$^{12}C(d,n)$

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

- 1949Gr29: $^{12}C(d,n).$ Reported states at $E_x{=}2.29$ MeV 12, 3.48 MeV 12 and 3.74 MeV 5.
- 1950Ho01: ¹²C(d,n). Measured β spectrum and end-point energy; deduced T_{1/2}=10.05 min 10.
- 1953Mi10: ¹²C(d,n) E=8 MeV; measured $\sigma(\theta)$ for $\theta=0^{\circ}$ to 60° . Deduced ¹³N^{*}(0,2.38 MeV 5,3.53 MeV 5) with L=1, 0 and 2(doublet), respectively.
- 1955Ma76: ${}^{12}C(d,n) \to 3$ MeV; investigated threshold region. Deduced E_x =2.37 MeV 2.
- 1955Wi43: ¹²C(d,n) E \leq 20 MeV; measured activation cross section. Deduced T_{1/2}=10.08 min 4 from analysis of the 14.1 MeV data.
- 1959E144: ¹²C(d,n) E=1.45-2.95 MeV; measured $\sigma(\theta)$ for $\theta=0^{\circ}$ to 165°.
- 1957Ca02: ¹²C(d,n_{0,1,2+3}) E=1.45-2.95 MeV; measured $\sigma(\theta)$ for $\theta < 60^{\circ}$. Deduced level energies, L, J^{π}, $\sigma(\theta=0)$, reduced widths.
- 1957Da08, 1959Da09: ¹²C(d,n) E=7 MeV; measured β spectrum. Deduced Fierz coefficient, b=0.14% 237 and $T_{1/2}=9.96$ min 3.
- 1957De22: ¹²C(p, γ) and (d,n); measured activation cross sections in the few hundred keV range. Deduced T_{1/2}=10.02 min 10.
- 1960Bu15: ¹²C(d,n) E=12.9 MeV; measured polarization of neutrons to various states for θ =15°.

1960Ja12: ¹²C(d,n) measured $T_{1/2}$ of superallowed β emitters. Summarize $T_{1/2}$ early measurements on ¹³N made between 1939 and 1958. Their work gives $T_{1/2}$ =597.9 sec 3. Measurement carries a significant weight. (German/Heidelberg text).

1961Ja08: ¹²C(d,n₀) E=0.7-1.3 MeV at the Cambridge accelerator. Measured $\sigma(\theta)$ for $\theta=0^{\circ}$ to 150°.

1963Bu24: ¹²C(d,n) E=12.8 MeV; measured $\sigma(\theta)$ for $\theta=0^{\circ}$ to 150°. Deduced optical model parameters.

1963Ko24: ¹²C(d,n) measured $\sigma(\theta)$.

1965Ke10: ¹²C(d,n) E=4,5,6,7,7.5 MeV; measured polarization obserables for θ =20° to 80°.

1966La18: ¹²C(d,pn) E=5.39 MeV; measured $\sigma(E_p, \theta_n, \theta_p)$ deduced $\tau \approx 0.7E-20$ sec for states in the region of ¹³N^{*}(3.5 MeV).

1966Gu04: ¹²C(d,n₀) E_d=2.7-3.2 MeV. Studied ¹⁴N resonances.

1966Ho11: ${}^{12}C(d,n_{0.1}) \to E_d = 3.8-5.0$ MeV; measured yield curves for $\theta = 5^{\circ}$ to 150° .

- 1966Sa05: ¹²C(d,n₀) E_d=2.8-4.2 MeV; measured $\sigma(\theta)$ and polarization observables for θ =10° to 130°.
- **1967Fu03**: ${}^{12}C(d,n_0) E_d$ =3.8-4.2 MeV; measured $\sigma(E)$.
- 1967Wo07: ¹²C(d,n) E=0.4-3.0 MeV; measured σ (E).
- 1968Do09: ${}^{12}C(d,n)$ E=5.2-6.2 MeV; measured polarization observables to ${}^{13}N^*(0, 2.37 \text{ MeV})$ for θ =10° to 130°.
- 1968Ri15: ${}^{12}C(d,n)$ E=3.0 MeV; measured T_{1/2}=9.963 min 9.
- 1969Ch04: ¹²C(d,n) E=0.5-0.8 MeV; measured $\sigma(\theta)$ for $\theta=5^{\circ}$ to 160°. Deduced optical model parameters.

1970Ga07: ¹²C(d,n₀) E=12, 15 and 17 MeV; measured $\sigma(\theta)$ for θ =30° to 150°; list tabular data. Deduced optical model

parameters and spectroscopic factors. Ground state S(12 MeV)=1.35; S(15 MeV)=1.29; S(17 MeV)=0.78.

- 1970Ba63: ¹²C(d,n) E=6.4 MeV; measured neutron polarization.
- 1971Hi09: ¹²C(d,n₀) E=8.5 MeV. Measured neutron polarization for θ =2.5° to 70°.
- 1971Ja17: ¹²C(d,n) E=2.17, 2.96 MeV; measured polarization observables at θ =20°.
- 1971Mu18: ¹²C(d,n_{0,1,2+3}) E=11.8 MeV; measured $\sigma(E,\theta)$ for $\theta=20^{\circ}$ to 170°. Deduced level energies and spectroscopic factors. Tabular data provided.
- 1973Cl04: ¹²C(d,n) E=3.3,3.4 MeV; measured $\sigma(E_n)$, deduced $\Gamma(^{13}N^*(2366))=36.15$ keV 54. Discussed all previous data on $\Gamma(2366)$; analyzed width dependence on reaction.
- 1975Ka26:¹²C(d,n) E=1.86 MeV; measured polarization observables at θ =5°.
- 1975Az02: ¹²C(d,n_{0,1,2+3}) 15.25 MeV; measured $\sigma(E,\theta)$ for θ =0.3° to 99°.
- 1975Bo32,1975Bo35: ¹²C(d,n_{0,1,2+3}) E=6.3 MeV; measured $\sigma(E,\theta)$ for $\theta=0^{\circ}$ to 82.5°. Analyzed shape of the ¹³N^{*}(2364) state.

1976Te03: ¹²C(d,n_{0,1}) E=5.7-9.7 MeV; measured $\sigma(E,\theta)$ and polarization observables over θ =5° to 35°.

- 1981Li23: ¹²C(vec d,n_{0.1}) E=6-14 MeV; measured θ =0° polarization transfer.
- 1981Sh22: ¹²C(d,n₀) E=7-10 MeV; measured σ (E, θ =0°): thick target yield.
- 1984Sc04: ¹²C(d,n_{0,1,2+3}) E=7-13 MeV; measured $\sigma(E,\theta)$ for $\theta=5^{\circ}$ to 160°; deduced optical model parameters and S=0.34 and 0.28 for ¹³N^{*}(0, 2.36), respectively.
- 1987Ie02: ¹²C(d,n₀) E=25 MeV; measured polarization observables for θ =10° to 90°.
- 1987KaZL, 1988Ka30: ${}^{12}C(d,n_{0,1})$ E=18 MeV; analyzed $\Gamma(2.36)$ =54 keV.
- 1990Mi11: ¹²C(d,n) E=0.5-6 MeV; measured σ (E) via activation technique.
- 1991Fi05, 1991Fi11: ¹²C(d,n) E=1-23 MeV; measured σ (E), thick target.

$^{12}C(d,n)$ (continued)

2020Ge10: ¹²C(d,n) E=1-12 MeV; measured thick target yields.

2021Su11: ${}^{12}C(d,n)$ E \approx 200 MeV; analyzed neutron energy spectrum.

Theory:

1958Mc63: Analyzed ¹³C and ¹³N ground state reduced widths. Found consistency; see additional references within.

1968Ba47: ¹²C(d,n) E=3-12 MeV; calculated polarization observables.

1972Pe11: Analyzed spectroscopic factors between 4 and 20 MeV.

1974Bo52, 1974Bo53: ¹²C(d,n); calculated $\sigma(\theta)$.

1978Ba21: ¹²C(d,n_{0,1}) E=6.3 MeV; analyzed resonant and non-resonant $\sigma(E,\theta)$.

1983Mu13: ¹²C(d,n), (³He,d); analyzed data.

1984B121: ¹²C(d,n); calculated $\sigma(\theta)$.

2015De38: ¹²C(d,n) 3-body model analysis of (d,n) and (d,p) reactions.

2016Na23, 2016NaZT: ¹²C(d,n); calculated $\sigma(E)$, deduced spectroscopic factors.

2016No14: ¹²C(d,n); calculated $\sigma(E)$ using TALYS.

2017De20: ¹²C(d,n); analyzed $\sigma(\theta)$ for E=7, 12, 18 and 25 MeV.

2024Ol01: ¹²C(d,n); calculated $\sigma(E)$ for E≤200 MeV and $\sigma(E,\theta)$ for E≤100 MeV and $\theta=15^{\circ}$, 30°, 45° and 60°. Compared PHITS reaction code with experimantal results.

¹³N Levels

E(level) [†]	J^{π}	T _{1/2}	L [†]	S [†]	Comments
0	1/2-	9.963 min 9	1	0.74	T _{1/2} : From T _{1/2} =597.9 s 3 (1960Ja12), T _{1/2} =9.963 min 9 (1968Ri15).
					S: From (1971Mu18). See also S=0.34 (1984Sc04).
$2.36 \times 10^3 2$	$1/2^{+}$	36.15 keV 54		1.02	E(level): From (1955Ma76).
					$T_{1/2}$: $\Gamma_{c.m.}$ from 1973Cl04.
					S: From (1971Mu18). See also S=0.25 (1984Sc04).
3.51×10^{3}	$(3/2^{-})$			0.13	E(level): Doublet (1966La18).
3.55×10^{3}	$(5/2^+)$			0.87	E(level): Doublet (1966La18).

[†] From DWBA analysis of spectroscopic factors in (1971Mu18).