¹⁷Ne $\beta^+ \alpha$ decay 2002Mo19

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024			

Parent: ¹⁷Ne: E=0; $J^{\pi}=1/2^{-}$; $T_{1/2}=109.2$ ms 6; $Q(\beta^{+}\alpha)=8730.1$ 4; $\%\beta^{+}\alpha$ decay=2.77 19

¹⁷Ne-Q($\beta^+ \alpha$): From (2021Wa16).

¹⁷Ne-% $\beta^+ \alpha$ decay: From (2002Mo19).

- 1988Bo39: A beam of ¹⁷Ne ions was produced at the CERN/ISOLDE facility, using proton spallation reactions on a MgO target. Neon ions from the target were collected, post-accelerated to 60 keV and magnetically separated to obtain the ¹⁷Ne beam, which was implanted in a 50 μ g/cm² carbon foil. An annular plastic scintillator detector was placed on the upstream side of the target (w.r.t. beam) while a series of different Δ E Si surface-barrier detectors (covering $\approx 0.2\%$ of 4π) were separately placed on the downstream side of the target. The Si detectors had thicknesses of 10, 15, 27 and 1000 μ m and were used to characterize the proton and α groups of the delayed particle spectrum. Twenty-eight different groups of β -delayed protons and α s were identified. The lifetime was measured by collecting ¹⁷Ne ions for 0.2 s and counting for 1.0 s. The value T=109.3 ms 6 was obtained. See other results on decay to ¹⁷F in (1993Bo36,1993RiZY).
- 1997Ki19,1998Ch05,2002Ch61,2002Mo19: A series of experiments on ¹⁷Ne decay were carried out at the TRIUMF/TISOL facility. The aim of the measurements was to exploit the ¹⁷Ne(β p) reaction as a means to populate astrophysically important states in ¹⁶O. Proton spallation of a MgO target resulted in ¹⁷Ne ions that were implanted on a collection tape that was positioned at the center of various counting station configurations.
- 1998Ch05: A set of four ΔE -E telescopes were used to study the decay ${}^{17}\text{Ne}(\beta){}^{17}\text{F*}(11193 \text{ keV}) \rightarrow p+{}^{16}\text{O*}(9590)$ and ${}^{17}\text{Ne}(\beta){}^{17}\text{F*}(11193 \text{ keV}) \rightarrow \alpha + {}^{13}\text{N*}(2365,3502+3547)$; a total of 11 decay branches were observed for the decay of ${}^{17}\text{F*}(11193 \text{ keV})$.

2002Ch61: The configuration of (1998Ch05) was improved by implementing double-sided Si strip detectors into parts of the counting station; this lowered the pile-up and random coincidence rates. It is noted that the reported branching ratios show a significant systematic dependence on the detector configuration.

- 2002Mo19: ¹⁷Ne β delayed particle emission was studied using four different experimental techniques: proton- γ coincidences, proton- γ angular correlations, ToF spectra for the proton and α particle spectra, and a ratio cut for a clean α spectrum. Proton- γ coincidences were determined using a beam of ¹⁷Ne ions at the TISOL facility at TRIUMF. The beam traveled through a four-sector annular silicon detector and was implanted onto a collection tape directly in front of a plastic scintillator and a HPGe detector that was not in the vacuum system. Counting rates were very high so only γ -ray events with energy above 4 MeV were accepted. A particle- β coincidence spectrum was also recorded by the Silicon detector.
- Proton- γ angular correlations were studied using two HPGe γ -ray detectors and four ion-implanted Silicon detectors surrounding a carbon collector foil. Angular correlations between emitted protons and ¹⁶O γ rays were measured. Using this method, J^{π} was determined for states in ¹⁷F.
- ToF spectra were determined for proton and α particle emissions. A beam of ¹⁷Ne ions passed through a carbon collector foil that was positioned at an angle and centered between to scintillation paddles, the beam then passed into a SSB detector. Time and pulse-height information were recorded. A clean α spectrum was not able to be produced because β -proton coincidences at low energies were very strong and obscured the weaker α decay peaks. Therefore, the ratio cut technique was used to obtain a cleaner spectrum.
- A thin SSB detector was placed on the opposite side of a collector foil and a PIPS detector. Each detector had a thicker detector behind it in order to reject background events due to electrons and high energy protons. The PIPS detector recorded particle recoil and the SSB detector recorded coincident α particles. Additional background events were removed using the ratio-cut technique.
- Using these methods, relative proton and α branching ratios were determined along with branching ratios for the β decay of ¹⁷Ne. Using these branching ratios, reduced Gamow-Teller matrix elements were determined. β -delayed proton decay to α -unbound states in ¹⁶O was also examined because of its relevance to astrophysics (helium-burning stage of stellar evolution).

The values $\%\beta p=95.4$ 46 and $\%\beta\alpha=2.77$ 19 are deduced from the tables given in (2002Mo19).

¹⁷Ne-T_{1/2}: Weighted mean from (1971Ha05,1988Bo39).

¹⁷Ne $β^+ α$ decay **2002Mo19** (continued)

¹³N Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	$1/2^{-}$
2365	$1/2^{+}$
3502	$3/2^{-}$
3547	5/2+

[†] From (2002Mo19).

[‡] From Adopted Levels.

 $\gamma(^{13}N)$

Eγ [†]	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1137	3502	3/2-	2365	$1/2^{+}$
2365	2365	$1/2^{+}$	0.0	$1/2^{-}$
3502	3502	3/2-	0.0	$1/2^{-}$

[†] From level-energy differences.

Delayed Alphas (¹³N)

$E(\alpha)^{\dagger}$	E(¹³ N)	$I(\alpha)^{\dagger\ddagger\#}$	E(¹⁷ F)	$E(\alpha)^{\dagger}$	E(¹³ N)	$I(\alpha)^{\dagger\ddagger\#}$	E(¹⁷ F)
1397	3547	0.0016 9	11193	2301	2365	0.0682 69	11193
1432	3502	0.0016 9	11193	2776	0.0	0.0570 58	9450
1725	0.0	2.09 18	8075	3219	0.0	0.0499 49	10030
1821	0.0	0.215 22	8200	3701	0.0	0.00066 58	10660
2001	0.0	0.092 9	8436	3892	0.0	0.0115 16	10910
2299	0.0	0.178 17	8825	4110	0.0	0.0024 7	11193

[†] From (2002Mo19).

[‡] The feeding to the particle unbound states is determined by normalizing the $\%\beta^+$ strength to the relative $I\beta^+$ -p and $I\beta^+$ - α branching ratios using the measured β^+ p, β^+ p γ , $\beta^+\alpha\gamma$ observations and by assuming $I\beta_{g.s.}^+ < 0.55\%$ (1997Mi08) and $I\beta^+(495 \text{ keV})=1.59\%$ 17 (1993Bo36,1998Oz01: and including a correction for the γ -ray feeding from the 11193 keV isobaric analog state).

[#] Absolute intensity per 100 decays.

¹⁷Ne $\beta^+ \alpha$ decay 2002Mo19

Decay Scheme

 $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays

