ADOPTED LEVELS, GAMMAS for 13N

Authors: J.H. Kelley, C.G. Sheu and J. E. Purcell |  Citation: Nucl. Data Sheets 198, 1 (2024) |  Cutoff date: 1-Aug-2024 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-17770 keV 10S(n)= 20063.9 keV 10S(p)= 1943.49 keV 27Q(α)= -9495.9 keV 9
Reference: 2021WA16

References:
  A  13O ε decay  B  1H(13N,p)
  C  1H(14O,13N)  D  2H(14O,3He)
  E  9Be(10C,13N)  F  9Be(13N,X)
  G  10B(3He,n),(3He,X):RES  H  10B(3He,p):RES
  I  10B(3He,d):RES  J  10B(3He,3He):RES
  K  10B(3He,α):RES  L  10B(α,n)
  M  10B(6Li,t)  N  10B(9Be,6He)
  O  11B(3He,n),11B(3He,nγ)  P  12C(p,γ)
  Q  12C(p,PI0)  R  12C(p,n):RES
  S  12C(p,p):RES  T  12C(p,α):RES
  U  12C(d,n)  V  12C(3He,d)
  W  12C(α,t)  X  12C(7Li,6He)
  Y  12C(10B,9Be)  Z  12C(11B,10Be)
  a  12C(12C,11B)  b  12C(13C,12B)
  c  12C(13N,13N),13C(13N,13N)  d  12C(14N,13C)
  e  12C(16O,15N),(16O,13N)  f  13C(γ,π-)
  g  13C(ν,μ-),(ν,E)  h  13C(π+,PI0)
  i  13C(π+,γ)  j  13C(p,n)
  k  13C(3He,t)  l  13C(6Li,6He)
  m  13C(13N,13C)  n  13C(14N,14C)
  o  14N(γ,n)  p  14N(π+,PI+N),(π+,p)
  q  14N(n,2n)  r  14N(p,d)
  s  14N(d,t)  t  14N(3He,α)
  u  14N(6Li,7Li)  v  14N(10B,11B)
  w  14N(14N,13N)  x  15N(p,t)
  y  16O(n,13N)  z  16O(p,PT)
  0  16O(p,α)  1  16O(3He,6Li)
  2  17Ne B+A decay  3  208Pb(13N,13N): COULEX
  4  232Th(22Ne,13N),154Sm(16O,13N) 

General Comments:

The 13N nucleus was first identified by its characteristic β-decay lifetime property observed in the α bombardment of a boron sample (1934Cu01, 2012Th01)

Nuclear moments:

Measurements:

1961Po09: μ=0.321 3

1964Be24: μ=(-) 0.32212 nm 35, sign is assumed.

Tabulations: 1989Ra17, 2019StZV: μ=0.3219 4

Calculations: 1966El08, 1968Pe16, 1969Sc33, 1969Sc34, 1974Ha27, 1976Br26, 1978Le03, 1988Va03, 1990Iw02, 1991Bo02, 1999Ki27, 1999Ga57, 2003Su04, 2016Me17.

Theory:

Shell model: 1965Co25, 1971Ja13, 1973Sa30, 1976Br26, 1996Du21, 2000Ko23, 2013Ho14

Other model analyses: 1963Ba43, 1963Fa03, 1973Le06, 1974Va24, 1975Me24, 1983Sh38, 1993Po11, 1996Ki24, 1997Po12, 2000Zh42, 2002Zh37, 2003Ch33, 2005Du03, 2008Ch34, 2008Sh16, 2013Ci04, 2013Ma60, 2017De19, 2022Sa37

Mirrors and analog states: 1963Se19, 1966Ce02, 1972Gu05, 1973Sa25, 1974Ch46, 1993Zh17, 1996Ki27, 2005Ch02, 2005Ti07, 2005Ti14, 2006Sh10, 2013Fo22, 2015Fr05, 2018Fo04, 2019Mu05, 2022Va06, 2022Zo01, 2023Se01

Other related studies: 2003Ar33, 2008Pe13, 2008Se10, 2010Ti04, 2011Ti09, 2015Mo10, 2015To02, 2018Ge07

Unplaced experimental results:

1962Wa31: 12C(p,d) E=18 to 19.8 MeV. No resonant structures are observed.

1975Na15, 1976Na09: 16O(14N,17O) E=155 MeV. Compared Coulomb effects in (14N,17O) and (14N,17F) reactions.

1976Mo03: 16O(14N,17O) E=79 MeV. Reported angular distributions.

1998Di14: The 13Ng.s. structure was studied via the 11B(13N,12C)12C transfer reaction at E(13N)=29.5 and 45 MeV.

2001Na02: Si(p,13N). Calculated spallation yields.

2002Ar07, 2002Ar09:9Be,181Ta(18O,13N) E=35 MeV/nucleon. Measured isotope production yields at forward angles.

2005Ba40: Measured 13N production in p+16O spallation at 3.2 GeV.

2007Na31: Measured 13N production in p+136Xe spallation at 1 GeV.

2007No13: 9Be(40Ar, 13N) E=100 MeV/nucleon. Measured isotope production σ.

2010Mi08: 181Ta(18O,13N) E=35 MeV/nucleon. Calculated isotope production yields at forward angles. Compared with measurements of (2002Ar07)

2012Fl02: Studied 1-proton removal from 14O at ≈53 MeV/nucleon.

2019Ch50: Excited states in 14O are observed to 1p decay to 13N+p and to decay sequentially via 13N*(2.36, 3.50, 3.55).

2020Na24: Measured isotope yields in 93Nb(12C,X),(13C,X) at E=65 MeV.

2022Bo01: Measured 13N production yields from 12C(X,13N): X=14,15,20O, 14N at Ebeam≈450 MeV/nucleon.

Q-value: S2n=35163 5; S2p=17900.17 27 (2021Wa16)










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCD F     LMNOPQ   UVWXYZabcdefghijklmnopqrstuvwxyz01234 1/2- 9.9584 m 36 
% ε = 100
     
   2367.8 8            LM OP  S UV XY  b def   jkl     rstu  x z0 23  1/2+ 34.5 keV 3     ≈2367.7
  100
[E1]
      0.0
1/2-
   3500.4 8 A CDE      LMNOP  S UV XYZ     f h jklm    rst v x z012   3/2- 55.0 keV 6      1135.6
    3500.3
    8.4
  100
[E1]
[M1+E2]
   2367.8
      0.0
1/2+
1/2-
   3544.5 5     E      LM O   S UV XYZab def h jk      r t      0 2   5/2+ 49.0 keV 5       
   6368 9     E       MNO   S  V         f   jk      r t   x  01    5/2+ 11 keV      
   6886 5             M O   S  V  YZ   d      k        t            3/2+ 115 keV 5       
   7156 5     E       MNO   S  V  YZab       jk        t            7/2+ 9.0 keV 5       
   7377 6 A   E       M O   S  V  Y a      h  kl     rst v x  01    5/2- 66 keV 9       
      8E3    E         O   S  V   Z b                              3/2+ ≈ 1.5 MeV      
   8918 11 A   E       M O   S  V  Y  b       jk      rst   x  0     1/2- 278 keV 16       
      9E3            MN       V   Za         k                     9/2+ 280 keV 30       
   9476 8 A   E       M O   S  V             jk       s       0     3/2- 30 keV      
     10.26E3 14                P                                          (1/2+,3/2+) 260 keV 90    ≈10256
 

      0.0
1/2-
     10.36E3    E       MNO   S  V              k               0     5/2- 30 keV      
     10.36E3    E       MN    S  V              k               0     7/2- 76 keV      
  10833 9     E       M O      V             jk            x        1/2- 75 keV 15       
     11.3E3 1 ?A                                                         [3/2-] < 200 keV      
  11530 12     E         O   S                                 0     5/2+ 430 keV 35       
  11700 30 A   E       M     S  V     b                              5/2- 115 keV 30       
  11740 40                P  S                                       3/2+ 250 keV 30     11734
 
[E1]
      0.0
1/2-
  11740 50     E         O   S                jk      rs    x        3/2- 530 keV 80       
  11860 40     E             S                        r t v          1/2+ 380 keV 50       
  12130 50     E             S  V     b                        0     7/2- 250 keV 30       
     12.4E3 1 ?A                                                         [3/2-]        
  12558 23     E         O          Z           l              0     > 400 keV      
  12937 24 A   E         O                                     0     > 400 keV      
     13.1E3 1 ?A                                                         [1/2-,5/2-]        
     13.50E3 20     E          P                 h                        3/2+ ≈ 6.5 MeV   ≈13492
 

      0.0
1/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  13650 10 ?    E             S                                 0     < 300 keV      
     13.7E3 1 ?A                                                         [3/2-]        
  14050 20     E          P  ST                       r              3/2+ 162 keV 16     14042
 
[E1]
      0.0
1/2-
  15064.56 40 A C E         OP  ST               jk            x        3/2- 0.932 keV 28     11558
   12693
   15055
 
   <2.82
  100
[M1]
[E1]
[E2+M1]
   3500.4
   2367.8
      0.0
3/2-
1/2+
1/2-
     15.30E3 20 A              P                                          (3/2+) 0.35 MeV 14    ≈15290
 

      0.0
1/2-
  16000 30                   ST                k                     7/2+ 135 keV 90       
     16.6E3 1     E                                                     < 350 keV      
     17.4E3                  S                                              
  17680 30     E          P           b        kl                    1212 keV 74     17667
 

      0.0
1/2-
  18130 17                   S                 k                     3/2+ 287 keV 36       
  18170 20                   ST                                      1/2- 225 keV 50       
  18405 5     E         O   ST                k                     3/2+ 66 keV 8       
  18963 8     E         O   ST                                      (3/2-,7/2+) 23 keV 5       
  19110 10                                     k                     183 keV 41       
  19830 20                    T                k                     5/2- 1542 keV 84       
  19880    E             ST                                      7/2+ 750 keV      
     20.2E3                  S                                       5/2- 1 MeV      
     20.90E3 30     E          P RS                                       1/2+ 1.2 MeV       20.90E3
 

      0.0
1/2-
  21200 10     E             S                 k                     5/2- 581 keV 44       
     21.7E3                  S                                       (3/2+)        
  22140 10     E          P  S        b        k                     1/2+ 1706 keV 82     19756
 

   2367.8
1/2+
     23.3E3                                 h                        10.4 MeV      
     23.3E3    E  H J     P                                          3/2- 500 keV       23.3E3
 

      0.0
1/2-
  23830 40     E  H J                                                3/2- 346 keV 38       
     23.93E3         J                                                13/2- 20 keV      
     24.1E3    E  H JK      RS                                       7/2- ≈ 500 keV      
  24500 40                P                    k                     2.46 MeV 22        21.0E3
 

   3500.4
3/2-
     24.8E3       H                                                  120 keV      
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     25.64E3 10        H          S                                       (3/2)- 184 keV 60       
  25900    E GHI K                                               1.0 MeV    25872
 

      0.0
1/2-
     26.90E3 90                  RS                 k                     4.38 MeV 47       
  28000      GH  K                                                    27967
 

      0.0
1/2-
     31.7E3?    E          P  S                                               28.2E3
      31.7E3
 
 


   3500.4
      0.0
3/2-
1/2-
  32000      G I K                                               ≈ 2000 keV    31958
 

      0.0
1/2-

T1/2(level): LABEL=T1/2 or Γ

E(γ): From level-energy difference.

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   2367.8 1/2+ 34.5 keV 3     ≈2367.7[E1] 8.88×10-4B(E1)(W.u.)=0.0989 47, α=8.88E-4 12, α(K)≈4.38E-7, α(L)≈2.153E-8
   3500.4 3/2- 55.0 keV 6      1135.6[E1] B(E1)(W.u.)=0.079
3/2- 55.0 keV 6      3500.3[M1+E2]-0.09 28.45×10-4B(E2)(W.u.)≈5, B(M1)(W.u.)≈0.55, α=8.45E-4 12, α(K)=3.41E-7 5, α(L)=1.677E-8 23
  11740 3/2+ 250 keV 30     11734[E1] B(E1)(W.u.)≈0.007
  14050 3/2+ 162 keV 16     14042[E1] B(E1)(W.u.)=3.6E-3 10
  15064.56 3/2- 0.932 keV 28     11558[M1] B(M1)(W.u.)≤0.61
3/2- 0.932 keV 28     12693[E1] B(E1)(W.u.)<3.7E-3
3/2- 0.932 keV 28     15055[E2+M1]-0.115 21B(E2)(W.u.)=0.27 10, B(M1)(W.u.)=0.325 18

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
   2367.81/2+ 34.5 keV 3  Γγ=0.49 2
Decay Modes: γ, p.
   3500.43/2- 55.0 keV 6  Γγ0=0.49 3, Γγ≈0.533 EV
XREF: j(3464)k(3.53×103)s(3.51×103)v(3.51×103).
   3544.55/2+ 49.0 keV 5  XREF: e(3.5×103)f(3.51×103)h(3.5×103)j(3.5×103).
   63685/2+ 11 keV XREF: j(6.3×103).
   68863/2+ 115 keV 5  Decay Mode: p.
   71567/2+ 9.0 keV 5  XREF: O(7145)j(7.2×103).
   73775/2- 66 keV 9  XREF: O(7363)l(7.4×103).
      8E33/2+ ≈ 1.5 MeV XREF: b(7.9×103).
   89181/2- 278 keV 16  XREF: b(8.5×103)j(8.8×103)s(8.93×103).
      9E39/2+ 280 keV 30  E(level): Decay mode not specified.
   94763/2- 30 keV XREF: M(9.52×103)0(9.52×103).
     10.26E3(1/2+,3/2+) 260 keV 90  Γγ0>0.6 EV (1973Me12)
Decay Modes: γ, p.
     10.36E35/2- 30 keV XREF: O(10381).
     10.36E37/2- 76 keV Decay Mode: p.
  108331/2- 75 keV 15  XREF: M(10.78×103)V(10.78×103)x(10780).
E(level): Decay mode not specified.
     11.3E3[3/2-] < 200 keV Suggested to decay via α0+9Bg.s., p+12Cg.s. and p+12C(7654.7 MeV).
E(level): Suggested to decay via α0+9Bg.s., p+12Cg.s. and p+12C(7654.7 MeV). Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
Jπ(level): Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
  115305/2+ 430 keV 35  XREF: 0(11.5×103).
  117005/2- 115 keV 30  XREF: M(11.65×103)V(11.1×103)b(11.3×103).
  117403/2+ 250 keV 30  Γγ0≈4.2 EV (1973Me12)
Decay Modes: γ, p.
  117403/2- 530 keV 80  XREF: O(11878)k(11850)s(11.9×103)x(11880).
  118601/2+ 380 keV 50  Decay Mode: p.
  121307/2- 250 keV 30  XREF: V(12.08×103)b(12.6×103).
     12.4E3[3/2-]   Suggested to decay via α0+9Bg.s., α1+9B(1.8 MeV) and p+12C(7654.7 MeV).
E(level): Suggested to decay via α0+9Bg.s., α1+9B(1.8 MeV) and p+12C(7654.7 MeV). Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
Jπ(level): Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
  12558 > 400 keV E(level): Decay mode not specified.
  12937 > 400 keV Decay Mode: p.
E(level)Jπ(level)T1/2(level)Comments
     13.1E3[1/2-,5/2-]   Suggested to decay via α1+9B(1.8 MeV), α0+9B(2.75 MeV) or α0+9B(2.78 MeV) and p+12Cg.s..
E(level): Suggested to decay via α1+9B(1.8 MeV), α0+9B(2.75 MeV) or α0+9B(2.78 MeV) and p+12Cg.s.. Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
Jπ(level): Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
     13.50E33/2+ ≈ 6.5 MeV Γγ0>1.1 KEV (1973Me12)
XREF: h(12.8×103).
  13650 < 300 keV XREF: S(13.5×103)0(13.48×103).
     13.7E3[3/2-]   Suggested to decay via α0+9Bg.s., α1+9B(1.8 MeV), α0+9B(2.75 MeV) and p+12C(7.6547 MeV).
E(level): Suggested to decay via α0+9Bg.s., α1+9B(1.8 MeV), α0+9B(2.75 MeV) and p+12C(7.6547 MeV). Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
Jπ(level): Four new states are suggested at 13N*(11.3, 12.4, 13.1 and 13.7 MeV) in 13O β+p (2023Bi03, 2024Bi01). The authors indicate an independent branching-ratio measurement is not reliable, and no intensity is assigned in the present evaluation. Assuming these are allowed decays, Jπ arguments are given based on the various particle emission decay modes.
  140503/2+ 162 keV 16  T=1/2 (1976Me18), Γγ0=3.7 10 (1973Me12)
XREF: t(13962)r(14.0×103).
  15064.563/2- 0.932 keV 28  T=3/2 (1969Ad02), Γγ0=24.5 15 (1975Ma21,1973Ad02), Γγ=44.1 35, Γp=651 40, Γα=149 61
XREF: j(15.1×103).
     15.30E3(3/2+) 0.35 MeV 14  Γγ0≥0.5 EV (1973Me12)
XREF: α(?).
  160007/2+ 135 keV 90  T=1/2 (1967Ku02,1976Me18)
XREF: k(15980).
     16.6E3 < 350 keV Decays to α+9B(2.345).
     17.4E3   Decay Mode: p.
  17680 1212 keV 74  XREF: p(18.1×103)b(16.2×103)l(17.5×103).
  181303/2+ 287 keV 36  T=1/2 (1967Ku02,1976Me18)
Decay Mode: p.
  181701/2- 225 keV 50  T=1/2 (1976Me18)
XREF: t(18232).
  184053/2+ 66 keV 8  T=3/2 (1967Ku02,1969Ad02)
XREF: O(18.44×103)t(18352).
  18963(3/2-,7/2+) 23 keV 5  T=3/2 (1967Ku02,1969Ad02)
XREF: O(18.98×103).
  19110 183 keV 41  E(level): Decay mode not specified.
  198305/2- 1542 keV 84  T=1/2 (1969Le18)
Decay Modes: p, α.
  198807/2+ 750 keV T=1/2 (1969Le18)
XREF: t(19.88×103).
     20.2E35/2- 1 MeV Decay Mode: p.
     20.90E31/2+ 1.2 MeV Γγ0>0 EV (1976Be28)
XREF: p(20.5×103).
  212005/2- 581 keV 44  XREF: S(21.4×103).
     21.7E3(3/2+)   Decay Mode: p.
  221401/2+ 1706 keV 82  XREF: S(22.4×103)b(22.5×103).
     23.3E3 10.4 MeV T=3/2 (1994Ha41)
E(level): Decay mode not specified.
     23.3E33/2- 500 keV XREF: p(23.2×103).
E(level)Jπ(level)T1/2(level)Comments
  238303/2- 346 keV 38  XREF: J(23.87×103).
     23.93E313/2- 20 keV Decay Mode: 3He.
     24.1E37/2- ≈ 500 keV XREF: H(24.5×103)J(24.40×103)R(24×103).
  24500 2.46 MeV 22  Γγ0>0 EV (1976Be28)
Decay Modes: γ, p, 3He.
     24.8E3 120 keV Decay Modes: p, 3He.
     25.64E3(3/2)- 184 keV 60  Decay Modes: p, 3He.
  25900 1.0 MeV XREF: H(26.1×103)K(26.1×103).
     26.90E3 4.38 MeV 47  Decay Modes: p, (n).
  28000   Decay Modes: (γ), p, 3He, (α).
     31.7E3   XREF: p(31.9×103).
  32000 ≈ 2000 keV Γγ0>0 EV (1976Be28)
Decay Modes: γ, d, 3He, α.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments

Back to top