# <sup>13</sup>O εp decay:8.58 ms **2005Kn02**

|                 | History                                    |                   |                        |  |  |  |  |
|-----------------|--------------------------------------------|-------------------|------------------------|--|--|--|--|
| Type            | Author                                     | Citation          | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | J. H. Kelley, J. E. Purcell and C. G. Sheu | NP A968,71 (2017) | 1-Jan-2017             |  |  |  |  |

Parent: <sup>13</sup>O: E=0;  $J^{\pi}=3/2^{-}$ ;  $T_{1/2}=8.58$  ms 8;  $Q(\varepsilon p)=15826$  10; % $\varepsilon p$  decay=11.3 23

2005Kn02: The  $^{13}$ O ions were produced At the IGISOL facility via the  $^{12}$ N(p,2n) reaction by impinging an E(p) $\approx$ 45 MeV beam on a 1 mg/cm<sup>2</sup> target. The  $^{13}$ O ions recoiled out of the target and were collected In a helium carrier gas which delivered them to the mass separator. The ions were implanted on a 30  $\mu$ g/cm<sup>2</sup> carbon foil. The implantation target was surrounded by three position sensitive  $\Delta$ E-E Si detector telescopes which triggered the data acquisition and the ISOLDE Si ball.

The observed proton energy spectrum was analyzed using Breit-Wigner peak shapes, and the best fit parameters for decay groups was deduced using MINUIT. The absolute intensity for decay branches was not directly measured, hence the results are normalized to a prior measurement of the strong 9.8% 20  $^{13}$ N\*(3502) decay to  $^{12}$ C<sub>g.s.</sub> (1990As01).

The (2005Kn02) data set has the highest statistics and covers a broader energy range, when compared to the prior measurements (1965Mc09,1970Es03,1990As01); furthermore the discussion on the line shape analysis suggests the results of (2005Kn02) should Be adopted. Noteworthy differences between other measurements are for decay from <sup>13</sup>N\*(8918), (2005Kn02) observe a stronger P<sub>1</sub> branch than earlier measurements. Second, No evidence is seen for decay of <sup>13</sup>N\*(10360); the difference is attributed to the more sophisticated lineshape analysis.

A subtle note to understand the (2005Kn02) manuscript: In Table 2 the  $^{13}$ N\*(15065) % of all  $\beta$ -decays value includes unobserved contributions from  $\gamma$  decay, proton decay and  $\alpha$  decay.

#### <sup>12</sup>C Levels

| E(level) | $J^{\pi \dagger}$ |
|----------|-------------------|
| 0.0      | 0+                |
| 4439.82  | 2+                |
| 7654.07  | $0_{+}$           |

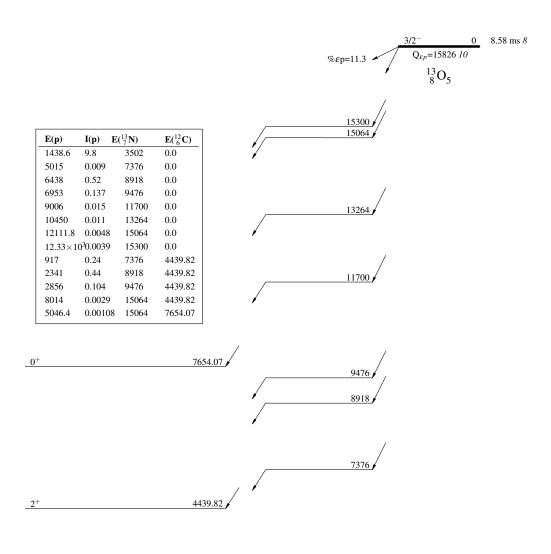
<sup>†</sup> From Adopted Levels.

### Delayed Protons (12C)

| E(p) <sup>†</sup>      | E(12C)  | $I(p)^{\ddagger}$ | E(13N) | Comments                                                           |
|------------------------|---------|-------------------|--------|--------------------------------------------------------------------|
| 917 8                  | 4439.82 | 2.4 3             | 7376   |                                                                    |
| 1438.6 <i>19</i>       | 0.0     | 100               | 3502   |                                                                    |
| 2341 10                | 4439.82 | 4.5 <i>3</i>      | 8918   |                                                                    |
| 2856 7                 | 4439.82 | 1.06 11           | 9476   |                                                                    |
| 5015 8                 | 0.0     | 0.09 4            | 7376   |                                                                    |
| 5046.4 5               | 7654.07 | 0.011 2           | 15064  |                                                                    |
| 6438 10                | 0.0     | 5.3 4             | 8918   |                                                                    |
| 6953 7                 | 0.0     | 1.40 13           | 9476   |                                                                    |
| 8014 <i>1</i>          | 4439.82 | 0.030 5           | 15064  |                                                                    |
| 9006 28                | 0.0     | 0.15 4            | 11700  |                                                                    |
| 10450 83               | 0.0     | 0.11 9            | 13264  | $E(p)$ , $E(level)(^{13}N)$ from $(2005Kn02)$ using $(2017Wa10)$ . |
| 12111.8 <i>4</i>       | 0.0     | 0.049 7           | 15064  |                                                                    |
| $12.33 \times 10^3 18$ | 0.0     | 0.04 3            | 15300  |                                                                    |

<sup>†</sup> E(p) deduced from Q (2017Wa10) and <sup>13</sup>N/<sup>12</sup>C level energies In ENSDF except where noted.

<sup>&</sup>lt;sup>13</sup>O-T<sub>1/2</sub>: from weighted average of (1965Mc09,1970Es03,1990As01) (external errors).


<sup>&</sup>lt;sup>13</sup>O-Q( $\varepsilon$ p): from (2017Wa10).

<sup>&</sup>lt;sup>‡</sup> For absolute intensity per 100 decays, multiply by 0.098 20.

# <sup>13</sup>O εp decay:8.58 ms 2005Kn02

## Decay Scheme

I(p) Intensities: I(p) per 100 parent decays

