$^{12}\mathbf{C}(\gamma,\alpha),(\gamma,\mathbf{n}),(\gamma,\mathbf{p})$ 2008Af04,2013Zi03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017

1966Fu02: ¹²C, measured photoneutron cross sections up to 37 MeV; deduced nuclear properties.

1966Lo04: ${}^{12}C(\gamma,n)$, measured cross sections; deduced nuclear properties.

1976Ca21: ¹²C(γ ,p) E=16.0-30.0 MeV bremsstrahlung, measured σ (E, θ), absolute σ (E). ¹²C GDR deduced possible E2 component.

2008Af04: ¹²C(γ, α) E_{γ}<40 MeV, measured cross sections.

2011Ga09: ¹²C(γ ,3 α) E=9.51-11.14 MeV, measured E $_{\alpha}$, I $_{\alpha}$, α - α -coin at TUNL/HIGS. ¹²C deduced dissociation events, $\sigma(\theta)$ for E2 transition, 2⁺ state.

2013Zi03: XUNDL dataset compiled by TUNL, 2013.

Photobreakup of ¹²C was measured at 7 energies between 9.1 and 10.7 MeV at the TUNL/HIGS facility in search of the second $J^{\pi}=2^+$ state of ¹²C, which is thought to be the 2⁺ member of a rotational band built upon the E_x=7.6 MeV state, the so-called Hoyle state.

- The photon beams, with energy spreads of $\approx 300-350$ keV impinged on a 100 torr Co₂(80%)+N₂(20%) scintillating gas mixture that filled an optical time projection chamber (O-TPC). Charged particles tracks from breakup events were analyzed to characterize the events. Most ¹²C breakup events proceeded via the ⁸Be_{g.s.} (i.e. ¹²C(γ, α_0)⁸Be_{g.s.} $\rightarrow 2\alpha$), and these events were reasonably separated from reactions on nitrogen and oxygen.
- The complete angular distributions were measured for each event, and the data was analyzed to obtain the E1 and E2 amplitudes as well as the corresponding relative phase. A resonance in the E2 cross section is found. A more sophisticated analysis of the data points that rigorously treats the overlap of the γ -ray beam profile with the changing E2 cross section excitation function may yield different results in a future analysis.

¹²C Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	0^+		
$10.03 \times 10^{3 \ddagger}$ 11	2^{+}	0.80 MeV 13	$\Gamma_{\gamma 0} = 0.060 \text{ eV } 10 (2013\text{Zi}03)$
10.21.103**		1 5 1 1 1 1	E(12013) $E(12013)$.
10.31×10 ⁵ +		1.5 MeV	
17.47×10^{377} 12		6.12 [†] MeV 14	
18.67×10 ^{3†‡}		3.5 [†] MeV	
22.3×10 ^{3#}		1 MeV	E(level),Γ: From (1966Fu02,1966Lo04).
22.5×10^3 @		3.2 MeV	E(level),Γ: From (1976Ca21).
23.3×10 ^{3#}		2 MeV	E(level), Γ: From (1966Fu02,1966Lo04).
24.05×10 ^{3†‡}		0.5 [†] MeV	
25.2×10^3 @		2 MeV	E(level),Γ: From (1976Ca21).
$25.5 \times 10^{3#}$		2 MeV	E(level), Γ: From (1966Fu02,1966Lo04).
27.12×10 ³ ^{†‡} 34		4.56 [†] MeV <i>14</i>	
27.30×10 ³ †‡		2.0 [†] MeV	
29.47×10 ³ †‡		0.8^{\dagger} MeV	
32.72×10 ^{3†‡}		†	Γ: Broad.

[†] From (2008Af04).

[‡] Reported in ${}^{12}C(\gamma, \alpha)$. [#] Reported in ${}^{12}C(\gamma, n)$. See also Table 12.17 in (1968Aj02).

[@] Reported in ${}^{12}C(\gamma,p)$.

