX Metrics


2016PI13      Phys.Rev. C 94, 034316 (2016)

J.Piekarewicz, A.R.Linero, P.Giuliani, E.Chicken

Power of two: Assessing the impact of a second measurement of the weak-charge form factor of 208Pb

NUCLEAR STRUCTURE 208Pb; calculated correlation plot between the half-density radius and the surface diffuseness defining the symmetrized Fermi function, probability distribution function for the charge radius from Monte Carlo simulation, variability in the charge form factor; deduced weak charge form factor and the corresponding charge density, and compared with experimental data.

doi: 10.1103/PhysRevC.94.034316
Citations: PlumX Metrics


2016RE07      Phys.Rev. C 93, 044618 (2016)

P.-G.Reinhard, A.S.Umar, P.D.Stevenson, J.Piekarewicz, V.E.Oberacker, J.A.Maruhn

Sensitivity of the fusion cross section to the density dependence of the symmetry energy

NUCLEAR REACTIONS 48Ca(48Ca, X)96Zr*, E(cm)=45-65 MeV; calculated folding model ion-ion interaction potentials, fusion σ(E). Impact of nuclear fusion on the nuclear equation of state (EOS). 48Ca; calculated Neutron root-mean-square radius (rms), neutron diffraction radius, and neutron halo. Dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, and direct TDHF study of barrier cross sections using a family of Skyrme parametrization.

doi: 10.1103/PhysRevC.93.044618
Citations: PlumX Metrics


2016UT01      Phys.Rev. C 93, 014311 (2016)

R.Utama, J.Piekarewicz, H.B.Prosper

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach

ATOMIC MASSES A=40-240, Z=20-92; analyzed experimental masses from AME-2012 to deduce liquid-drop-model parameters and uncertainties, analyzed theoretical predictions of masses from different models such as Duflo and Zuker (DZ), Moller and Nix (MN), finite range droplet model (FRDM), HFB19 and HFB21 microscopic models using a novel Bayesian neural network (BNN) formalism; deduced a mass model that is used to predict the composition of the outer crust of a neutron star. 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112Kr; analyzed mass predictions from five mass models, and from the BNN-improved formalism with comparison to AME-2012 evaluation. Relevance to prediction of composition of outer crust of a neutron star.

doi: 10.1103/PhysRevC.93.014311
Citations: PlumX Metrics


2016UT02      J.Phys.(London) G43, 114002 (2016)

R.Utama, W.-C.Chen, J.Piekarewicz

Nuclear charge radii: density functional theory meets Bayesian neural networks

NUCLEAR STRUCTURE 87,88,90Y, 189,195,208Pb, 207,208Bi, 124,128,132,136Sn; calculated nuclear charge radii. Comparison with available data.

doi: 10.1088/0954-3899/43/11/114002
Citations: PlumX Metrics


2015PI03      Phys.Rev. C 91, 014303 (2015)

J.Piekarewicz

Nuclear breathing mode in neutron-rich nickel isotopes: Sensitivity to the symmetry energy and the role of the continuum

NUCLEAR STRUCTURE 56,68,78Ni; calculated binding energy per nucleon, charge radius, neutron radius, and neutron-skin thickness, single-particle spectra, isoscalar monopole strength, moments of the isoscalar monopole strength distribution, and corresponding energies using NL3, FSUGold, and IUFSU interactions. Relativistic random-phase approximation using accurately calibrated effective interactions.

doi: 10.1103/PhysRevC.91.014303
Citations: PlumX Metrics


2015PI09      Int.J.Mod.Phys. E24, 1541003 (2015)

J.Piekarewicz

Nuclear collective excitations: A relativistic density functional approach

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; analyzed available data; deduced an incompressibility coefficient, bulk parameters of infinite nuclear matter, neutron skin thickness.

doi: 10.1142/S0218301315410037
Citations: PlumX Metrics


2015RO26      Phys.Rev. C 92, 064304 (2015)

X.Roca-Maza, X.Vinas, M.Centelles, B.K.Agrawal, G.Colo, N.Paar, J.Piekarewicz, D.Vretenar

Neutron skin thickness from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb

NUCLEAR STRUCTURE 68Ni, 120Sn, 208Pb; calculated dipole polarizability, and dipole polarizability times the symmetry energy as a function of the neutron skin thickness using self-consistent random-phase approximation (QRPA) with a large set of energy density functionals (EDFs), and comparison to experimental data; deduced symmetry energy αD and its density dependence. 48Ca, 90Zr; deduced neutron skin thickness and electric dipole polarizability.

doi: 10.1103/PhysRevC.92.064304
Citations: PlumX Metrics


2014CH03      Phys.Rev. C 89, 014321 (2014)

W.-C.Chen, J.Piekarewicz, A.Volya

Relativistic mean field plus exact pairing approach to open shell nuclei

NUCLEAR STRUCTURE 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132Sn; calculated binding energy per nucleon, S(n) and odd-even staggering, single-particle occupancies of the orbitals in valence shell for stable A=112-124 even-even Sn isotopes, neutron density of 118Sn, energies of giant-monopole resonances (GMR) in even-A Sn isotopes. Accurately calibrated relativistic mean field (RMF) models (FSUGold and NL3) with and without pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.014321
Citations: PlumX Metrics


2014CH48      Phys.Rev. C 90, 044305 (2014)

W.-C.Chen, J.Piekarewicz

Building relativistic mean field models for finite nuclei and neutron stars

NUCLEAR STRUCTURE 16O, 40,48Ca, 68Ni, 90Zr, 100,116,132Sn, 144Sm, 208Pb; calculated binding energy per nucleon, charge radius, constrained giant monopole resonances (GMR), neutron skin thickness using newly developed RMF model FSUGold2. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.044305
Citations: PlumX Metrics


2014PI01      Eur.Phys.J. A 50, 25 (2014)

J.Piekarewicz

Symmetry energy constraints from giant resonances: A relativistic mean-field theory overview

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated isoscalar monopole giant resonance energy and strength distribution. Compared to data. 208Pb; calculated isovector dipole GR strength distribution for different symmetry energy slope, electric dipole polarizability vs neutron skin. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Sn; calculated isovector pygmy dipole resonance strength distribution. 68Ni; calculated isovector pygmy dipole resonance strength distribution, EW sum rules vs neutron skin. Relativistic density functional, relativistic RPA.

doi: 10.1140/epja/i2014-14025-x
Citations: PlumX Metrics


2014PI06      Phys.Rev. C 90, 015803 (2014)

J.Piekarewicz, F.J.Fattoyev, C.J.Horowitz

Pulsar glitches: The crust may be enough

NUCLEAR STRUCTURE 208Pb; calculated binding energy per nucleon, charge radius, and neutron-skin thickness, fraction of the crustal moment of inertia as a function of the neutron-skin thickness of 208Pb using relativistic mean-field models FSUGold and NL3. Comparison with experimental data. Calculated fractional moment of inertia of neutron stars of various masses using a representative set of relativistic mean-field models.

doi: 10.1103/PhysRevC.90.015803
Citations: PlumX Metrics


2013CH37      Phys.Rev. C 88, 024319 (2013)

W.-C.Chen, J.Piekarewicz, M.Centelles

Giant monopole energies from a constrained relativistic mean-field approach

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 116Sn, 144Sm, 208Pb; calculated centroids and constrained energies of giant monopole resonances (GMR). 208Pb; calculated energy-weighted monopole strength of GMR. Nonrelativistic constrained approach using NL3 and FSU models. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024319
Citations: PlumX Metrics


2013FA09      Phys.Rev.Lett. 111, 162501 (2013)

F.J.Fattoyev, J.Piekarewicz

Has a Thick Neutron Skin in 208Pb Been Ruled Out?

NUCLEAR STRUCTURE 208Pb; analyzed lead radius experiment data; calculated ground state properties, collective monopole and dipole responses, and mass vs. radius relations for neutron stars. Relativistic models with neutron skin thickness, comparison with available data.

doi: 10.1103/PhysRevLett.111.162501
Citations: PlumX Metrics


2013HA21      Phys.Rev. C 88, 025807 (2013)

K.H.O.Hasnaoui, J.Piekarewicz

Charged Ising model of neutron star matter

doi: 10.1103/PhysRevC.88.025807
Citations: PlumX Metrics


2013RE12      Phys.Rev. C 88, 034325 (2013)

P.-G.Reinhard, J.Piekarewicz, W.Nazarewicz, B.K.Agrawal, N.Paar, X.Roca-Maza

Information content of the weak-charge form factor

NUCLEAR STRUCTURE 48Ca, 132Sn, 208Pb; calculated neutron rms radius, neutron skin, weak charge form factor, electric dipole polarizability. Statistical covariance analysis. Impact of proposed PREX-II and CREX measurements on constraining the isovector sector of the nuclear EDF. Nuclear density functional theory with nonrelativistic Skyrme-Hartree-Fock (SHF), relativistic mean-field (RMF), and relativistic density dependent meson-nucleon couplings (DDME) models.

doi: 10.1103/PhysRevC.88.034325
Citations: PlumX Metrics


2013RO20      Phys.Rev. C 88, 024316 (2013)

X.Roca-Maza, M.Brenna, G.Colo, M.Centelles, X.Vinas, B.K.Agrawal, N.Paar, D.Vretenar, J.Piekarewicz

Electric dipole polarizability in 208Pb: Insights from the droplet model

NUCLEAR STRUCTURE 208Pb; calculated electric dipole polarizability αD as function of neutron skin thickness, correlation between αD and symmetry energy, parity-violating asymmetry as function of αD. Droplet model. Large set of relativistic and nonrelativistic nuclear mean-field models with modern nuclear energy density functionals (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024316
Citations: PlumX Metrics


2012FA05      Phys.Rev. C 86, 015802 (2012)

F.J.Fattoyev, J.Piekarewicz

Neutron skins and neutron stars

NUCLEAR STRUCTURE 208Pb; calculated mass versus radius of neutron stars, energy per neutron as a function of the Fermi momentum, correlation coefficients between neutron skin thickness of 208Pb and physical observables of relevance to the structure and dynamics of neutron stars using the FSUGold model. Covariance analyses.

doi: 10.1103/PhysRevC.86.015802
Citations: PlumX Metrics


2012HO24      Phys.Rev. C 86, 045503 (2012)

C.J.Horowitz, J.Piekarewicz

Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei

NUCLEAR STRUCTURE 22O, 48Ca, 90Zr, 118,132Sn, 138Ba, 158Dy, 176Yb, 208Pb; calculated proton-, neutron-, charge-, weak-charge radii, neutron and weak skins. NL3 and FSU relativistic mean-field approximation. Spin-orbit contributions to the electroweak skin of neutron-rich nuclei.

doi: 10.1103/PhysRevC.86.045503
Citations: PlumX Metrics


2012PA38      Phys.Lett. B 718, 447 (2012)

D.Patel, U.Garg, M.Fujiwara, H.Akimune, G.P.A.Berg, M.N.Harakeh, M.Itoh, T.Kawabata, K.Kawase, B.K.Nayak, T.Ohta, H.Ouchi, J.Piekarewicz, M.Uchida, H.P.Yoshida, M.Yosoi

Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the "softness" of Sn and Cd nuclei

NUCLEAR REACTIONS 106,110,112,114,116Cd(α, α'), E=100 MeV/nucleon; measured reaction products, Eα, Iα; deduced the isoscalar giant monopole resonance (ISGMR) strength distributions, moment ratios. Comparison with theoretical calculations.

doi: 10.1016/j.physletb.2012.10.056
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2402.


2012PI01      Phys.Rev. C 85, 015807 (2012)

J.Piekarewicz, G.T.Sanchez

Proton fraction in the inner neutron-star crust

doi: 10.1103/PhysRevC.85.015807
Citations: PlumX Metrics


2012PI06      Phys.Rev. C 85, 041302 (2012)

J.Piekarewicz, B.K.Agrawal, G.Colo, W.Nazarewicz, N.Paar, P.-G.Reinhard, X.Roca-Maza, D.Vretenar

Electric dipole polarizability and the neutron skin

NUCLEAR STRUCTURE 208Pb, 132Sn, 48Ca; analyzed correlation between neutron-skin thickness and electric dipole polarizability using ensemble of 48 nuclear energy density functionals. NL3/FSU, DD-ME, and Skyrme-SV models. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.041302
Citations: PlumX Metrics


2011FA12      Phys.Rev. C 84, 064302 (2011)

F.J.Fattoyev, J.Piekarewicz

Accurate calibration of relativistic mean-field models: Correlating observables and providing meaningful theoretical uncertainties

doi: 10.1103/PhysRevC.84.064302
Citations: PlumX Metrics


2011PI03      Phys.Rev. C 83, 034319 (2011)

J.Piekarewicz

Pygmy resonances and neutron skins

NUCLEAR STRUCTURE 56Ni, 68Ni, 78Ni, 208Pb; calculated distribution of isovector electric dipole strengths for pygmy resonances, neutron skin thickness, EWSR using relativistic random-phase approximation using NL3 and FSU effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034319
Citations: PlumX Metrics


2010FA11      Phys.Rev. C 82, 025805 (2010)

F.J.Fattoyev, J.Piekarewicz

Relativistic models of the neutron-star matter equation of state

NUCLEAR STRUCTURE 208Pb; calculated binding energy per nucleon, charge radius, neutron thickness using three models (NL3, FSU, XS). Comparison with experimental data. Relativistic equation of state for the neutron-star matter.

doi: 10.1103/PhysRevC.82.025805
Citations: PlumX Metrics


2010FA12      Phys.Rev. C 82, 025810 (2010)

F.J.Fattoyev, J.Piekarewicz

Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter

doi: 10.1103/PhysRevC.82.025810
Citations: PlumX Metrics


2010FA18      Phys.Rev. C 82, 055803 (2010)

F.J.Fattoyev, C.J.Horowitz, J.Piekarewicz, G.Shen

Relativistic effective interaction for nuclei, giant resonances, and neutron stars

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energy, charge radii, neutron skin thickness, charge and neutron densities, centroid energies of giant-monopole resonances (GMR) using relativistic mean-field (RMF) theory and NL3, FSU and IU-FSU interactions. Equation of state for neutron-star structure. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.055803
Citations: PlumX Metrics


2010PI11      Eur.Phys.J. A 46, 379 (2010)

J.Piekarewicz, M.Centelles, X.Roca-Maza, X.Vinas

Garvey-Kelson relations for nuclear charge radii

NUCLEAR STRUCTURE Z=9-96; calculated charge radii using Garvey-Kelson algebraic expressions. Calculations compared to 455 measured radii, radii for Kr, Sn, Ba, Hg isotopes plotted explicitly together with other calculations.

doi: 10.1140/epja/i2010-11051-8
Citations: PlumX Metrics


2009FR04      Acta Phys.Pol. B40, 419 (2009)

S.Franchoo, N.L.Achouri, A.Algora, A.Al-Khatib, J.-C.Angelique, F.Azaiez, D.Baiborodin, B.Bastin, D.Beaumel, M.Belleguic, G.Benzoni, Y.Blumenfeld, C.Borcea, R.Borcea, C.Bourgeois, P.Bringel, B.A.Brown, A.Burger, A.Buta, R.Chapman, E.Clement, J.-C.Dalouzy, Z.Dlouhy, Z.Dombradi, A.Drouart, Z.Elekes, C.Engelhardt, S.Fortier, Z.Fulop, L.Gaudefroy, M.Gelin, J.Gibelin, A.Gorgen, S.Grevy, D.Guillemaud-Mueller, F.Hammache, H.Hubel, S.Iacob, F.Ibrahim, K.Kemper, A.Kerek, W.Korten, A.Krasznahorkay, K.-L.Kratz, B.Laurent, M.Lazar, D.Lebhertz, M.Lewitowicz, X.Liang, E.Lienard, S.Lukyanov, S.Mandal, C.Monrozeau, J.Mrazek, L.Nalpas, A.Navin, F.Negoita, F.Nowacki, N.Orr, A.Ostrowski, T.Otsuka, D.Pantelica, Y.Penionzhkevich, J.Piekarewicz, Z.Podolyak, E.Pollacco, F.Pougheon, A.Poves, F.Rotaru, P.Roussel-Chomaz, E.Rich, J.-A.Scarpaci, M.-G.Saint-Laurent, H.Savajols, G.Sletten, D.Sohler, O.Sorlin, M.Stanoiu, I.Stefan, T.Suzuki, C.Theisen, J.Timar, C.Timis, E.Tryggestad, D.Verney, S.Williams, A.Yamamoto

Recent Results from GANIL


2009GR04      Phys.Rev. C 79, 034318 (2009)

M.Grasso, L.Gaudefroy, E.Khan, T.Niksic, J.Piekarewicz, O.Sorlin, N.Van Giai, D.Vretenar

Nuclear "bubble" structure in 34Si

NUCLEAR STRUCTURE 22,24O, 34,36Si; calculated neutron densities, charge densities, binding energies, charge radii, neutron skin thickness. Shell model, non-relativistic mean-field approach and relativistic mean-field approach calculations.

doi: 10.1103/PhysRevC.79.034318
Citations: PlumX Metrics


2009GR16      Int.J.Mod.Phys. E18, 2009 (2009)

M.Grasso, E.Khan, J.Margueron, N.Van Giai, L.Gaudefroy, T.Niksic, D.Vretenar, J.Piekarewicz, O.Sorlin

Bubbles in exotic nuclei

NUCLEAR STRUCTURE 46,68Ar; calculated proton densities with SkI5, SLy4 interactions in the HF approach.

doi: 10.1142/S0218301309014184
Citations: PlumX Metrics


2009PI07      Phys.Rev. C 79, 054311 (2009)

J.Piekarewicz, M.Centelles

Incompressibility of neutron-rich matter

NUCLEAR STRUCTURE 90Zr, 112,114,116,118,120,122,124Sn, 144Sm, 208Pb; calculated isoscalar monopole strengths and giant monopole resonance (GMR) centroid energies in a relativistic mean-field formalism using NL3 and FSUGold models. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054311
Citations: PlumX Metrics


2008RO20      Phys.Rev. C 78, 025807 (2008)

X.Roca-Maza, J.Piekarewicz

Impact of the symmetry energy on the outer crust of nonaccreting neutron stars

doi: 10.1103/PhysRevC.78.025807
Citations: PlumX Metrics


2007PI01      J.Phys.(London) G34, 467 (2007)

J.Piekarewicz

On three topical aspects of the N = 28 isotonic chain

NUCLEAR STRUCTURE 42Si, 44S, 46Ar, 48Ca; calculated particle densities, single-particle orbits, spin-orbit splitting. Relativistic mean-field approach.

doi: 10.1088/0954-3899/34/3/005
Citations: PlumX Metrics


2007PI12      Phys.Rev. C 76, 031301 (2007)

J.Piekarewicz

Why is the equation of state for tin so soft?

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated isoscalar monopole strength distributions using the relativistic RPA.

doi: 10.1103/PhysRevC.76.031301
Citations: PlumX Metrics


2007PI15      Eur.Phys.J. A 32, 537 (2007)

J.Piekarewicz

Parity violation, the neutron radius of lead, and neutron stars

doi: 10.1140/epja/i2006-10440-x
Citations: PlumX Metrics


2007PI17      Phys.Rev. C 76, 064310 (2007)

J.Piekarewicz

Validating relativistic models of nuclear structure against theoretical, experimental, and observational constraints

doi: 10.1103/PhysRevC.76.064310
Citations: PlumX Metrics


2006GA28      Phys.Rev.Lett. 97, 092501 (2006)

L.Gaudefroy, O.Sorlin, D.Beaumel, Y.Blumenfeld, Z.Dombradi, S.Fortier, S.Franchoo, M.Gelin, J.Gibelin, S.Grevy, F.Hammache, F.Ibrahim, K.W.Kemper, K.-L.Kratz, S.M.Lukyanov, C.Monrozeau, L.Nalpas, F.Nowacki, A.N.Ostrowski, T.Otsuka, Yu.-E.Penionzhkevich, J.Piekarewicz, E.C.Pollacco, P.Roussel-Chomaz, E.Rich, J.A.Scarpaci, M.G.St.Laurent, D.Sohler, M.Stanoiu, T.Suzuki, E.Tryggestad, D.Verney

Reduction of the Spin-Orbit Splittings at the N = 28 Shell Closure

NUCLEAR REACTIONS 2H(46Ar, p), E=10.7 MeV/nucleon; measured Ep, σ(E, θ), (Argon)p-coin, excitation energy spectra. 47Ar deduced single-neutron level energies, spectroscopic factors, shell gap reduction, spin-orbit interaction features.

doi: 10.1103/PhysRevLett.97.092501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO0693. Data from this article have been entered in the XUNDL database. For more information, click here.


2006PI06      Phys.Rev. C 73, 044325 (2006)

J.Piekarewicz

Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energies, radii, isovector dipole strength distributions, pygmy and giant dipole resonance features. Relativistic RPA approach.

doi: 10.1103/PhysRevC.73.044325
Citations: PlumX Metrics


2006PI08      Nucl.Phys. A778, 10 (2006)

J.Piekarewicz, S.P.Weppner

Insensitivity of the elastic proton-nucleus reaction to the neutron radius of 208Pb

NUCLEAR REACTIONS 208Pb(p, p), E=500, 800 MeV; calculated σ(θ); deduced sensitivity to neutron radius. Non-relativistic impulse approximation approach.

doi: 10.1016/j.nuclphysa.2006.08.004
Citations: PlumX Metrics


2006VA03      Phys.Rev. C 73, 025501 (2006)

B.I.S.van der Ventel, J.Piekarewicz

Strange-quark contribution to the ratio of neutral- to charged-current cross sections in neutrino-nucleus scattering

NUCLEAR REACTIONS 12C(ν, pX), E=500, 1000 MeV; calculated proton spectra, σ(E), dependence on strange-quark content of proton axial form factor.

doi: 10.1103/PhysRevC.73.025501
Citations: PlumX Metrics


2005HO27      Phys.Rev. C 72, 035801 (2005)

C.J.Horowitz, M.A.Perez-Garcia, D.K.Berry, J.Piekarewicz

Dynamical response of the nuclear "pasta" in neutron star crusts

doi: 10.1103/PhysRevC.72.035801
Citations: PlumX Metrics


2005SI05      Phys.Rev. C 71, 045502 (2005)

T.Sil, M.Centelles, X.Vinas, J.Piekarewicz

Atomic parity nonconservation, neutron radii, and effective field theories of nuclei

NUCLEAR STRUCTURE 168,170,172,174,176Yb, 156,158,161,162,164Dy, 130,132,134,138Ba, 121,123,125,127,129,131,133,135,137,139,141,145Cs, 207,212,213,219,223,225Fr; calculated charge radii, isotope shifts, neutron skin thickness, atomic parity nonconservation observables. 207,212,213,219,223,225Fr; calculated binding energy, quadrupole deformation. Effective field theories, comparison with data.

doi: 10.1103/PhysRevC.71.045502
Citations: PlumX Metrics


2005TO10      Phys.Rev.Lett. 95, 122501 (2005)

B.G.Todd-Rutel, J.Piekarewicz

Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 116,132Sn, 208Pb; calculated binding energies, radii. 90Zr, 208Pb; calculated giant resonance energies.

doi: 10.1103/PhysRevLett.95.122501
Citations: PlumX Metrics


2004HO11      Phys.Rev. C 69, 045804 (2004)

C.J.Horowitz, M.A.Perez-Garcia, J.Piekarewicz

Neutrino-"pasta" scattering: The opacity of nonuniform neutron-rich matter

doi: 10.1103/PhysRevC.69.045804
Citations: PlumX Metrics


2004HO23      Phys.Rev. C 70, 065806 (2004)

C.J.Horowitz, M.A.Perez-Garcia, J.Carriere, D.K.Berry, J.Piekarewicz

Nonuniform neutron-rich matter and coherent neutrino scattering

doi: 10.1103/PhysRevC.70.065806
Citations: PlumX Metrics


2004PI03      Phys.Rev. C 69, 041301 (2004)

J.Piekarewicz

Unmasking the nuclear matter equation of state

NUCLEAR STRUCTURE 90Zr, 208Pb; calculated isoscalar-monopole strength distribution, giant resonance features; deduced sensitivity to density dependence of symmetry energy. 208Pb calculated isovector-dipole strength distribution. Continuum RPA approach.

doi: 10.1103/PhysRevC.69.041301
Citations: PlumX Metrics


2004TO06      Phys.Rev. C 69, 021301 (2004)

B.G.Todd-Rutel, J.Piekarewicz, P.D.Cottle

Spin-orbit splitting in low-j neutron orbits and proton densities in the nuclear interior

NUCLEAR STRUCTURE 46Ar, 48Ca, 206Hg, 208Pb; calculated spin-orbit splitting for neutron orbits, dependence on proton density. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.69.021301
Citations: PlumX Metrics


2004TO22      Phys.Rev. C 70, 035206 (2004)

G.Toledo Sanchez, J.Piekarewicz

Color screening in a constituent quark model of hadronic matter

doi: 10.1103/PhysRevC.70.035206
Citations: PlumX Metrics


2004VA09      Phys.Rev. C 69, 035501 (2004)

B.I.S.van der Ventel, J.Piekarewicz

Quasielastic neutrino-nucleus scattering

NUCLEAR REACTIONS 12C(ν, p), (ν, n), E=150, 500, 1000 MeV; calculated σ(E, θ), sensitivity to axial-vector form factor. Relativistic PWIA.

doi: 10.1103/PhysRevC.69.035501
Citations: PlumX Metrics


2003FE02      Phys.Rev. C 68, 034003 (2003)

C.Felline, N.P.Mehta, J.Piekarewicz, J.R.Shepard

Low-energy operators in effective theories

NUCLEAR STRUCTURE 2H; calculated elastic form factor. Effective theory technique.

doi: 10.1103/PhysRevC.68.034003
Citations: PlumX Metrics


2003TO10      Phys.Rev. C 67, 044317 (2003)

B.G.Todd, J.Piekarewicz

Relativistic mean-field study of neutron-rich nuclei

NUCLEAR STRUCTURE 60Ca; calculated neutron and proton density distributions. 28O, 60,70Ca, 126Zr; calculated neutron binding energies. 138Ba, 158Dy, 176Yb; calculated neutron skin thicknesses. Correlations with predicted 208Pb neutron skin thickness discussed. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.67.044317
Citations: PlumX Metrics


2002HO21      Phys.Rev. C 66, 055803 (2002)

C.J.Horowitz, J.Piekarewicz

Constraining URCA cooling of neutron stars from the neutron radius of 208Pb

NUCLEAR STRUCTURE 208Pb; analyzed neutron, proton radii, application to astrophysical data.

doi: 10.1103/PhysRevC.66.055803
Citations: PlumX Metrics


2002HO23      Acta Phys.Hung.N.S. 16, 113 (2002)

C.J.Horowitz, J.Piekarewicz

The Lead Nucleus as a Miniature Surrogate or a Neutron Star

NUCLEAR STRUCTURE 208Pb; calculated matter densities, neutron skin thickness. Application to neutron star studies discussed.

doi: 10.1556/APH.16.2002.1-4.13
Citations: PlumX Metrics


2002MU15      Phys.Rev. C66, 024324 (2002)

H.Mueller, J.Piekarewicz, J.R.Shepard

Novel methods for determining effective interactions for the nuclear shell model

doi: 10.1103/PhysRevC.66.024324
Citations: PlumX Metrics


2002PI17      Phys.Rev. C66, 034305 (2002)

J.Piekarewicz

Correlating the Giant-Monopole Resonance to the Nuclear-Matter Incompressibility

NUCLEAR STRUCTURE 208Pb; analyzed giant monopole resonance features, density dependence of symmetry energy. Implications for compression modulus of nuclear matter discussed.

doi: 10.1103/PhysRevC.66.034305
Citations: PlumX Metrics


2002TO09      Phys.Rev. C65, 045208 (2002)

G.Toledo Sanchez, J.Piekarewicz

Modeling the Strangeness Content of Hadronic Matter

doi: 10.1103/PhysRevC.65.045208
Citations: PlumX Metrics


2001AB33      Phys.Rev. C64, 064616 (2001)

L.J.Abu-Raddad, J.Piekarewicz

Extracting the Spectral Function of 4He from a Relativistic Plane-Wave Treatment

NUCLEAR REACTIONS 4He(e, e'p), E=855 MeV; calculated proton momentum distributions. 4He deduced spectral function. Comparisons with data.

doi: 10.1103/PhysRevC.64.064616
Citations: PlumX Metrics


2001HO01      Phys.Rev. C63, 011303 (2001)

C.J.Horowitz, J.Piekarewicz

Density Dependence of Charge Symmetry Breaking

doi: 10.1103/PhysRevC.63.011303
Citations: PlumX Metrics


2001HO17      Phys.Rev.Lett. 86, 5647 (2001)

C.J.Horowitz, J.Piekarewicz

Neutron Star Structure and the Neutron Radius of 208Pb

NUCLEAR STRUCTURE 208Pb; calculated binding energies, neutron and proton radii. Relativistic effective field theory, implications for neutron star structure discussed.

doi: 10.1103/PhysRevLett.86.5647
Citations: PlumX Metrics


2001HO33      Phys.Rev. C64, 062802 (2001)

C.J.Horowitz, J.Piekarewicz

Neutron Radii of 208Pb and Neutron Stars

NUCLEAR STRUCTURE 208Pb; calculated neutron, proton density distributions, radii. Relativistic effective field theory, implications for neutron star radii discussed.

doi: 10.1103/PhysRevC.64.062802
Citations: PlumX Metrics


2001MU02      J.Phys.(London) G27, 41 (2001)

H.Muller, J.Piekarewicz

Strangeness-Changing Response Functions: An alternative approach to hypernuclear structure

NUCLEAR STRUCTURE 16O, 40Ca; calculated hyperon single-particle energies, strangeness-changing response functions. RPA approach.

doi: 10.1088/0954-3899/27/1/304
Citations: PlumX Metrics


2001PI09      Phys.Rev. C64, 024307 (2001)

J.Piekarewicz

Self-Consistent Description of Nuclear Compressional Modes

NUCLEAR STRUCTURE 16O; calculated isoscalar-dipole strength distribution. 16O, 40Ca, 90Zr, 208Pb; calculated isoscalar giant monopole, dipole resonance strength distributions. Relativistic RPA, self-consistent approach.

doi: 10.1103/PhysRevC.64.024307
Citations: PlumX Metrics


2000AB01      Phys.Rev. C61, 014604 (2000)

L.J.Abu-Raddad, J.Piekarewicz

Quasifree Kaon Photoproduction from Nuclei in a Relativistic Approach

doi: 10.1103/PhysRevC.61.014604
Citations: PlumX Metrics


2000PI13      Phys.Rev. C62, 051304 (2000)

J.Piekarewicz

Relativistic Approach to Isoscalar Giant Resonances in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant resonance strength distributions. Relativistic RPA.

doi: 10.1103/PhysRevC.62.051304
Citations: PlumX Metrics


1999AB42      Phys.Rev. C60, 054606 (1999)

L.J.Abu-Raddad, J.Piekarewicz, A.J.Sarty, R.A.Rego

Lessons to be Learned from Coherent Photoproduction of Pseudoscalar Mesons

NUCLEAR REACTIONS 12C, 40Ca(γ, π0), E=150-400 MeV; calculated σ, σ(θ); deduced reaction mechanism features. Relativistic formalism.

doi: 10.1103/PhysRevC.60.054606
Citations: PlumX Metrics


1999MO35      Phys.Rev. C60, 065207 (1999)

D.Morel, J.Piekarewicz

Strange Matter in the String-Flip Model

doi: 10.1103/PhysRevC.60.065207
Citations: PlumX Metrics


1999ZH23      Phys.Rev. C60, 024306 (1999)

L.Zhou, J.Piekarewicz

Relativistic Treatment of Hypernuclear Decay

NUCLEAR STRUCTURE 12C, 16O, 28Si, 32S, 40Ca; calculated hypernuclear decay widths, momentum dependence. Walecka model, relativistic mean-field approximation.

doi: 10.1103/PhysRevC.60.024306
Citations: PlumX Metrics


1998AB13      Phys.Rev. C57, 2053 (1998)

L.J.Abu-Raddad, J.Piekarewicz, A.J.Sarty, M.Benmerrouche

Nuclear Dependence of the Coherent η Photoproduction Reaction in a Relativistic Approach

NUCLEAR REACTIONS 4He, 12C, 40Ca(γ, X), E=625-800 MeV; calculated η production σ(θ), σ; deduced target mass dependence. Relativistic impulse approximation.

doi: 10.1103/PhysRevC.57.2053
Citations: PlumX Metrics


Back to query form    [Next]