¹¹ $\mathbf{B}(^{3}\mathbf{He,n}),^{11}\mathbf{B}(^{3}\mathbf{He,n}\gamma)$

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024	

1966Di04: ¹¹B(³He,n₀) E=1.5-5.5 MeV; measured $\sigma(E,\theta)$ for $\theta \approx 0^{\circ}$ to 170°.

1966Ch18: ¹¹B(³He,n γ) E=1.23-2.00 MeV; measured n-p, n- γ coincidences. Explained erronious identification of ¹³C^{*}(6.27,5.56) states.

1968Co27: ¹¹B(³He,n γ) E=7.3 MeV; measured decay modes of ¹³N^{*}(15.07 MeV). Analyzed E_{γ}, I_{γ}, p γ -, n γ -coincidences.

Deduced level energy, γ , IAS γ decay. Deduced $\Gamma_{\gamma 0}/\Gamma_{p0}=0.12\ 2$ from; when combined with $\Gamma_p\Gamma_{\gamma 0}/\Gamma$ from (1968Di04) and Γ_{p0}/Γ from (1967AdZY) this gives $\Gamma_{\gamma 0}/\Gamma=0.024\ 5$ and $\Gamma=1.13$ keV 3. Reviewed other IAS decay branches.

1969Ad01,1969Ad02: ¹¹B(³He,n) E=7-13.5 MeV, measured σ (E_n, θ). Deduced level energies, T, Γ, J, π , L, discussed T=3/2 states (1969Ad02). Found Γ_{p0}/Γ =0.202 20 and Γ_{p1}/Γ =0.121 15 (1969Ad01). When combined with results from (1968Di04, 1969Le18,1968Co27) this implies Γ =1.17 keV 12, $\Gamma_{\gamma 0}$ =27 keV 5, Γ_{p0} =0.24 keV 5 and Γ_{p1} =0.14 keV 3.

1971Hs03: ¹¹B(³He,n) E=4.7, 6.1, 6.49 MeV; measured $\sigma(E,E_n,\theta)$ for $\theta=0^{\circ}$ to 150°. Deduced Q-value to levels, level energies, L, J, Γ .

1973Ad02: ¹¹B(³He,n) E=7.0 MeV; detected neutrons and decay protons from ¹³N^{*}(15.07) to ¹²C(0,4.4,7.65). Deduced Γ_p/Γ and Γ_{α}/Γ branching ratios and partial widths. Referenced E_x=15.066 MeV 4 from the (1968Ce01) review.

1975Ma21: ¹¹B(³He,n γ); measured p γ -, n γ -coincidences with $\theta_{\gamma}=125^{\circ}$ and $\theta_n=0^{\circ}$. For ¹³N*(15.07) deduced $\Gamma_p\Gamma_{\gamma0}/\Gamma=5.79$ eV 20 from ¹²C(p, γ) measurements. They combine results with (1973Ad02) to obtain $\Gamma_{\gamma0}=24.5$ eV 15. Using the E2/M1 intensity ratio they measured (=0.013 5) they found $\Gamma\gamma0(M1)=24.2$ eV 15 and $\Gamma\gamma0(E2)=0.32$ eV 12. They determined relative transition strengths for γ_0 , γ_1 and γ_2 . Lastly, they discussed ¹³C/¹³N isotensor asymmetries.

1977Da18: ¹¹B(³He,n₀) E=5-12 MeV; measured $\sigma(E,E_n,\theta)$.

1977Ma16: ¹¹B(³He,n γ) E=7.0 MeV; measured n γ -coincidence. $\theta_{\gamma}=125^{\circ}$. Deduced $\Gamma_{\gamma 0}/\Gamma_{p0}=0.121$ 11. Combined their results with others to find $\Gamma=0.86$ keV 12.

1977Os08: ¹¹B(³He,n) E=1.7, 1.9 MeV; analyzed 2-p stripping reactions and spectroscopic factors.

1979Os10: ¹¹B(³He,n₀) E=0.9-1.9 MeV; measured $\sigma(\theta)$. deduced S using different models.

¹³N Levels

E(level) [†]	$J^{\pi \dagger}$	Г	L [†]	Comments
0	$1/2^{-}$		2	
2358 10	$1/2^+$		1	
3502 10	$3/2^{-}$		0+2	
3550 18	- 1			
6353 9	$5/2^{+}$		1+3	
6875 10	$3/2^{+}$		1+3	
7145 9	$7/2^{+}$		3+5	
7363 8	$5/2^{-}$		2+4	
8200 22				
8918 <i>11</i>				
9476 8	$3/2^{-}$		0+2	E(level): See also $E_x=9.52$ MeV 2 (1966Ch18).
10381 8	5/2-		2+4	E(level): See also $E_x = 10.35$ MeV 2 (1966Ch18).
10833 9				
11530 12				
11878 <i>12</i>	$3/2^{-}$		0+2	
12558 <i>23</i>		>400 keV		Γ: From (1971Hs03).
12937 24		>400 keV		Γ: From (1971Hs03).
15068 8	$3/2^{-}$	<15 keV	0	T=3/2
				E(level), Γ ,J ^{π} ,L: and T from (1969Ad02).
				(1968Co27): $\Gamma_{\gamma 0}/\Gamma_{p 0}=0.12$ 2.
				(1969Ad02): Γ <15 keV; Γ_{p0}/Γ =0.202 20 and Γ_{p1}/Γ =0.121 15 from (1969Ad01).
				(1973Ad02) Measured Branching ratios to ${}^{12}C$ and ${}^{9}B$ states. Assuming Γ =0.82 keV
				20 from (1973Ad02,1968Co27,1968Di04), 12 C(0)=23.6% 12 and Γ_{p0} =0.19 keV 5,
				$^{12}C(4.44)=15.0\%$ 10 and $\Gamma_{p1}=0.12$ keV 3, $^{12}C(7.65)=5.3\%$ 15 and $\Gamma_{p2}=0.043$ keV
				16, ${}^{9}B(0)=4.9\%$ 27 and $\Gamma_{\alpha 0}=0.040$ keV 24, ${}^{9}B(1.6)=3.9\%$ 39 and $\Gamma_{\alpha 1}=0.032$ keV

Continued on next page (footnotes at end of table)

¹¹ $\mathbf{B}(^{3}\mathbf{He,n}),^{11}\mathbf{B}(^{3}\mathbf{He,n}\gamma)$ (continued)

¹³N Levels (continued)

E(level) [†]	Г	Comments
		32, ${}^{9}B(2.36)=7.2\%$ 45 and $\Gamma_{\alpha 2}=0.059$ keV 40, $\Gamma_{\gamma 0}=23.3$ eV 36.
		(1975Ma21): $\Gamma_{\rm p}\Gamma_{\gamma 0}/\Gamma$ =5.79 eV 20 and 0.013 5 for the E2/M1 intensity ratio from ¹² C(p, γ). In
		(1975Ma21) $\Gamma_{\gamma 0}$ =24.5 eV 15 and reduced M1 and E2 transition strengths are deduced after
		making several assumptions. Using relative intensities measured via ${}^{11}B({}^{3}He,n\gamma)$ and with
		$\theta_{\gamma}=125^{\circ}$ and $\theta_{n}=0^{\circ}$, they obtained $\Gamma\gamma 0(M1)=24.2$ eV 15, $\Gamma\gamma 0(E2)=0.32$ eV 12,
		$\Gamma\gamma_1(E1) \le 2.18 \text{ eV } 30 \text{ and } \Gamma\gamma_2(M1) = 19.6 \text{ eV } 14.$
		(1977Ma16): $\Gamma_{\gamma 0}/\Gamma_{p 0}=0.121 \ II.$
$18.44 \times 10^3 4$		T=3/2
		E(level),T: and T from (1969Ad02).
$18.98 \times 10^3 2$	40 keV 20	T=3/2
		E(level), Γ ,T: and T from (1969Ad02).

 † From DWBA analysis in (1971Hs03), except where noted.

 $\gamma(^{13}N)$

Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
11.5×10^{3} 12.71×10^{3}	15068 15068	3/2 ⁻ 3/2 ⁻	3502 2358	3/2 ⁻ 1/2 ⁺	(1975Ma21: with ¹² C(p, γ) data): $\Gamma_{\gamma}(M1)=19.6 \text{ eV } 14 \text{ and } B(M1)W=0.613 \ 44.$ (1975Ma21: with ¹² C(p, γ) data): $\Gamma_{\gamma}(E1) \le 2.82 \text{ eV } 30 \text{ and } B(E1)W \le 03.69E-3 \ 39.$
15068	15068	3/2-	0	1/2-	(1973Ad02): Combined their $\Gamma_{p0}/\Gamma=0.236$ <i>12</i> value with $\Gamma_{p0}\Gamma_{\gamma0}/\Gamma=5.5$ eV 8 from (1968Di04) and obtained $\Gamma_{\gamma0}^{M1}=23.0$ eV <i>36</i> and $\Gamma_{\gamma0}=23.3$ eV <i>36</i> . (1975Ma21: with ¹² C(p, γ) data $\Gamma_{p0}\Gamma_{\gamma0}/\Gamma=5.79$ eV <i>20</i> and the Γ_{p0}/Γ value from (1973Ad02)): $\Gamma_{\gamma}(M1)=24.2$ eV <i>15</i> , $\Gamma_{\gamma}(E2)=0.32$ eV <i>12</i> and B(M1)W=0.342 <i>21</i> and B(E2)W=0.28 <i>11</i> ; I(E2/M1)=0.013 <i>5</i> See discussion in (1975Ku21).

$\frac{{}^{11}\mathbf{B}({}^{3}\mathbf{He,n}),{}^{11}\mathbf{B}({}^{3}\mathbf{He,n}\gamma)}{}$

Level Scheme

 $^{13}_{7}N_{6}$