$^{12}C(\pi,\pi),(\pi^-,\pi^-)$ **1984Bl12,1987Co17,1993Ko17**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017

1970Ma18: ¹²C(π^+,π^+),(π^-,π^-) E=30 MeV, measured $\sigma(\theta)$.

1972Sc18,1974Mu03: ¹²C(π^+,π^+) E=115,167,242 MeV, measured $\sigma(\theta)$. Deduced Coulomb-nuclear interference effects, real part of forward nuclear amplitude.

1975Am03,1976Co10,1978Dy01,1979Dy02: ¹²C(π^+,π^+) E=50 MeV, measured $\sigma(\theta)$. Optical model analysis.

1975Ba57: ¹²C(π^+,π^+), ¹²C(π^+,π^+) E=70-100 MeV, measured $\sigma(\theta)$.

1975Ka03: ¹²C(π,π) E=120-230 MeV, calculated $\sigma(\theta)$. Phenomenological model.

1976Do06: ${}^{12}C(\pi^+,\pi^+)$ E=29 MeV, measured $\sigma(\theta)$.

1977Pi02,1977Pi09,1978Ch33,1979Ch05: ¹²C(π^+,π^+),(π^+,π^+), (π^-,π^-),(π^-,π^-) E=148,162,226 MeV, measured $\sigma(\theta)$.

1978Be64: ${}^{12}C(\pi^-,\pi^-)$ E at 0.62-60 GeV/c. ${}^{12}C$ level deduced excitation mechanism.

1978BIZX: ¹²C(π , π) E=180,191 MeV, measured σ (quasi-free).

1978Jo03: ¹²C(π^+,π^+) E=28.4,38.6,48.9 MeV, measured $\sigma(\theta)$.

1978Jo09: ¹²C(π^-,π^-) E=29 MeV, measured $\sigma(\theta)$.

1978Mo25: ¹²C(π^+,π^+) E=49.9 MeV, measured $\sigma(\theta)$.

1979B107: ¹²C(π^+,π^+) E=40 MeV, measured $\sigma(\theta)$.

1979Gu01: ¹²C(π^+,π^+) E=23,29,35 MeV, measured $\sigma(\theta)$, θ >161°, comparison with calculations based on

Ericson-Ericson-Lorentz-Lorenz effect, models of Landau-Thomas, Stricker, others.

1979GyZZ,1979Jo08: ¹²C(π^-,π^-) E=29 MeV, measured ratios of $\sigma(\theta)$.

1979Mo15: ${}^{12}C(\pi^+,\pi^+),(\pi^-,\pi^{-\prime}) = 162$ MeV, measured $\sigma(E_{\pi^+},\theta), \sigma(E_{\pi^-},\theta)$. ${}^{12}C$ deduced isospin mixed doublet near 19.5 MeV. 1980Ba45: ${}^{12}C(\pi^+,\pi^+) = 38.6,47.7$ MeV, measured $\sigma(\theta)$. ${}^{12}C$ deduced rms charge radii differences.

1980 Da45: $-C(\pi^{-},\pi^{-}) = 58.0,41.7$ MeV, measured $\sigma(\theta)$. -C deduced this charge radii differences.

1980Fr12: ¹²C(π^-,π^-)E at 40 GeV/c, measured $\pi^-\gamma$ -coin, σ (total). Deduced semicoherent channel effects on hadronic processes.

1980Ka13: ${}^{12}C(\pi^-,\pi^-)$ E at 40 GeV/c, measured multiplicity, rapidity distributions, inelasticity coefficients.

1980Th01: ${}^{12}C(\pi^+,\pi^+)$ E \approx 100-200 MeV, measured $\sigma(E,\theta)$. ${}^{12}C$ deduced level, isospin mixing effects.

1981Am02: ¹²C(π^+,π^+),(π^+,π^+) E=35,68 MeV, measured $\sigma(\theta)$. Optical model, DWIA analysis.

1981Pr03: ${}^{12}C(\pi^+,\pi^+)$ E=30,50 MeV, measured $\sigma(\theta)$.

1982AnZW: ¹²C(π^-,π^-),(π^-,π^-) E=100 MeV, measured $\sigma(\theta)$.

1982Gi08: ¹²C(π^+,π^+) E=13.9 MeV, measured $\sigma(\theta)$. Deduced absorption parameters.

1982Gu08: ${}^{12}C(\pi^+,\pi^+)$ E=29,38,44,50,56 MeV, measured $\sigma(\theta)$.

1983B111: ¹²C(π^-,π^-), (π^+,π^+) E=65,80 MeV, measured $\sigma(\theta)$. Deduced isospin effects, pion-nucleus optical potential parameters.

1983Ob02: ¹²C(π^+,π^+) E=20 MeV, measured $\sigma(\theta)$. Deduced optical model, s-, p-wave strength parameters.

1984An11: ¹²C(π^-,π^-),(π^-,π^-),(π^+,π^+),(π^+,π^+) E=100 MeV, measured $\sigma(\theta), \sigma(E_{\pi})$.

1984B112: ¹²C($\pi^+,\pi^+\prime$) E=170 MeV, deduced resonances, Γ , possible multipole character.

1984De21: ${}^{12}C(\pi^-,\pi^-),(\pi^+,\pi^+) E=76$ MeV, measured $\sigma(\theta)$. Deduced forward scattering amplitude vs E, Coulomb-nuclear interference role.

1984Fa11: ¹²C($\pi^-,\pi^-\prime$), ($\pi^+,\pi^+\prime$) E=220 MeV, measured $\sigma(\theta_{\pi},E_{\pi})$, vs missing mass. Deduced reaction mechanism.

1984Gm01: ${}^{12}C(\pi^+,\pi^+)$ E=87.5,162,226 MeV, measured $\sigma(\theta)$. Deduced reaction mechanism.

1984Le01: ${}^{12}C(\pi^-,\pi^-)(\pi^+,\pi^+)$ E=80 MeV, measured $\sigma(\theta)$.

1984Ma42: ¹²C(π^-,π^-),(π^-,π^-),(π^+,π^+),(π^+,π^+) E=675.7 MeV, measured $\sigma(\theta)$. Deduced optical model parameters. DWBA analysis.

1984Mo18: ¹²C(π^+,π^+), (π^+,π^+) E=162 MeV, measured $\sigma(\theta)$, missing mass spectra. DWIA analysis.

1984So12: ¹²C($\pi^+,\pi^+\prime$) E=65,90 MeV, measured $\sigma(\theta_{\pi}), \theta_{-\gamma}$). Deduced nuclear matter density role, pion-nuclear reaction mechanism role.

1984So13: ¹²C(π^-,π^-), $(\pi^-,\pi^-'), (\pi^+,\pi^+), (\pi^+,\pi^+') \to 0$ MeV, measured $\sigma(\theta)$. Deduced neutron, proton matrix elements.

1984TaZY: ¹²C(π^-,π^-)(π^-,π^-),(π^+,π^+),(π^+,π^+) E=50 MeV, measured $\sigma(\theta)$.

1985Ki05: ¹²C(π +,X) E at 2 GeV/c, measured I_{γ}(θ), Doppler line shapes. ¹²C level deduced excitation mechanism.

1985Mi16: ¹²C(π^+,π^+),(π^-,π^-) E=50 MeV, measured, analyzed $\sigma(\theta)$. Deduced isospin dependence, neutron, proton density equality.

1986An01: $C(\pi^+, \pi^{+\prime})$ E=67-100 MeV, measured $\sigma(\theta, E)$.

1986DhZZ: ¹²C(π^-,π^-) E≈resonance, measured σ (E).

1986Le11: ${}^{12}C(\pi^+,\pi^+),(\pi^+,\pi^+') E=50$ MeV, measured $\sigma(\theta)$. ${}^{12}C$ transition deduced multiple scattering suppression,

 $^{12}C(\pi,\pi),(\pi^{-},\pi^{-})$ 1984Bl12,1987Co17,1993Ko17 (continued)

Ericson-Ericson-Lorentz-Lorenz effect evidence.

- 19860107: ¹²C($\pi,\pi'\gamma$) E=116,140,162,180,226 MeV, measured $\pi^-\gamma(\theta)$, $\pi^-\gamma(\Phi)$. Deduced isobar-nucleus dynamics role.
- 1987Co17: ${}^{12}C(\pi^+,\pi^+),(\pi^-,\pi^{-\prime}) = 100-291$ MeV, measured $\sigma(\theta)$. Deduced σ . ${}^{12}C$ levels deduced isospin mixing effects. DWIA analysis.
- 1987Dh01: ¹²C(π^+,π^+) E=100-240 MeV, measured $\sigma(\theta)$. Deduced model parameter modifications.
- 1988Ba27,1988O102: ¹²C($\pi,\pi'\gamma$) E=116,140,162,180,226 MeV, measured $\sigma(E_{\pi}), \pi^-\gamma$ -coin. ¹²C levels deduced relative $\sigma(\text{ratio})$ vs
- 1988Oa03: ${}^{12}C(\pi^{-},\pi^{-\prime}),(\pi^{+},\pi^{+\prime})$ E=80-295 MeV, measured $\sigma(\theta)$. Deduced isobar excitation role. ${}^{12}C$ levels deduced σ ratio.
- 1988Ri03: ${}^{12}C(\pi^+,\pi^+'),(\pi^-,\pi^{-\prime}) E=50$ MeV, measured missing mass spectra, $\sigma(\theta)$. ${}^{12}C$ deduced 1⁺ doublet excitation σ ratio anomaly nature.
- 1988St07: ¹²C(π^+,π^+) E=180-260 MeV, analyzed $\sigma(\theta)$.

1989Kh06: ¹²C(π,π) E=low, analyzed $\sigma(\theta)$, σ , other data. Deduced model parameters, π -nucleus scattering lengths, strong interaction shifts, widths.

1990Ja05: ¹²C(π^-,π^-), (π^-,π^-), (π^+,π^+), (π^+,π^+) E=50 MeV, measured $\sigma(\theta)$. ¹²C levels deduced isospin mixing features. **1990Ri04**: ¹²C(π^{-},π^{-}),(π^{+},π^{+}) E=50 MeV, measured $\sigma(\theta)$.

1990Se04: ${}^{12}C(\pi^-,\pi^-)$ E=30,50 MeV, ${}^{12}C(\pi^+,\pi^+)$ E=50 MeV, measured $\sigma(\theta)$. Deduced optical model fits. DWBA analysis. DWBA analysis.

1991Mo13: ¹²C(π^-,π^-) E=162 MeV, measured pion spectra, $\sigma(E,\theta)$.

1992RaZX: ¹²C(π,π) E=400,500 MeV, measured $\sigma(\theta)$.

1993Ko17: ¹²C(π^+ , $\pi^+\prime$), (π^- , $\pi^-\prime$), E=40,50,65 MeV; measured $\sigma(\theta)$. ¹²C deduced level energies, Γ , sum rule strengths. DWIA analysis.

1994Bu09: ¹²C(π^-,π^-) E=20,40 MeV, measured $\sigma(\theta)$. Deduced optical model parameters.

1995Bu37: ${}^{12}C(\pi,\pi)$ E=40 GeV, analyzed radiative scattering data. Deduced polarizability parameters determination accuracy related features.

1995Ta11: ¹²C(π^-,π^-) E at 610-895 MeV/c, measured $\sigma(\theta)$. Deduced total, elastic, reaction σ .

- 1995TaZW: ${}^{12}C(\pi^{-},\pi^{-})$ E at 610,710,790,895,1000 MeV/c, ${}^{12}C(\pi^{+},\pi^{+})$ E at 1 GeV/c, measured $\sigma(\theta)$. Deduced reaction mechanism.
- 1997Ka22: ${}^{12}C(\pi^-,\pi^-),(\pi^+,\pi^+) = 400,500 \text{ MeV}$, measured $\sigma(\theta)$; ${}^{12}C(\pi^+,\pi^+) = 672.5 \text{ MeV}, {}^{12}C(\pi^-,\pi^-) = 486.2,672.5 \text{ MeV},$ analyzed $\sigma(\theta)$.

¹²C Levels

E(level)	\mathbf{J}^{π}	E(level)	\mathbf{J}^{π}	T _{1/2}
0		19.4×10 ^{3†}	2-	
4.4×10^{3}		19.65×10 ³ [†]		
7.7×10^3		19.85×10 ^{3‡}		330 keV
9.6×10^3		$20.0 \times 10^{3#}$ 2		3.2 MeV 3
12.7×10^3		22.1×10^{3}		198 keV
15.1×10^3		$22.7 \times 10^{3#} 4$		1.0 MeV 2
16.1×10^3		22.94×10 ³ [‡]		192 keV
18.25×10^{3}	2^{-}	$23.7 \times 10^{3 \ddagger @}$		79 keV
19.25×10^{3}	4	25.4×10^{3}		232 keV

[†] From (1987Co17).

[#] From (1984B112).

[@] See (1982Mo25).

[‡] From (1993Ko17).