$^{14}N(d,t)$

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024		

1957Wa01: ¹⁴N(d,t) E=14.8 MeV; measured yields to ${}^{13}N^*(0, 2.37, 3.5 \text{ MeV} (doublet))$.

1968Ga13: ¹⁴N(d,t) E=28 MeV; measured $\sigma(\theta)$ for $\theta=10^{\circ}$ to 70°, DWBA analysis of (d,t) and (d,³He) cross sections. Deduced C²S=0.9 to ¹³N_{g.s.} vs 0.88 to ¹³C_{g.s.}

1968Hi01: ¹⁴N(d,t) E=52 MeV; measured $\sigma(E_t,\theta)$ for $\theta=12^\circ$ to 60° . Deduced level energies, J^{π} . Discussed S.

1971Bo50: Theoretical analysis of spectroscopic factors.

1973Da26,1975DaYO: ¹⁴N(pol. d,t) E=15 MeV; measured analyzing power A(θ) for θ =30° to 90°.

1974Lu06: ¹⁴N(pol. d, t₀) E=15 MeV; measured $\sigma(E_t, \theta)$, A(θ). for θ =20° to 100°. DWBA analysis.

1985Sa35: ¹⁴N(d,t), ¹⁵N(p,d); measured thick target yields.

1995Gu22: ¹⁴N(d,t) E=8-50 MeV; analyzed $\sigma(\theta)$.

1998Sz01: ¹⁴N(d,t) E=3.8-12.3 MeV; measured σ (E) for ¹³N production as background radiation produced along with ¹⁴N(d,n)¹⁵O.

¹³N Levels

E(level) [†]	$J^{\pi \dagger}$	s†	Comments
0	$1/2^{-}$	0.6	S: See also S=0.9 from (1968Ga13).
2.37×10^{3}			E(level): From (1975DaYO).
3.51×10^{3}	$3/2^{-}$	0.25	
7.38×10^{3}	$5/2^{-}$	1.3	
8.93×10 ^{3‡}	$1/2^{-}$		
9.5×10 ^{3‡}	$3/2^{-}$		
11.9×10^{3}	3/2-	1.25	

[†] From DWBA analysis of spectroscopic factors in (1968Hi01).

[‡] Unresolved, S(8.9+9.5 MeV)=0.7.