	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024		

2009Ch38: XUNDL dataset compiled by TUNL (2009).
⁹Be(¹⁰C,¹³N→p+3α) and ¹²C(¹⁰C,¹³N→p+3α) at E(¹⁰C)=10.7 MeV/nucleon at the Texas A&M MARS facility. A set of four HiRA detectors covering θ=1.3° to 7.7° were used to measure resonance decay of particle-unbound ¹³N states. The analysis identified states that p- and α-decay to ¹²C and ⁹B excited states.

¹³N Levels

E(level)	J^{π}	T _{1/2}	Comments
$10.36 \times 10^{3}^{\dagger}$ $10.83 \times 10^{3}^{\dagger}$	(1/2= 1/2+ 2/2=)		E(level): A doublet is identified at this energy in the Adopted Levels. I_{μ} .
10.83×10^{3} 11.53×10^{3}	$(1/2^{-}, 1/2^{+}, 3/2^{-})$	<300 keV	J^{π} : Suggested from systematics.
$13.65 \times 10^{3 \ddagger \#} 1$ $16.6 \times 10^{3 @} 1$		<300 keV <300 keV <350 keV	Approximate branching ratios $(p+{}^{12}C(9.65))=48\%$ and $(\alpha+{}^{9}B_{g.s.})=52\%$.

[†] Decays to $p+{}^{12}C(7.65)$. [‡] Decays to $p+{}^{12}C(9.64)$. [#] Decays to $\alpha+{}^{9}B_{g.s.}$ [@] Decays to $\alpha+{}^{9}B(2.345)$.