ADOPTED LEVELS, GAMMAS for 12C

Authors: J.H. Kelley, J.E. Purcell and C.G. Sheu |  Citation: Nucl. Physics A968, 71 (2017) |  Cutoff date: 1-Jan-2017 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-17338.1 keV 10S(n)= 18720.71 keV 6S(p)= 15956.68 keV 1Q(α)= -7366.59 keV 4
Reference: 2017WA10

References:
  A  12B β- decay:20.20 MS  B  12N β+ decay:11.000 MS
  C  6Li(6Li,γ),(6Li,p),(6Li,n):RES  D  6Li(9Be,t)
  E  9Be(3He,γ):RES  F  9Be(3He,n),(3He,α):RES
  G  9Be(α,n),(α,12C)  H  9Be(6Li,t)
  I  9Be(9Be,6He)  J  9Be(10C,12C)
  K  10Be(3He,n)  L  10B(d,p),(d,d),(d,α):RES
  M  10B(3He,p)  N  10B(3He,P3A),11B(3He,D3A)
  O  10B(6Li,α)  P  11B(p,γ):RES
  Q  11B(p,n):RES  R  11B(p,p):RES
  S  11B(p,α)  T  11B(d,n)
  U  11B(3He,d)  V  11B(3He,12C)
  W  11B(α,t)  X  11B(7Li,6He)
  Y  12C(γ,γ)  Z  12C(γ,α),(γ,n),(γ,p)
  a  12C(E,E’)  b  12C(E,E’p)
  c  12C(π,π),(π--)  d  12C(n,n’)
  e  12C(p,p’)  f  12C(p,p’),(α,α’)
  g  12C(p,p’α)  h  12C(p,p’p),12C(p,p’α)
  i  12C(d,d)  j  12C(3He,3He)
  k  12C(α,α’)  l  12C(6Li,6Li)
  m  12C(11B,12C),(11B,11B)  n  12C(12C,3A)
  o  12C(12C,12C),(12C,X)  p  12C(14N,14N)
  q  12C(16O,12C)  r  12C(40Ca,12C)
  s  13B β-n decay:17.30 MS  t  13C(γ,n),13C(E,E’n)
  u  13C(π+,p)  v  13C(p,d)
  w  13C(d,t)  x  13C(3He,α)
  y  13C(6Li,7Li),13C(7Li,8Li)  z  13O εp decay:8.58 MS
  0  14C(p,t)  1  14N(p,3He)
  2  14N(d,α)  3  15N(p,α)
  4  16N β-alpha; decay  5  16O(p,p’α)
  6  16O(d,6Li)  7  16O(3He,7Be)
  8  16O(α,8Be) 








E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0AB DE GHI K MNOP   TU WX Za cdef  ijklm opq stuvwxyz012345678 0+ STABLE      
   4439.82 21 AB DE GHI K MNOP   TU WXY a cdef  ijklm opq stuvwxyz0123 5678 2+ 10.8×10-3 eV 6 
% IT = 100
   4438.94
  100
E2
      0
0+
   7654.07 19 AB DE GHIJK MNOP   TUVWX  a cdef  ijkl nopqr  uvwxyz0123  678 0+ 9.3 eV 9 
% IT = 4.16×10-2
% α ≈ 100
   3213.79
  100
E2
   4439.82
2+
   9641 5    DE GHIJ  MNOP   TUVWXY a cdef  ijklmnopqr   v xy 012   678 3- 46 keV 3 
% α ≈ 100
% IT < 4.1×10-5
   9637
  100
E3
      0
0+
   9870 60                               ef    k                         2+ 850 keV 85 
% IT ≈ 7.1×10-6
% α ≈ 100
     
   9930 30 ?                         Z     f    k                         0+ 2710 keV 80       
     10.3E+3 3 ?AB           N           Z   d    i    n       v              (0+) 3.0 MeV 7 
% α ≈ 100
     
  10847 4    D  GH    MN     TUV X  a  def  ijklmn pq      x    2       1- 273 keV 5 
% α ≈ 100
     
  11836 4    D  GH    MNO    TUV XY a  def  ijkl n p       x    2       2- 230 keV 8 
% α ≈ 100
% IT > 0
     
  12400?             N                                                (5+,4-,6-,7+) % α ≈ 100
     
  12710 6 AB    GH    MNOP   TUVWXY a cde g ij l n p   t vwxy 012       1+ 18.1 eV 28 
% IT = 2.2
% α = 97.8
   8267
  12703
   15 3 
  100 14 
M1
M1
   4439.82
      0
2+
0+
     13.3E3 2 ?      G                                                       4+ 1.7 MeV 2       
  13316 20         I   MN     T V  Y    de     kl n p       x    2       4- 360 keV 43 
% α ≈ 100
% IT > 0
     
  14079 5       GHI   MN     T      a  de g  jkl nopq    v x  0123 56 8 4+ 272 keV 6 
% α ≈ 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  15110 3  B  E       MNOP   TU  XY a cde   ij         t vwx  012       1+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
   2400
   4809
   7453
  10665
  15100
    1.5 4 
    4.2 15 
    2.83 36 
    2.49 34 
  100 2 
M1

M1
M1
M1
  12710
     10.3E+3
   7654.07
   4439.82
      0
1+
(0+)
0+
2+
0+
  15440 40                           a   e  hijk          v              (2+) 1.77 MeV 20 
% α ≈ 100
     
  16106.0 8           K MN P  STU  XY a  de  h j         t vwx  01 3      2+ 5.3 keV 2 
% IT = 0.27
% p = 0.41
% α = 99.3
   3396
   5257
   6463
  11660.1
  16094.4
    1.5 3 
    3.8 9 
    2.4 5 
  100 12 
    4.6 9 
M1
E1
E1
M1
E2
  12710
  10847
   9641
   4439.82
      0
1+
1-
3-
2+
0+
  16620 50             MNOP  S       a   e  h j           v              2- 280 keV 28 
% IT = 2.9×10-3
% p ≈ 50
% α ≈ 50
  12180
  16608
  100
    0.60 1 

M2
   4439.82
      0
2+
0+
  17230               P RSTU   YZ                                    1- 1.15 MeV
% IT = 4.3×10-3
% p = 87
% α = 13
  12783
  17217
   11
  100


   4439.82
      0
2+
0+
  17760 20           K    P RS       a                    v    0  3      0+ 96 keV 5 
% IT = 4.0×10-3
% p = 82
% α = 17.4
   5049
  100

  12710
1+
  18160 70                P          a                    v              (1+) 240 keV 50 
% IT > 0
% p < 100
   3049
  100

  15110
1+
  18350 50                P RSTU  XY          jk                         3- 220 keV 50 
% p = 22
% α = 78
% IT > 0
   8706
  13902
  18335
  100
   56
    3.5E-4



   9641
   4439.82
      0
3-
2+
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  18350 50                  R T   XY     e  hijk                         2- 350 keV 50 
% p ≈ 100
     
  18390?               PQRS                                           0- 43 keV
% p ≈ 100
     
     18.6E+3 1 ?                          a                                   (3-) 300 keV      
  18710               P  S                                           100 keV
% α ≥ 90
% p < 10
     
  18800 40                PQRS                j           v    0         2+ 100 keV 15 
% IT = 2.5×10-3
% n = 1
% p = 99
  14351
  18784
  100
  <20


   4439.82
      0
2+
0+
     19.2E3 6                PQRS U              j                          (1-) ≈ 1.1 MeV
% IT = 3.2×10-3
% n = 14
% p = 63
% α = 23
     14.75E3
     19.2E3
   40
  100


   4439.82
      0
2+
0+
  19400 25                PQRS       a   e  h                    2       2- 490 keV 30 
% IT = 6×10-4
% n = 9
% p = 46
% α = 43
  14950
  100

   4439.82
2+
  19555 25                    TU     a   e  h j                          4- 485 keV 40 
% p = 42
% α = 58
% IT > 0
     
  19690                QR              g                             1+ 230 keV 35 
% n < 100
% p < 100
     
     20.0E+3 1                 QR        a                    v              2+ 375 keV 100 
% IT > 0
% n < 100
% p < 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  20270 50                 QR            e                v              (1+) 215 keV 45 
% n < 100
% p < 100
     
  20553 5             MN P  S     Y a      h                  0 2       (3+) 300 keV 50 
% IT > 0
% p < 100
% α < 100
  20534
 

      0
0+
  20600 30                PQRSTU     a   e                v              (3-) 280 keV 75 
% p = 68
% α = 32
% IT > 0
% n > 0
  20581
 

      0
0+
  20990                Q               g                             ≈ 370 keV
% n < 100
% p < 100
     
     21.60E+3 10                PQRS        b  e gh jk     q                   (2+,3-) 1.20 MeV 15 
% IT > 0
% n < 100
% p < 100
% α < 100
     21.58E3
 

      0
0+
  21990 50                 QRS       a   e  hi                           1- 0.61 MeV 11 
% IT > 0
% n < 100
% p < 100
  21968
 

      0
0+
  22370 50                 QR  U         e                       2       (1-) 290 keV 40 
% n < 100
% p < 100
     
     22.40E3 20 ?                                   jk                         (5-) % α ≈ 100
     
     22.65E3 10                PQ S      Za c e  h                            1- 3.2 MeV
% IT = 0.08
% n < 100
% p < 100
% α < 100
     22.63E3
 

      0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  23040                QRS                                           (2-) 60 keV
% n < 100
% p < 100
     
  23530 30           K    PQ S       a   e  h j                          1- 238 keV 24 
% IT > 0
% n < 100
% p < 100
% α < 100
  19074
  23505
 
 


   4439.82
      0
2+
0+
  23990 50                 Q         a   e  h  k                 2       1- 0.57 MeV 12 
% IT > 0
% n < 100
% p < 100
     
  24380 50                 Q               gh                            2+ 671 keV 67 
% n < 100
% p < 100
     
     24.41E3 15                PQ                                             1.3 MeV 3 
% IT > 0
% n < 100
% p < 100
      9.29E3
 

  15110
1+
     24.90E3 20                 Q         a                                   920 keV
% n < 100
% p < 100
     
     25.30E+3 15                 Q             e    j                          (1-) 0.51 MeV 10 
% n < 100
% p < 100
     
     25.40E3 10            L   P  S      Za       ijk     q    v              (1-) 2 MeV
% IT > 0
% n < 100
% p < 100
     20.94E3
     25.37E3
 
 


   4439.82
      0
2+
0+
  25960           L   PQ                                             2+ 710 keV
% n < 100
% p < 100
% D < 100
% α < 100
     
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  26800           L   PQ S                                           275 keV
% IT > 0
% p < 100
% D < 100
% α < 100
% n < 100
  19130
  22338
 
 


   7654.07
   4439.82
0+
2+
     27.0E+3 3            L   P         Z    e   i k                         (1-) 1.4 MeV 2 
% IT > 0
% p < 100
     
  27595.0 24     E     K                                         0         0+ ≤ 30 keV
% p = 27.4
% D = 2.8
% IT > 0
% α = 19.6
  12478
 

  15110
1+
     27.8E3 2      F         P  S       a                                   ≈ 350 keV
% IT > 0
% n < 100
% p < 100
% 3HE < 100
% α < 100
     23.3E3
     27.8E3
 
 


   4439.82
      0
2+
0+
  28200    E                                                         1- 1.6 MeV
% 3HE ≈ 100
% IT > 1.7×10-3
     20.52E3
     28.16E3
 
 


   7654.07
      0
0+
0+
  28830 40     E      L   P                  ijk                         1.54 MeV 9 
% IT > 0
% p < 100
% D < 100
% 3HE < 100
% α < 100
  21156
  28793
 
 


   7654.07
      0
0+
0+
     29.4E+3 3      F         P        YZ    e                               (2+) ≈ 800 keV
% IT > 0
% n < 100
% p < 100
% 3H < 100
% 3HE < 100
     29.4E3
 

      0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  29630 50                                                     0         ≤ 200 keV
% p = 80
% α ≈ 20
     
  30290 30   C E                     a                                   (2+,2-) 1.54 MeV 9 
% IT > 0
% 3HE < 100
% α < 100
     25.82E3
 

   4439.82
2+
  31160 30     E                                                         2.10 MeV 15 
% IT > 0
% 3HE < 100
     31.12E3
 

      0
0+
  32290 40   C E                     a                                   1.32 MeV 23 
% IT > 0
% n < 100
% p < 100
% 3HE < 100
     24.61E3
     27.82E3
 
 


   7654.07
   4439.82
0+
2+
     33.47E+3 21     E                                                         1.93 MeV 5 
% IT > 0
% 3HE < 100
     25.79E3
     28.99E3
 
 


   7654.07
   4439.82
0+
2+

T1/2(level): LABEL=Γ

E(γ): From level energy difference; recoil correction applied

Back to top

Back to top

Additional Gamma Data:











E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityAdditional Data
   4439.82 2+ 10.8×10-3 eV 6 
% IT = 100
   4438.94E2B(E2)(W.u.)=4.65 26
   7654.07 0+ 9.3 eV 9 
% IT = 4.16E-2
% α ≈ 100
   3213.79E2B(E2)(W.u.)=8.26 85
   9641 3- 46 keV 3 
% α ≈ 100
% IT < 4.1E-5
   9637E3B(E3)(W.u.)=12 2
  12710 1+ 18.1 eV 28 
% IT = 2.2
% α = 97.8
   8267M1B(M1)(W.u.)=4.5×10-3 8
1+ 18.1 eV 28 
% IT = 2.2
% α = 97.8
  12703M1B(M1)(W.u.)=8.1×10-3 12
  15110 1+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
   2400M1B(M1)(W.u.)=2.0 6
1+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
   7453M1B(M1)(W.u.)=0.13 2
1+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
  10665M1B(M1)(W.u.)=3.8×10-2 5
1+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
  15100M1B(M1)(W.u.)=0.531 11
  16106.0 2+ 5.3 keV 2 
% IT = 0.27
% p = 0.41
% α = 99.3
   3396M1B(M1)(W.u.)=0.23 5
2+ 5.3 keV 2 
% IT = 0.27
% p = 0.41
% α = 99.3
   6463E1B(E1)(W.u.)=3.2E-3 6
2+ 5.3 keV 2 
% IT = 0.27
% p = 0.41
% α = 99.3
  11660.1M1B(M1)(W.u.)=0.38 5
2+ 5.3 keV 2 
% IT = 0.27
% p = 0.41
% α = 99.3
  16094.4E2B(E2)(W.u.)=0.40 8
  16620 2- 280 keV 28 
% IT = 2.9E-3
% p ≈ 50
% α ≈ 50
  12180 B(E1)(W.u.)=1.2E-2
2- 280 keV 28 
% IT = 2.9E-3
% p ≈ 50
% α ≈ 50
  16608M2B(M2)(W.u.)=0.48 8
  17230 1- 1.15 MeV
% IT = 4.3E-3
% p = 87
% α = 13
  12783 B(E1)(W.u.)=6.7E-3
1- 1.15 MeV
% IT = 4.3E-3
% p = 87
% α = 13
  17217 B(E1)(W.u.)=2.4E-2
  17760 0+ 96 keV 5 
% IT = 4.0E-3
% p = 82
% α = 17.4
   5049 B(M1)(W.u.)=1.4 6
  18350 3- 220 keV 50 
% p = 22
% α = 78
% IT > 0
   8706 B(M1)(W.u.)=0.41 2
3- 220 keV 50 
% p = 22
% α = 78
% IT > 0
  13902 B(E1)(W.u.)=3.3E-3
3- 220 keV 50 
% p = 22
% α = 78
% IT > 0
  18335 B(E3)(W.u.)<6.5E2
  18800 2+ 100 keV 15 
% IT = 2.5E-3
% n = 1
% p = 99
  14351 B(M1)(W.u.)=3.2×10-2
2+ 100 keV 15 
% IT = 2.5E-3
% n = 1
% p = 99
  18784 B(E2)(W.u.)≈0.13

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
   7654.070+ 9.3 eV 9 
% IT = 4.16×10-2
% α ≈ 100
T=0
Γrad/Γ=(Γγπ)/Γ=(4.16 11)×10-4. From 104×Γrad/Γ=3.3 9 (1961Al23), 3.5 12 (1964Ha23), 4.20 22 (1974Ch03), 4.4 2 (1975Da08), 4.15 34 (1975Ma34), 4.09 27 (1976Ob03), 3.87 25 (1976Ma46). The value from (1961Al23) has sometimes been miscopied as 3.4, but it has no impact on the average. The value of (1975Da08) has been corrected, as indicated in (1976Ob03). The value (2.82 29)×10-4 (1963Se23) is a statistical outlier; including this value yields the average (3.99 18)×10-4 that is the weighted average using the external uncertainty. The value in (1990Aj01) did not use the corrected (1975Da08) value. In (2014Fr09), the value (4.19 10)×10-4 is deduced by rounding the above values to the nearest tenth.
E(level): Γrad/Γ=(Γγπ)/Γ=(4.16 11)×10-4. From 104×Γrad/Γ=3.3 9 (1961Al23), 3.5 12 (1964Ha23), 4.20 22 (1974Ch03), 4.4 2 (1975Da08), 4.15 34 (1975Ma34), 4.09 27 (1976Ob03), 3.87 25 (1976Ma46). The value from (1961Al23) has sometimes been miscopied as 3.4, but it has no impact on the average. The value of (1975Da08) has been corrected, as indicated in (1976Ob03). The value (2.82 29)×10-4 (1963Se23) is a statistical outlier; including this value yields the average (3.99 18)×10-4 that is the weighted average using the external uncertainty. The value in (1990Aj01) did not use the corrected (1975Da08) value. In (2014Fr09), the value (4.19 10)×10-4 is deduced by rounding the above values to the nearest tenth.
   96413- 46 keV 3 
% α ≈ 100
% IT < 4.1×10-5
T=0
Γrad/Γ<4.1×10-7 (1974Ch32). This implies Γrad<19 meV.
E(level): Γrad/Γ<4.1×10-7 (1974Ch32). This implies Γrad<19 meV.
   98702+ 850 keV 85 
% IT ≈ 7.1×10-6
% α ≈ 100
T=0
Γ|γ0=60 meV 10 (2013Zi03); deduced from photobreakup.
E(level): Γ|γ0=60 meV 10 (2013Zi03); deduced from photobreakup.
   99300+ 2710 keV 80  E(level): Decay mode not specified.
     10.3E+3(0+) 3.0 MeV 7 
% α ≈ 100
T=0
The R-matrix analysis of (2010Hy01) indicates the origin of the 10.3 MeV group is related to interference between the Jπ=0+ state at Ex=7.65 MeV and higher-lying strength near 11 MeV that, "gives the very broad component from 8.5 to 11 MeV, which has been mistaken for a 10.3 MeV resonance with a 3 MeV width ". We continue to list this state because of the value of the historic record of reports and studies of the Ex=10.3 MeV group, and because of still unresolved questions on the Jπ=0+ (and 2+) strength in the Ex=9-13 MeV region. However, future studies may provide different and more complete interpretation of this region.
E(level): The R-matrix analysis of (2010Hy01) indicates the origin of the 10.3 MeV group is related to interference between the Jπ=0+ state at Ex=7.65 MeV and higher-lying strength near 11 MeV that, "gives the very broad component from 8.5 to 11 MeV, which has been mistaken for a 10.3 MeV resonance with a 3 MeV width ". We continue to list this state because of the value of the historic record of reports and studies of the Ex=10.3 MeV group, and because of still unresolved questions on the Jπ=0+ (and 2+) strength in the Ex=9-13 MeV region. However, future studies may provide different and more complete interpretation of this region.
  127101+ 18.1 eV 28 
% IT = 2.2
% α = 97.8
T=0, Γα=17.7 28
Γα/Γ=0.978 1 (1977Ad02), which implies Γα=17.7 eV 28.
E(level): See discussion on the charge-dependent matrix element between 12C*(12710,15110) in Table 12.18 (2017Ke05).
     13.3E34+ 1.7 MeV 2  T=0
E(level): Decay mode not specified.
  151101+ 43.6 eV 10 
% IT = 95.9
% α = 4.1
T=1, Γγ=41.8 12, Γα=1.8 4
E(level): See discussion on the charge-dependent matrix element between 12C*(12710,15110) in Table 12.18 (2017Ke05).
  15440(2+) 1.77 MeV 20 
% α ≈ 100
T=(0)
E(level): Decay mode not specified.
  166202- 280 keV 28 
% IT = 2.9×10-3
% p ≈ 50
% α ≈ 50
T=1, Γγ=8 EV, Γp=140 KEV, Γα=140 KEV
Γα≈Γα1, Γα0<0.27 keV (1965Se06).
E(level): Γα≈Γα1, Γα0<0.27 keV (1965Se06).
  172301- 1.15 MeV
% IT = 4.3×10-3
% p = 87
% α = 13
T=1, Γγ≈50 EV, Γp=1.0 MEV, Γα=150 KEV
Γp0=1 MeV, Γα0=10 keV, Γα1=140 keV, Γγ0=44 eV Γγ1= 5 eV, (2J+1)Γγ0|>115 eV (1965Se06).
  177600+ 96 keV 5 
% IT = 4.0×10-3
% p = 82
% α = 17.4
T=1
Γγ(|)12.71 MeV)=3.7 eV 15 (1982Ha12).
E(level): Γγ(|)12.71 MeV)=3.7 eV 15 (1982Ha12).
  18160(1+) 240 keV 50 
% IT > 0
% p < 100
T=(0)
(2J+1)Γγ(|)15.1)|>2.8 eV 6 (1972Su08).
E(level): (2J+1)Γγ(|)15.1)|>2.8 eV 6 (1972Su08).
  183503- 220 keV 50 
% p = 22
% α = 78
% IT > 0
T=1
Γp0/Γ=0.22, Γα0/Γ=0.21, Γα1/Γ=0.57 , Γγ0<1.5 eV, Γγ1=3.2 eV (1965Se06).
E(level): Γp0/Γ=0.22, Γα0/Γ=0.21, Γα1/Γ=0.57 , Γγ0<1.5 eV, Γγ1=3.2 eV (1965Se06). See discussion in (1983Ne11).
  183502- 350 keV 50 
% p ≈ 100
T=0+1
E(level): See discussion in (1983Ne11).
  183900- 43 keV
% p ≈ 100
T=(1)
Γp0/Γ=0.79, Γp1/Γ=0.21 (1965Se05).
     18.6E+3(3-) 300 keV E(level): Decay mode not specified.
  18710 100 keV
% α ≥ 90
% p < 10
T=(1)
Γp0/Γ|<0.1.
  188002+ 100 keV 15 
% IT = 2.5×10-3
% n = 1
% p = 99
Γp0=97 keV, Γp1=2 keV, Γn=1.1 keV, Γγ0≈0.4 eV, Γγ1=2 eV (1965Se06).
E(level): Γp0=97 keV, Γp1=2 keV, Γn=1.1 keV, Γγ0≈0.4 eV, Γγ1=2 eV (1965Se06).
     19.2E3(1-) ≈ 1.1 MeV
% IT = 3.2×10-3
% n = 14
% p = 63
% α = 23
T=(1)
Γp0=300 keV, Γp1=400 keV, Γn=150 keV, Γα0=50 keV, Γα1=200 keV Γγ0=25 eV, Γγ1=10 eV (1965Se06).
E(level): Γp0=300 keV, Γp1=400 keV, Γn=150 keV, Γα0=50 keV, Γα1=200 keV Γγ0=25 eV, Γγ1=10 eV (1965Se06).
  194002- 490 keV 30 
% IT = 6×10-4
% n = 9
% p = 46
% α = 43
T=1
Partial decay widths are given in (1965Se06) for a Jπ=2+ Γ=1.1 MeV state at Ex=19.4 MeV.
E(level): Partial decay widths are given in (1965Se06) for a Jπ=2+ Γ=1.1 MeV state at Ex=19.4 MeV. See discussion in (1983Ne11).
  195554- 485 keV 40 
% p = 42
% α = 58
% IT > 0
T=1
See discussion on Jπ=2- and 4- doublet and partial widths in (1983Ne11).
E(level): See discussion on Jπ=2- and 4- doublet and partial widths in (1983Ne11). See discussion in (1983Ne11).
     24.41E3 1.3 MeV 3 
% IT > 0
% n < 100
% p < 100
(2J+1)Γp0Γγ/Γ=20.8 28.
E(level): (2J+1)Γp0Γγ/Γ=20.8 28.
  27595.00+ ≤ 30 keV
% p = 27.4
% D = 2.8
% IT > 0
% α = 19.6
T=2
Partial widths from (1979Fr04).
E(level): Partial widths from (1979Fr04).
  32290 1.32 MeV 23 
% IT > 0
% n < 100
% p < 100
% 3HE < 100
Also decays via 6Li emission.
E(level): Also decays via 6Li emission.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
  15110   2400E(γ): Γ data based on Γγ0 of (1983De53) and on branching ratios of (1972Al03): 12c*(15110) to 12c*(0,4439,7654,12710) are (92 2)%, (2.3 3)%, (2.6 7)%, (1.4 4)%, respectively. In addition, an undetected branching of 1.6% to 12c*(10300) is indicated in the β- decay work of (1972Al03). See also (1980Aj01).
   7453E(γ): Γ data based on Γγ0 of (1983De53) and on branching ratios of (1972Al03): 12c*(15110) to 12c*(0,4439,7654,12710) are (92 2)%, (2.3 3)%, (2.6 7)%, (1.4 4)%, respectively. In addition, an undetected branching of 1.6% to 12c*(10300) is indicated in the β- decay work of (1972Al03). See also (1980Aj01).
  10665E(γ): Γ data based on Γγ0 of (1983De53) and on branching ratios of (1972Al03): 12c*(15110) to 12c*(0,4439,7654,12710) are (92 2)%, (2.3 3)%, (2.6 7)%, (1.4 4)%, respectively. In addition, an undetected branching of 1.6% to 12c*(10300) is indicated in the β- decay work of (1972Al03). See also (1980Aj01).
  17230  17217I(γ): From (1965Se06).
  18350   8706I(γ): From (1965Se06)
  18800  14351I(γ): From (1965Se06)
     19.2E3     19.2E3I(γ): From (1965Se06)
  19400  14950I(γ): From (1965Se06)

Back to top